1
|
Angeles Flores G, Cusumano G, Zengin G, Cetiz MV, Uba AI, Senkardes I, Koyuncu I, Yuksekdag O, Kalyniukova A, Emiliani C, Venanzoni R, Angelini P. Using In Vitro and In Silico Analysis to Investigate the Chemical Profile and Biological Properties of Polygonum istanbulicum Extracts. PLANTS (BASEL, SWITZERLAND) 2024; 13:3421. [PMID: 39683214 DOI: 10.3390/plants13233421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
The present study investigates the chemical profile and biological activities of Polygonum istanbulicum M. Keskin, a species endemic to Turkey, aiming to explore its potential applications in pharmacology. We assessed its phenolic and flavonoid content by employing ethyl acetate, methanol, and water as extraction solvents. The methanol extract demonstrated the highest concentrations of these compounds, with liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-MS-qTOF) analysis identifying a wide range of bioactive substances, such as derivatives of quercetin and myricetin. Antioxidant capacity was evaluated using 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), cupric-reducing antioxidant capacity (CUPRAC), ferric-reducing antioxidant power (FRAP), and phosphomolybdenum assays, with the methanol extract showing the most potent activity (DPPH: 892.22 mg Trolox equivalent (TE)/g; ABTS: 916.21 mg TE/g; CUPRAC: 1082.69 mg TE/g; FRAP: 915.05 mg TE/g). Enzyme inhibition assays highlighted the efficacy of P. istanbulicum extracts against key enzymes, with potential implications for managing Alzheimer's disease, hyperpigmentation, and type 2 diabetes. Cytotoxicity tests against various cancer cell lines showed notable activity, particularly with the aqueous extract on the HGC-27 cell line (IC50: 29.21 µg/mL), indicating potential for targeted anti-cancer therapy. Molecular docking and molecular dynamics simulations further supported the binding affinities of quercetin and myricetin derivatives to cancer-related proteins, suggesting significant therapeutic potential. This study underscores the value of P. istanbulicum as a source of bioactive compounds with applications in antioxidant, anti-cancer, and enzyme-inhibitory treatments.
Collapse
Affiliation(s)
- Giancarlo Angeles Flores
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
- Botanic Garden "Giardino dei Semplici", Department of Pharmacy, "Gabriele d'Annunzio" University, 66100 Chieti, Italy
| | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Mehmet Veysi Cetiz
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetic, Faculty of Science and Arts, Istanbul Arel University, Istanbul 34537, Turkey
| | - Ismail Senkardes
- Department of Pharmaceutical Biology, Pharmacy Faculty, Marmara University, Istanbul 34722, Turkey
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Ozgur Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Alina Kalyniukova
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
2
|
Mounia L, Ismail E, Othman EF, Hicham W, Rajaa E, El Mostafa M, Mounia O, Samira R. Aframomum Melegueta: Evaluation of Chronic Toxicity, HPLC Profiling, and In Vitro/In Vivo Antioxidant Assessment of Seeds Extracts. Chem Biodivers 2024:e202400942. [PMID: 39271457 DOI: 10.1002/cbdv.202400942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Aframomum melegueta, commonly known as grains of paradise, is a medicinal plant celebrated for its rich phytochemical content and therapeutic properties. This study evaluated the antioxidant and cytotoxic potentials of its ethanolic and methanolic extracts, both in vitro and in vivo, while also analyzing their chemical profiles. HPLC analysis identified key compounds, including gallic acid, caffeic acid, caffeine, coumarin, rutin, catechin, ferulic acid, and quercetin. Chronic toxicity assessments confirmed the safety of the extracts, with no adverse effects on animal health, particularly in liver histopathology. Cytotoxicity results indicated reduced splenocyte viability at the highest concentrations. The extracts exhibited significant antioxidant activity in DPPH•, FRP, and phosphomolybdate assays, demonstrating their effectiveness as antiradical agents. In vivo antioxidant results showed a reduction in lipid peroxidation levels in serum and liver, highlighting the extracts' ability to mitigate oxidative stress. Additionally, the extracts provided protection against H2O2-induced erythrocyte hemolysis and modulated NO production in peritoneal macrophages. These findings underscore the therapeutic potential of A. melegueta extracts, suggesting their promise in developing preventive strategies for oxidative stress-related chronic diseases.
Collapse
Affiliation(s)
- Latif Mounia
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Elkoraichi Ismail
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - El Faqer Othman
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Wahnou Hicham
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Elaaj Rajaa
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Mtairag El Mostafa
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Oudghiri Mounia
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Rais Samira
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Department of Biology, Faculty of Sciences Ben M'Sick, Hassan II University, Casablanca, Morocco
| |
Collapse
|
3
|
Kamsu GT, Ndebia EJ. A Comprehensive Review of the Ethnobotanical Uses, Pharmacological, and Toxicological Profiles of Piper capense L.f. (Piperaceae). DRUGS AND DRUG CANDIDATES 2024; 3:598-614. [DOI: 10.3390/ddc3030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Commonly known as wild pepper, Piper capense (P. capense) is a culinary herb mainly used as a secret in preparation of “Nkui” and “Nah poh” in Bayangam, West Cameroon. However, it also has many interesting pharmacological properties, which is why the people of sub-Saharan Africa so highly prize it for the treatment of multiple human pathologies. This study aimed to highlight the traditional uses, phytochemical composition, biological activities, and toxicological profile of the P. capense plant, to draw the attention of pharmaceutical companies to its enormous potential for the development of future phyto- or pharmaceutical products. Documentary research was meticulously carried out in the Web of Sciences, Scopus, Pubmed/Medline, and Google Scholar databases according to PRISMA 2020 guidelines. The results show that extracts and compounds isolated from Piper capense have interesting anticancer, antibacterial, antimalarial, hypoglycemic, anti-epileptic, and antidepressant activities. Methanolic extracts and essential oils from P. capense exhibit no harmful effects when directly applied to normal human hepatocytes, umbilical cord cells, intestinal cells, and keratinocyte cell lines. Additionally, methanolic extracts administered acutely or subchronically at low doses (≤250 mg/kg body weight) in Wistar rats also demonstrate no adverse effects. In conclusion, given its interesting activities, P. capense is a viable option for developing new antimalarial, anticancer, antibacterial, hypoglycemic, anti-epileptic, and antidepressant drugs. However, many avenues still need to be explored before translation into drugs.
Collapse
Affiliation(s)
- Gabriel Tchuente Kamsu
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, 5117 Nelson Mandela Drive, Mthatha 5100, South Africa
| | - Eugene Jamot Ndebia
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, 5117 Nelson Mandela Drive, Mthatha 5100, South Africa
| |
Collapse
|
4
|
Ambroselli D, Masciulli F, Romano E, Guerrini R, Ingallina C, Spano M, Mannina L. NMR Metabolomics of Arctium lappa L. , Taraxacum officinale and Melissa officinalis: A Comparison of Spontaneous and Organic Ecotypes. Foods 2024; 13:1642. [PMID: 38890870 PMCID: PMC11171743 DOI: 10.3390/foods13111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Officinal plants are a source of metabolites whose chemical composition depends on pedoclimatic conditions. In this study, the NMR-based approach was applied to investigate the impacts of different altitudes and agronomical practices (Land, Mountain Spontaneous, and Organically Grown Ecotypes, namely LSE, MSE, and OE, respectively) on the metabolite profiles of Burdock root, Dandelion root and aerial part, and Lemon balm aerial part. Sugars, amino acids, organic acids, polyphenols, fatty acids, and other metabolites were identified and quantified in all samples. Some metabolites turned out to be tissue-specific markers. Arginine was found in roots, whereas myo-inositol, galactose, glyceroyldigalactose moiety, pheophytin, and chlorophyll were identified in aerial parts. Caftaric and chicoric acids, 3,5 di-caffeoylquinic acid, and chlorogenic and rosmarinic acids were detected in Dandelion, Burdock and Lemon balm, respectively. The metabolite amount changed significantly according to crop, tissue type, and ecotype. All ecotypes of Burdock had the highest contents of amino acids and the lowest contents of organic acids, whereas an opposite trend was observed in Lemon balm. Dandelion parts contained high levels of carbohydrates, except for the MSE aerial part, which showed the highest content of organic acids. The results provided insights into the chemistry of officinal plants, thus supporting nutraceutical-phytopharmaceutical research.
Collapse
Affiliation(s)
- Donatella Ambroselli
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fabrizio Masciulli
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Romano
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ruggero Guerrini
- Université de Lille, CNRS, UMR 8516—LASIRE—Laboratoire de Spectroscopie Pour les Interactions, la Réactivité et l’Environnement, F-59000 Lille, France;
| | - Cinzia Ingallina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
| |
Collapse
|
5
|
Latif M, Elkoraichi I, El Faqer O, Wahnou H, Mtairag EM, Oudghiri M, Rais S. Phytochemical analysis and immunomodulatory activities in vitro and in vivo of Aframomum melegueta K Schum seed extracts. Inflammopharmacology 2024; 32:1621-1631. [PMID: 38319475 DOI: 10.1007/s10787-023-01422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/12/2023] [Indexed: 02/07/2024]
Abstract
Aframomum melegueta K Schum (A. melegueta), an herbaceous plant renowned for its medicinal seeds, was investigated for its potential immunomodulatory effects in vitro and in vivo using ethanolic and methanolic extracts. The immunomodulatory effect was evaluated by measuring antibody titers using the agglutination technique, while anti-inflammatory activity was assessed in a carrageenan-induced mouse paw edema model. In vitro immunomodulatory activity was measured by lysozyme release from neutrophils. Additionally, white blood cell counts were analyzed post-extracts treatment. The MTT assay was employed to determine cytotoxicity, and the biochemical parameters of liver toxicity were evaluated. Remarkably, both extracts exhibited a dose-dependent reduction in paw edema (p < 0.001), with the most significant reduction observed at 1 g/kg (78.13 and 74.27% for ethanolic and methanolic extracts, respectively). Neutrophil degranulation was significantly inhibited in a dose-dependent manner (p < 0.003), reaching maximal inhibition at 100 μg/mg (60.78 and 39.7% for ethanolic and methanolic extracts, respectively). In comparison to the control group, both antibody production and white blood cell counts were reduced. Neither of the extracts showcased any cytotoxicity or toxicity. These findings suggest that A. melegueta extracts exhibit immunosuppressive and anti-inflammatory activities due to the presence of various biomolecules.
Collapse
Affiliation(s)
- Mounia Latif
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Ismail Elkoraichi
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Othman El Faqer
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Hicham Wahnou
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - El Mostafa Mtairag
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Mounia Oudghiri
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Samira Rais
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco.
- Department of Biology, Faculty of Sciences Ben M'Sick, Hassan II University, Casablanca, Morocco.
| |
Collapse
|
6
|
Sharif A, Shah NA, Rauf A, Hadayat N, Gul A, Nawaz G, Sakhi S, Iqbal M, Khan MR, Shah AA, Azam N, Iftikhar H, Shah SA, Bahadur S, Hussain F, Shuaib M. Ethnomedicinal uses of plants for various diseases in the remote areas of Changa Manga Forest, Pakistan. BRAZ J BIOL 2024; 84:e255916. [DOI: 10.1590/1519-6984.255916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract This study aims at reporting the indigenous knowledge of the medicinal flora from the inhabitants of surroundings of the World’s largest artificial planted forest “Changa Manga”, Pakistan. Data were collected by direct interviews and group meetings from 81 inhabitants including 32 local healers having information regarding the use of indigenous medicinal plants over a period of one year. Different statistical tools were applied to analyze the data including Frequency citation (FC), Relative frequency citation (RFC), Use Value, Factor of informants consensus and fidelity level. This study reported 73 plant species belonging to 37 plant families and 46 genera. The majority of plant species belong to compositae family. The most commonly used medicinal plants were P. hysterophorus L., P. dactylifera L., S. indicum L, P. harmala L., P. emblica L., and A. indica A.Juss. The greatest number of species was used to cure gastrointestinal disorders. The highest fidelity level (68.18%) was of E. helioscopia to cure gastrointestinal disorders. Maximum fresh uses (17) were reported by C. dactylon (L.) Pars. While the highest number of species reporting fresh uses in similar number was 13. In this study, five novel plants are being reported for the first time in Pakistan for their ethnomedicinal worth. Our data reflect unique usage of the medicinal plants in the study area. The statistical tools used in the study proved useful in pointing the most important and disease category specific plants. High use value plant and the new reported medicinal plants might prove an important source of the isolation of pharmacologically active compounds.
Collapse
Affiliation(s)
| | | | - A. Rauf
- University of AWAKUM, Pakistan
| | | | - A. Gul
- Hazara University, Pakistan
| | - G. Nawaz
- Kohat University of Science and Technology, Pakistan
| | | | | | | | - A. A. Shah
- Jazan University, Kingdom of Saudi Arabia
| | - N. Azam
- University of Peshawar, Pakistan
| | | | - S. A. Shah
- National University of Medical Sciences, Pakistan
| | | | | | | |
Collapse
|
7
|
Nwozo OS, Effiong EM, Aja PM, Awuchi CG. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2157425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Onyenibe Sarah Nwozo
- Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, Kampala International University, Western Campus, Uganda
| | | | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Western Campus, Uganda
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Western Campus, Uganda
- School of Natural and Applied Sciences, Kampala International University, P.O. Box 20000 Kansanga, Kampala, Uganda
| |
Collapse
|
8
|
El-Gendy MS, El-Gezawy ES, Saleh AA, Alhotan RA, Al-Badwi MAA, Hussein EOS, El-Tahan HM, Kim IH, Cho S, Omar SM. Investigating the Chemical Composition of Lepidium sativum Seeds and Their Ability to Safeguard against Monosodium Glutamate-Induced Hepatic Dysfunction. Foods 2023; 12:4129. [PMID: 38002187 PMCID: PMC10670087 DOI: 10.3390/foods12224129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Monosodium glutamate (MSG) is one of the most frequently used food additives that endanger public health. The antioxidant, hyperlipidemic, and cytoprotective properties of Lepidium sativum seeds (LSS) as a natural remedy can minimize the harmful effects of MSG. This study investigated the potential protective effect of LSS against MSG-induced hepatotoxicity in rats. Male albino Sprague Dawley rats (n = 24) were equally divided into four groups for 30 days: the control group (G1) received a basal diet without supplement, group (G2) was fed a basal diet + MSG (30 g/kg b.w.) as a model group, group (G3) was fed a basal diet + MSG (30 g/kg b.w.) + LSS (30 g/kg b.w.), and group (G4) was fed a basal diet + MSG (30 g/kg b.w.) + LSS (60 g/kg b.w.). LSS enhanced serum alkaline phosphatase activity as well as total cholesterol, triglyceride, and glucose levels. It can decrease peroxide content in serum lipids and inhibit glutathione reductase and superoxide dismutase in hepatic cells. The dietary supplementation with LSS provided cytoprotection by enhancing the histoarchitecture of the liver and decreasing the number of apoptotic cells. Due to their antioxidant and anti-apoptotic properties, LSS effectively protect against the hepatotoxicity of MSG. These findings are of the highest significance for drawing attention to incorporating LSS in our food industry and as a health treatment in traditional medicine to combat MSG-induced hepatic abnormalities.
Collapse
Affiliation(s)
- Manal Salah El-Gendy
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31732, Egypt
| | - Eman Sobhy El-Gezawy
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31732, Egypt
| | - Ahmed A. Saleh
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 333516, Egypt
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mohammed A. A. Al-Badwi
- Department of Animal Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Elsayed Osman Sewlim Hussein
- AlKhumasia for Feed and Animal Products, Riyadh-Olaya-Al Aqareyah 2-Office 705, P.O. Box 8344, Riyadh 11982, Saudi Arabia
| | - Hossam M. El-Tahan
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki 12611, Egypt
- Animal Resource and Science Department, Dankook University, Cheonan 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan 330714, Republic of Korea
| | - In Ho Kim
- Animal Resource and Science Department, Dankook University, Cheonan 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan 330714, Republic of Korea
| | - Sungbo Cho
- Animal Resource and Science Department, Dankook University, Cheonan 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan 330714, Republic of Korea
| | - Sara Mahmoud Omar
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31732, Egypt
| |
Collapse
|
9
|
Zhakipbekov K, Turgumbayeva A, Issayeva R, Kipchakbayeva A, Kadyrbayeva G, Tleubayeva M, Akhayeva T, Tastambek K, Sainova G, Serikbayeva E, Tolenova K, Makhatova B, Anarbayeva R, Shimirova Z, Tileuberdi Y. Antimicrobial and Other Biomedical Properties of Extracts from Plantago major, Plantaginaceae. Pharmaceuticals (Basel) 2023; 16:1092. [PMID: 37631007 PMCID: PMC10458736 DOI: 10.3390/ph16081092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Since ancient times, many scientists and doctors have used various herbs to treat diseases. Conventional drugs often have side effects, and pathogens are becoming resistant to these types of drugs. In such circumstances, the study of traditional medicinal plants is an effective and logical strategy for finding new herbal medicines. One such herb is Plantago major, a perennial plant in the Plantaginaceae family that is found throughout the world. The Plantago major plant has been used as a medicine for the treatment of various diseases. Studies have shown that plant extracts of Plantago major exhibit antimicrobial, antiviral, and anti-inflammatory effects, and have wound-healing properties. This review collects and presents the results of various studies of Plantago major plant extracts with antimicrobial, antiviral, antifungal, anti-inflammatory, and wound-healing properties, which demonstrate a wide range of therapeutic possibilities of Plantago major plant extracts and have a huge potential for use as a medicinal raw material.
Collapse
Affiliation(s)
- Kairat Zhakipbekov
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (K.Z.); (M.T.); (E.S.); (B.M.)
| | - Aknur Turgumbayeva
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (K.Z.); (M.T.); (E.S.); (B.M.)
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (R.I.); (G.K.); (T.A.); (K.T.); (K.T.)
| | - Raushan Issayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (R.I.); (G.K.); (T.A.); (K.T.); (K.T.)
| | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Gulnara Kadyrbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (R.I.); (G.K.); (T.A.); (K.T.); (K.T.)
| | - Meruyert Tleubayeva
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (K.Z.); (M.T.); (E.S.); (B.M.)
| | - Tamila Akhayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (R.I.); (G.K.); (T.A.); (K.T.); (K.T.)
| | - Kuanysh Tastambek
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (R.I.); (G.K.); (T.A.); (K.T.); (K.T.)
- Department of Biotechnology, M. Auezov South Kazakhstan University, Shymkent 160012, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan;
| | - Gaukhar Sainova
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan;
| | - Elmira Serikbayeva
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (K.Z.); (M.T.); (E.S.); (B.M.)
| | - Karakoz Tolenova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (R.I.); (G.K.); (T.A.); (K.T.); (K.T.)
| | - Balzhan Makhatova
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (K.Z.); (M.T.); (E.S.); (B.M.)
| | - Rabiga Anarbayeva
- Department of Drug Technology, South Kazakhstan Medical Academy, Shymkent 160001, Kazakhstan; (R.A.); (Z.S.)
| | - Zhanar Shimirova
- Department of Drug Technology, South Kazakhstan Medical Academy, Shymkent 160001, Kazakhstan; (R.A.); (Z.S.)
| | - Yerbol Tileuberdi
- Institute of natural Sciences and Geography, Abai Kazakh National University, Almaty 050010, Kazakhstan;
| |
Collapse
|
10
|
Gahramanova M, Ostapchuk A, Molozhava O, Svyatetska V, Rudyk M, Hurmach Y, Gorbach O, Skivka L. Anti-inflammatory effect of polyherbal composition with hepatoprotective and choleretic properties on LPS-stimulated murine macrophages. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:404-412. [PMID: 36017665 DOI: 10.1515/jcim-2020-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES A polyherbal formulation with hepatoprotective and choleretic properties combining pharmacological potential of eight medicinal plants was developed in Nargiz Medical center (Republic of Azerbaijan) for the use as herbal tea. To explore the effect of polyherbal composition on the metabolism of LPS-stimulated macrophages in vitro. METHODS The qualitative and quantitative phytochemical analysis was conducted using specific color reactions and gas chromatography-mass spectrometry (GC-MS). Nitric oxide (NO) assay was determined using the Griess reaction. Reactive oxygen species (ROS) generation was measured using ROS-sensitive fluorescence indicator, H2DCFDA, by flow cytometry. Arginase activity was examined by colorimetric method. RESULTS The studied polyherbal formulation exerted anti-inflammatory activity in LPS-stimulated macrophages which was evidenced by dose-dependent decrease of ROS generation and by shift of arginine metabolism to the increase of arginase activity and decrease of NO release. CONCLUSIONS Our findings suggest that the herbal tea reduces macrophage inflammatory activity, that provide an important rationale to utilize it for the attenuation of chronic inflammation typical of hepatobiliary disorders.
Collapse
Affiliation(s)
- Malahat Gahramanova
- Nargiz Medical Center, Baku, Azerbaijan
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Olga Molozhava
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Vitalina Svyatetska
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Mariia Rudyk
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Oleksandr Gorbach
- Research Laboratory of Experimental Oncology, National Cancer Institute, Kyiv, Ukraine
| | - Larysa Skivka
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
11
|
Panneer selvam K, Payyappallimana U, Ravikumar K, Venkatasubramanian P. Can Guduchi (Tinospora cordifolia), a well-known ayurvedic hepato-protectant cause liver damage? J Ayurveda Integr Med 2022; 14:100658. [PMID: 36400639 PMCID: PMC10105241 DOI: 10.1016/j.jaim.2022.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/04/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
Ayurveda is a centuries old traditional medicine practiced in India even today. There are certain safe medicinal plants with well-established medicinal properties both in clinical practice as well as in modern scientific publications. Guduchi or Tinospora cordifolia (Willd.) Miers (Menispermaceae), is one such medicinal plant that has well known anti-inflammatory, immune-modulatory and other safe therapeutic applications including hepato-protection, because of which it was recommended by the Ministry of AYUSH, Government of India to be used in COVID-19 care. Therefore, Aabha Nagral's article "Herbal Immune Booster-Induced Liver Injury in the COVID-19 Pandemic-a Case Series," published in 2021, was unanticipated. The article recounted histologically documented clinical cases of six patients who developed drug-induced autoimmune-like hepatitis after reported consumption of Guduchi or Guduchi containing formulations during the COVID-19 pandemic. Since the Ayurveda practitioners vouch by the safety of T. cordifolia (TC), it was felt that the story needed to be further scrutinized. This article reviews the botanical entities, the substitutes and adulterants of species used as Guduchi, their pharmacological and toxicological properties. While the authentic botanical entity of Guduchi is TC, Tinospora sinensis and Tinospora crispa are also commonly traded in the Indian subcontinent as Guduchi or Giloy. Among these species, T. crispa is known to induce heapto-toxicity. In Nagral's article, there were variations in the reported six cases in terms of patient history and TC/TC product consumption. More importantly, the botanical authenticity of the consumed products was not investigated. A review of published literature indicates that it is unlikely that the authentic TC could have induced autoimmune-like hepatitis of the patients. It is probable that a wrong species was self-administered by the patients. It is worth following up with the cases (patients), to investigate details of the products, so that other consumers do not suffer. Nagral's article however does highlight the serious issue of adulteration in herbal markets and the need for establishing a robust pharmacovigilant system in India.
Collapse
|
12
|
Agregán R, Pateiro M, Bohrer BM, Shariati MA, Nawaz A, Gohari G, Lorenzo JM. Biological activity and development of functional foods fortified with okra ( Abelmoschus esculentus). Crit Rev Food Sci Nutr 2022; 63:6018-6033. [PMID: 35037792 DOI: 10.1080/10408398.2022.2026874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Abelmoschus esculentus plant, better known as okra, is an interesting crop from a nutritional standpoint. The okra plant is native to the African region but can now be found throughout tropical and subtropical areas of the world. This plant, known for its healing abilities, has been used as a traditional medicine to treat several diseases and external ailments, such as wounds or boils. This article reviews the potential health benefits from okra consumption, as well as the bioactive compounds that are suggested to be responsible. Furthermore, the okra plant and its derivatives have been evaluated in the formulation and manufacture of new functional food products. The latest advances in this direction, which includes characterizing the technical properties of functional foods fortified with okra are also presented in this review. A series of bioactive compounds such as flavonoids and catechins have been found in the okra plant, which were associated with numerous biological properties observed in research studies that reported potential anti-diabetic, anti-cancer, anti-hypertensive, and antimicrobial effects, among others, as a result of their consumption. These potential health benefits contribute to the development of new and useful functional foods, with okra (or its derivatives) being used as the highlighted ingredient.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Benjamin M Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia Federation
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Gholamreza Gohari
- Faculty of Agriculture, Department of Horticulture, University of Maragheh, Maragheh, Iran
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
13
|
El-Shall NA, Abd El-Hack ME, Albaqami NM, Khafaga AF, Taha AE, Swelum AA, El-Saadony MT, Salem HM, El-Tahan AM, AbuQamar SF, El-Tarabily KA, Elbestawy AR. Phytochemical control of poultry coccidiosis: a review. Poult Sci 2022; 101:101542. [PMID: 34871985 PMCID: PMC8649401 DOI: 10.1016/j.psj.2021.101542] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
Abstract
Avian coccidiosis is a major parasitic disorder in chickens resulting from the intracellular apicomplexan protozoa Eimeria that target the intestinal tract leading to a devastating disease. Eimeria life cycle is complex and consists of intra- and extracellular stages inducing a potent inflammatory response that results in tissue damage associated with oxidative stress and lipid peroxidation, diarrheal hemorrhage, poor growth, increased susceptibility to other disease agents, and in severe cases, mortality. Various anticoccidial drugs and vaccines have been used to prevent and control this disorder; however, many drawbacks have been reported. Drug residues concerning the consumers have directed research toward natural, safe, and effective alternative compounds. Phytochemical/herbal medicine is one of these natural alternatives to anticoccidial drugs, which is considered an attractive way to combat coccidiosis in compliance with the "anticoccidial chemical-free" regulations. The anticoccidial properties of several natural herbal products (or their extracts) have been reported. The effect of herbal additives on avian coccidiosis is based on diminishing the oocyst output through inhibition or impairment of the invasion, replication, and development of Eimeria species in the gut tissues of chickens; lowering oocyst counts due to the presence of phenolic compounds in herbal extracts which reacts with cytoplasmic membranes causing coccidial cell death; ameliorating the degree of intestinal lipid peroxidation; facilitating the repair of epithelial injuries; and decreasing the intestinal permeability induced by Eimeria species through the upregulation of epithelial turnover. This current review highlights the anticoccidial activity of several herbal products, and their other beneficial effects.
Collapse
Affiliation(s)
- Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Elbehira 22758, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Najah M Albaqami
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511 , Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211 , Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain,15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain,15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
14
|
Gracz-Bernaciak J, Mazur O, Nawrot R. Functional Studies of Plant Latex as a Rich Source of Bioactive Compounds: Focus on Proteins and Alkaloids. Int J Mol Sci 2021; 22:12427. [PMID: 34830309 PMCID: PMC8620047 DOI: 10.3390/ijms222212427] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 01/03/2023] Open
Abstract
Latex, a sticky emulsion produced by specialized cells called laticifers, is a crucial part of a plant's defense system against herbivory and pathogens. It consists of a broad spectrum of active compounds, which are beneficial not only for plants, but for human health as well, enough to mention the use of morphine or codeine from poppy latex. Here, we reviewed latex's general role in plant physiology and the significance of particular compounds (alkaloids and proteins) to its defense system with the example of Chelidonium majus L. from the poppy family. We further attempt to present latex chemicals used so far in medicine and then focus on functional studies of proteins and other compounds with potential pharmacological activities using modern techniques such as CRISPR/Cas9 gene editing. Despite the centuries-old tradition of using latex-bearing plants in therapies, there are still a lot of promising molecules waiting to be explored.
Collapse
Affiliation(s)
| | | | - Robert Nawrot
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (J.G.-B.); (O.M.)
| |
Collapse
|
15
|
Gierlikowska B, Stachura A, Gierlikowski W, Demkow U. Phagocytosis, Degranulation and Extracellular Traps Release by Neutrophils-The Current Knowledge, Pharmacological Modulation and Future Prospects. Front Pharmacol 2021; 12:666732. [PMID: 34017259 PMCID: PMC8129565 DOI: 10.3389/fphar.2021.666732] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are crucial elements of innate immune system, which assure host defense via a range of effector functions, such as phagocytosis, degranulation, and NET formation. The latest literature clearly indicates that modulation of effector functions of neutrophils may affect the treatment efficacy. Pharmacological modulation may affect molecular mechanisms activating or suppressing phagocytosis, degranulation or NET formation. In this review, we describe the role of neutrophils in physiology and in the course of bacterial and viral infections, illustrating the versatility and plasticity of those cells. This review also focus on the action of plant extracts, plant-derived compounds and synthetic drugs on effector functions of neutrophils. These recent advances in the knowledge can help to devise novel therapeutic approaches via pharmacological modulation of the described processes.
Collapse
Affiliation(s)
- Barbara Gierlikowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Albert Stachura
- Department of Methodology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Wojciech Gierlikowski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Attah AF, Fagbemi AA, Olubiyi O, Dada-Adegbola H, Oluwadotun A, Elujoba A, Babalola CP. Therapeutic Potentials of Antiviral Plants Used in Traditional African Medicine With COVID-19 in Focus: A Nigerian Perspective. Front Pharmacol 2021; 12:596855. [PMID: 33981214 PMCID: PMC8108136 DOI: 10.3389/fphar.2021.596855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by an infectious novel strain of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which was earlier referred to as 2019-nCoV. The respiratory disease is the most consequential global public health crisis of the 21st century whose level of negative impact increasingly experienced globally has not been recorded since World War II. Up till now, there has been no specific globally authorized antiviral drug, vaccines, supplement or herbal remedy available for the treatment of this lethal disease except preventive measures, supportive care and non-specific treatment options adopted in different countries via divergent approaches to halt the pandemic. However, many of these interventions have been documented to show some level of success particularly the Traditional Chinese Medicine while there is paucity of well reported studies on the impact of the widely embraced Traditional African Medicines (TAM) adopted so far for the prevention, management and treatment of COVID-19. We carried out a detailed review of publicly available data, information and claims on the potentials of indigenous plants used in Sub-Saharan Africa as antiviral remedies with potentials for the prevention and management of COVID-19. In this review, we have provided a holistic report on evidence-based antiviral and promising anti-SARS-CoV-2 properties of African medicinal plants based on in silico evidence, in vitro assays and in vivo experiments alongside the available data on their mechanistic pharmacology. In addition, we have unveiled knowledge gaps, provided an update on the effort of African Scientific community toward demystifying the dreadful SARS-CoV-2 micro-enemy of man and have documented popular anti-COVID-19 herbal claims emanating from the continent for the management of COVID-19 while the risk potentials of herb-drug interaction of antiviral phytomedicines when used in combination with orthodox drugs have also been highlighted. This review exercise may lend enough credence to the potential value of African medicinal plants as possible leads in anti-COVID-19 drug discovery through research and development.
Collapse
Affiliation(s)
- Alfred Francis Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adeshola Adebayo Fagbemi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Olujide Olubiyi
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Anthony Elujoba
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Chinedum Peace Babalola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Centre for Drug Discovery, Development and Production, University of Ibadan, Ibadan, Nigeria
- College of Basic Medical Sciences, Chrisland University, Abeokuta, Nigeria
| |
Collapse
|
17
|
Jeyaraman P, Samuel M, Johnson A, Raman N. Synthesis, characterization, ADMET , in vitro and in vivo studies of mixed ligand metal complexes from a curcumin Schiff base and lawsone. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 40:242-263. [PMID: 33380278 DOI: 10.1080/15257770.2020.1867865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Complexes are currently synthesized from plant origin because of their therapeutic effect against certain diseases with toxicity. Hence, in this work, four new transition metal(II) mixed ligand complexes have been synthesized using a curcumin Schiff base (primary ligand) and lawsone (as co-ligand). The geometry of these complexes was explored by elemental analyses, molar conductance, thermal analysis, magnetic moment values, IR, NMR, Mass, electronic and EPR spectral studies. Electronic absorption titrations, viscosity measurements and molecular docking studies reveal that all the metal complexes interact with the CT DNA by groove binding. Among all the complexes, the copper(II) complex (complex 1) exhibits a higher Kb value (3.5 × 10-4 M) which reveals that it has a strong binding efficiency toward the CT DNA. The complexes also possess strong DNA cleavage efficiency. Cytotoxicity investigations on Artemia salina show that all the complexes possess higher cytotoxic effect than the ligand. Moreover, all the metal complexes have better antimicrobial efficacy than the ligand. Swiss ADME, PASS and pkCSM online softwares are helpful to predict the pharmacokinetic and biological actions of the curcumin Schiff base. Theoretical results obtained from the in silico study are experimentally corroborated by in vivo anti-inflammatory screening study. All the above studies demonstrate that the copper complex possesses biological activity similar to that of the drug like molecules. Research Highlights Synthesis and characterization of four novel transition mixed ligand complexes using plant moieties Promising in vivo anti-inflammatory agents and in vitro DNA metallonucleases Cytotoxicity investigation on Artemia salina Higher cytotoxic effect for the complexes than the ligand Identification of copper(II) complex as lead like molecule among all.
Collapse
Affiliation(s)
- Porkodi Jeyaraman
- Research Department of Chemistry, The Standard Fireworks Rajaratnam College for Women, Sivakasi, India
| | - Michael Samuel
- Research Department of Chemistry, VHNSN College, Viruthunagar, India
| | - Antonysamy Johnson
- Department of Plant Biology and Plant Biotechnology, St. Xavier College, Palayamkottai, India
| | - Natarajan Raman
- Research Department of Chemistry, VHNSN College, Viruthunagar, India
| |
Collapse
|
18
|
Thakur RK, Rajpal VR, Rao SR, Singh A, Joshi L, Kaushal P, Raina SN. Induction and evaluation of colchitetraploids of two species of Tinospora Miers, 1851. COMPARATIVE CYTOGENETICS 2020; 14:211-229. [PMID: 32509238 PMCID: PMC7253504 DOI: 10.3897/compcytogen.v14i2.33394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
Autotetraploidy, both natural and/or induced, has potential for genetic improvement of various crop species including that of medicinal importance. Tinospora cordifolia (Willdenow, 1806) Miers, 1851 ex Hooker et Thomson, 1855 and T. sinensis (Loureiro, 1790) Merrill, 1934 are two diploid species, which are dioecious, deciduous and climbing shrubs with high medicinal importance. Among the three methods used for induction of polyploidy by colchicine treatment, it was cotton swab method which successfully induced the polyploidy in both species. The morphological and cytogenetical features of the synthetic tetraploids were compared with their diploid counterparts. The tetraploids were morphologically distinct from diploid plants. They exhibited larger organs, such as stem, leaves, inflorescence, fruits, flowers and seeds. The tetraploids were characterized by the presence of low quadrivalent frequency and high bivalent average. Unequal distribution of chromosomes at anaphase I was found in 60% cells. The present study provides important information on the superiority of autotetraploids as compared to diploid counterparts in both species.
Collapse
Affiliation(s)
- Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, IndiaAmity UniversityNoidaIndia
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, IndiaUniversity of DelhiDelhiIndia
| | - Satyawada Rama Rao
- Department of Biotechnology & Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, 793022, IndiaNorth Eastern Hill UniversityShillongIndia
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, IndiaAmity UniversityNoidaIndia
| | - Lata Joshi
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, IndiaAmity UniversityNoidaIndia
| | - Pankaj Kaushal
- ICAR- Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, 284003, IndiaICAR- Indian Grassland and Fodder Research InstituteJhansiIndia
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, IndiaAmity UniversityNoidaIndia
| |
Collapse
|
19
|
Gahramanova M. THE USE OF HERBAL REMEDIES IN THE TREATMENT OF HEPATOBILIARY DISEASES: TRENDS AND PROSPECTS. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Wound Healing and the Use of Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2684108. [PMID: 31662773 PMCID: PMC6778887 DOI: 10.1155/2019/2684108] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is the process by which skin repairs itself. It is generally accepted that cutaneous wound healing can be divided into 4 phases: haemostasis, inflammation, proliferation, and remodelling. In humans, keratinocytes re-form a functional epidermis (reepithelialization) as rapidly as possible, closing the wound and reestablishing tissue homeostasis. Dermal fibroblasts migrate into the wound bed and proliferate, creating “granulation tissue” rich in extracellular matrix proteins and supporting the growth of new blood vessels. Ultimately, this is remodelled over an extended period, returning the injured tissue to a state similar to that before injury. Dysregulation in any phase of the wound healing cascade delays healing and may result in various skin pathologies, including nonhealing, or chronic ulceration. Indigenous and traditional medicines make extensive use of natural products and derivatives of natural products and provide more than half of all medicines consumed today throughout the world. Recognising the important role traditional medicine continues to play, we have undertaken an extensive survey of literature reporting the use of medical plants and plant-based products for cutaneous wounds. We describe the active ingredients, bioactivities, clinical uses, formulations, methods of preparation, and clinical value of 36 medical plant species. Several species stand out, including Centella asiatica, Curcuma longa, and Paeonia suffruticosa, which are popular wound healing products used by several cultures and ethnic groups. The popularity and evidence of continued use clearly indicates that there are still lessons to be learned from traditional practices. Hidden in the myriad of natural products and derivatives from natural products are undescribed reagents, unexplored combinations, and adjunct compounds that could have a place in the contemporary therapeutic inventory.
Collapse
|
21
|
Antidiabetic Potential of Mangifera indica L. cv. Anwar Ratol Leaves: Medicinal Application of Food Wastes. ACTA ACUST UNITED AC 2019; 55:medicina55070353. [PMID: 31323919 PMCID: PMC6681213 DOI: 10.3390/medicina55070353] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022]
Abstract
Background and objectives: Anwar Ratol is one of the most famous cultivar of mango in South Asia, especially Pakistan. Mango leaves are left as food waste. This study evaluated the potential of mango (Anwar Ratol) leaves for their use against diabetes mellitus. Material and Methods: In this study, hydro-alcoholic extract of the plant leaves was prepared and evaluated by electrospray ionization mass spectroscopy (ESI-MS) and high-performance liquid chromatography (HPLC) for the presence of phytochemicals. The plant extract was administered to Alloxan induced diabetic mice followed by evaluation through oral glucose tolerance test; determination of postprandial glucose, body weight, lipid profile and histopathological evaluation of pancreas. Results: Chemical evaluation revealed the presence of mangiferin, rhamnetin, catechin, epicatechin, iriflophenone 3-C-β-D-glucoside, gallic acid and other phenolic and flavonoid compounds. The plant extract exhibited a decrease in postprandial blood glucose following seven days therapy in diabetic mice. The extract also prevented the rise in blood glucose level as determined by glucose tolerance test in diabetic mice. Furthermore, therapy of diabetic mice with the extract prevented a decrease in body weight and decline in beta-cell mass associated with alloxan and improved lipid profile. Conclusion: The findings of the study clearly suggested that the leaf extract of the plant might possess anti-diabetic activity possibly due to the presence of mangiferin and other phytochemicals such as phenolic and flavonoid compounds. This study will serve as a basis for the use of mango leaf extract against diabetes. Furthermore, this study will also provide basis for the bioassay-based fractionation and isolation of active principles responsible for the antidiabetic potential of mango leaves.
Collapse
|
22
|
Fahimirad S, Ajalloueian F. Naturally-derived electrospun wound dressings for target delivery of bio-active agents. Int J Pharm 2019; 566:307-328. [PMID: 31125714 DOI: 10.1016/j.ijpharm.2019.05.053] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Abstract
Electrospun nanofibers are known as the advanced means for wound dressing. They have represented remarkable potency to encapsulate and deliver biomolecules promoting the wound healing process. Compared to synthetic polymers, naturally derived polymers (NDP) are more qualified candidates for fabrication of biomedical electrospun scaffolds. Not only nanofibers of NDP illustrate higher biocompatibility and biodegradability rates, but also they mimic the native extracellular matrix more closely, which leads to the wound closure acceleration by enhancing tissue regeneration. Aside, incorporation of bioactive molecules and therapeutic agents into the nanofibers can generate innovative bioactive wound dressings with significantly improved healing potentials. This paper starts with a brief discussion on the steps and factors influencing the wound healing process. Then, the recent applications of electrospun nanofibers as wound dressing with healing accelerating properties are reviewed. Further, the various healing agents and alternative strategies for modification and functionalization of bioactive naturally-derived electrospun nanofibers are discussed.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran.
| | - Fatemeh Ajalloueian
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
23
|
Najafian Y, Hamedi SS, Farshchi MK, Feyzabadi Z. Plantago major in Traditional Persian Medicine and modern phytotherapy: a narrative review. Electron Physician 2018; 10:6390-6399. [PMID: 29629064 PMCID: PMC5878035 DOI: 10.19082/6390] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
Plantago major has been used widely since ancient times, to manage a wide range of diseases including constipation, coughs and wounds. The aim of this study is to review the traditional application, botanical characterization, pharmacological activities, phytochemistry effects and toxicity of Plantago major. In this review study, medicinal properties of Plantago major are collected from credible pharmacopeias, textbooks of traditional Persian medicine (TPM) belonging to the 10-18th century AD, such as "The Canon of Medicine", "Makhzan-Al- Advia" and so on. Moreover, electronic databases including Scopus, Medline and Web of science were explored for this purpose. Plantago major has been prescribed in various forms such as roasted seeds, decoction, syrup, liniment, gargle, rectal enema, vaginal suppository, eye and nasal drop for each illness by TPM scholars. Some of its traditional properties including wound healing, antipyretic, antitussive, anti-infective, anti-hemorrhagic, anti-inflammatory, diuretic, laxative, astringent and hemostatic have been confirmed in recent researches. Phytochemical investigations showed that Plantago major contains volatile compounds, triterpenoids, phenolic acids and flavonoids. Modern pharmacological studies have proven some of the traditional applications of Plantago major. Nevertheless, more investigations are required on this plant, because it has the potential to be used to produce various natural medications.
Collapse
Affiliation(s)
- Younes Najafian
- Ph.D. Student, Students Research Committee, Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokouh Sadat Hamedi
- Ph.D. of Persian Pharmacy, Department of Persian Pharmacy, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Kaboli Farshchi
- Ph.D. Student, Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohre Feyzabadi
- Assistant Professor of Persian Medicine, Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Anti-inflammatory effect of Allium hookeri on carrageenan-induced air pouch mouse model. PLoS One 2017; 12:e0190305. [PMID: 29281705 PMCID: PMC5744995 DOI: 10.1371/journal.pone.0190305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022] Open
Abstract
Inflammation is a commonly observed immune reaction, and rheumatoid arthritis is a particularly severe inflammatory disease. In this study, we used an air pouch mouse model to evaluate the anti-inflammatory potential of Allium hookeri, which has both been used as a culinary material and a traditional medicine in south-eastern Asia for many years. Allium hookeri suppressed typical symptoms of inflammation, such as condensation of the air pouch membrane, and inhibited the expression of several inducible proinflammatory cytokines such as IL-1β, IL-6, IL-13, and TNF-α. In order to determine the molecules modulating the inflammatory effect of carrageenan treatment, the components in Allium hookeri were analyzed by GC-MS, and linoleic acid, which have anti-inflammatory effect, was detected. From the results, we concluded that the anti-inflammatory effect of Allium hookeri might be attributed to linoleic acid, which could be promising candidates for anti-inflammatory drugs that have no adverse effects.
Collapse
|
25
|
Patel S. Phytochemicals for taming agitated immune-endocrine-neural axis. Biomed Pharmacother 2017; 91:767-775. [DOI: 10.1016/j.biopha.2017.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
|
26
|
Zhou L, Tuo Y, Hao Y, Guo X, Tang W, Xue Y, Zeng J, Zhou Y, Xiang M, Zuo J, Yao G, Zhang Y. Cinnamomols A and B, Immunostimulative Diterpenoids with a New Carbon Skeleton from the Leaves of Cinnamomum cassia. Org Lett 2017; 19:3029-3032. [PMID: 28535060 DOI: 10.1021/acs.orglett.7b01323] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two diterpenoids with an unprecedented diterpene carbon skeleton, cinnamomols A (1) and B (2), were isolated from the leaves of Cinnamomum cassia. 1 and 2 feature a cage-like, rigid, 5/5/5/5/5/6-fused hexacyclic ring system. The structures of 1 and 2 were established by extensive spectroscopic techniques and single-crystal X-ray diffraction, and their plausible biosynthetic pathways were proposed. 1 and 2 exhibited significant in vitro immunostimulative activity, and the mode of action of 1 was investigated.
Collapse
Affiliation(s)
| | | | | | | | - Wei Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | | | | | - Yu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | | | - Jianping Zuo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | | | | |
Collapse
|
27
|
Bacchetta L, Visioli F, Cappelli G, Caruso E, Martin G, Nemeth E, Bacchetta G, Bedini G, Wezel A, van Asseldonk T, van Raamsdonk L, Mariani F. A manifesto for the valorization of wild edible plants. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:180-187. [PMID: 27321281 DOI: 10.1016/j.jep.2016.05.061] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wild foods constitute an essential component of people's diets around the world, but despite their widespread use and their cultural importance, wild edible plants (WEPs) lack recognition as significant contributors to the human diet in developed countries. MATERIALS AND METHODS We stimulate national and international bodies dealing with food and agriculture, to increase their attention and investments on WEPs, leveraging the results of scientific investigation, enhancing the link between in situ conservation strategies and sustainable use of plant genetic diversity. RESULTS AND CONCLUSIONS WEPs should be reconsidered throughout their value chain, capturing their important socio-cultural, health, and economic benefits to indigenous and local communities and family farmers who are engaged in their production and wild-harvesting.
Collapse
Affiliation(s)
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, CEI UAM+CSIC, Madrid, Spain.
| | - Giulia Cappelli
- Institute Cell Biology and Neurobiology, National Research Council, Monterotondo, RM, Italy
| | | | | | - Eva Nemeth
- Szent István University Budapest, Hungary
| | | | | | | | | | | | - Francesca Mariani
- Institute Cell Biology and Neurobiology, National Research Council, Monterotondo, RM, Italy
| |
Collapse
|
28
|
Borges A, Abreu AC, Dias C, Saavedra MJ, Borges F, Simões M. New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules 2016; 21:molecules21070877. [PMID: 27399652 PMCID: PMC6274140 DOI: 10.3390/molecules21070877] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
The majority of current infectious diseases are almost untreatable by conventional antibiotic therapy given the advent of multidrug-resistant bacteria. The degree of severity and the persistence of infections are worsened when microorganisms form biofilms. Therefore, efforts are being applied to develop new drugs not as vulnerable as the current ones to bacterial resistance mechanisms, and also able to target bacteria in biofilms. Natural products, especially those obtained from plants, have proven to be outstanding compounds with unique properties, making them perfect candidates for these much-needed therapeutics. This review presents the current knowledge on the potentialities of plant products as antibiotic adjuvants to restore the therapeutic activity of drugs. Further, the difficulties associated with the use of the existing antibiotics in the treatment of biofilm-related infections are described. To counteract the biofilm resistance problems, innovative strategies are suggested based on literature data. Among the proposed strategies, the use of phytochemicals to inhibit or eradicate biofilms is highlighted. An overview on the use of phytochemicals to interfere with bacterial quorum sensing (QS) signaling pathways and underlying phenotypes is provided. The use of phytochemicals as chelating agents and efflux pump inhibitors is also reviewed.
Collapse
Affiliation(s)
- Anabela Borges
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
- CECAV-Veterinary and Animal Science Research Center, Department of Veterinary Science, University of Trás-os-Montes e Alto Douro, Apartado 1013, Vila Real 5001-801, Portugal.
| | - Ana Cristina Abreu
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
- CECAV-Veterinary and Animal Science Research Center, Department of Veterinary Science, University of Trás-os-Montes e Alto Douro, Apartado 1013, Vila Real 5001-801, Portugal.
| | - Carla Dias
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
- CECAV-Veterinary and Animal Science Research Center, Department of Veterinary Science, University of Trás-os-Montes e Alto Douro, Apartado 1013, Vila Real 5001-801, Portugal.
| | - Maria José Saavedra
- CECAV-Veterinary and Animal Science Research Center, Department of Veterinary Science, University of Trás-os-Montes e Alto Douro, Apartado 1013, Vila Real 5001-801, Portugal.
| | - Fernanda Borges
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| |
Collapse
|
29
|
Herbal Remedies for Coccidiosis Control: A Review of Plants, Compounds, and Anticoccidial Actions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2657981. [PMID: 27429634 PMCID: PMC4939967 DOI: 10.1155/2016/2657981] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/24/2016] [Indexed: 11/18/2022]
Abstract
Coccidiosis is the bane of the poultry industry causing considerable economic loss. Eimeria species are known as protozoan parasites to cause morbidity and death in poultry. In addition to anticoccidial chemicals and vaccines, natural products are emerging as an alternative and complementary way to control avian coccidiosis. In this review, we update recent advances in the use of anticoccidial phytoextracts and phytocompounds, which cover 32 plants and 40 phytocompounds, following a database search in PubMed, Web of Science, and Google Scholar. Four plant products commercially available for coccidiosis are included and discussed. We also highlight the chemical and biological properties of the plants and compounds as related to coccidiosis control. Emphasis is placed on the modes of action of the anticoccidial plants and compounds such as interference with the life cycle of Eimeria, regulation of host immunity to Eimeria, growth regulation of gut bacteria, and/or multiple mechanisms. Biological actions, mechanisms, and prophylactic/therapeutic potential of the compounds and extracts of plant origin in coccidiosis are summarized and discussed.
Collapse
|
30
|
Germano PDM, Marcus VICOB, Md TI, Lidiane DSAUJ, D eacute bora CASVG, Rodrigo MDC, Dione C, M aacute rcia FCJP, Paulo MPF, Ana ECMC, Jaqueline NP, Alexandre F, Ivana G. Toxicogenetic profile of rats treated with aqueous extract from Morinda citrifolia fruits. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jmpr2015.6017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
31
|
Judaki A, Panahi J, Havasian MR, Tajbakhsh P, Roozegar MA. Study of the inhibitory effect of Quercus Coccifera's aqueous extract on Staphylococcus aureus and Pseudomonas aeruginosa In vitro. Bioinformation 2014; 10:689-92. [PMID: 25512685 PMCID: PMC4261113 DOI: 10.6026/97320630010689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 11/18/2014] [Indexed: 12/16/2022] Open
Abstract
The use of therapeutic herbs has become of great importance these days due to the increase in drug resistance. From a long time ago the Venus' navel plant has been used to treat infections. In this study the antibacterial effect of the aqueous extract from the Quercus coccifera (jaft) herb, under laboratory conditions. This study was carried out experimentally. After collecting the Venus navel herb, it was dried in a warm dry environment away from direct sunlight in the shade. The alcoholic extract was prepared using a standard method. Clinical samples of staphylococcus aureus and pseudomonas aeruginosa were acquired from Ilam's health care institutes. The inhibitory effect of the extracts was analysed in the Mueller Hinton using the disk diffusion method for both bacteria. Then MIC and MBC of the extracts was determined using the Macro broth dilution method. At its highest concentration the aqueous extract had an inhibition zone of 27.2 and 23.7 mm on staphylococcus aureus and pseudomonas aeruginosa consecutively. The MIC and MBC for staphylococcus aureus were 10 and 12.5 µg/ml and for pseudomonas aeruginosa they were 10 and 17.5 µg/m consecutively. The results of this study show the strong antimicrobial effect of jaft's aqueous extract on staphylococcus aureus and pseudomonas aeruginosa and if more studies are based on this topic it could be a substitute for common antibiotics.
Collapse
Affiliation(s)
- Arezo Judaki
- Department of Gastroenterology, Ilam University of Medical Sciences, Ilam/ Iran
| | - Jafar Panahi
- Student research of committee, Ilam University of Medical Sciences, Ilam/Iran
| | | | - Parnian Tajbakhsh
- Student research of committee, Ilam University of Medical Sciences, Ilam/Iran
| | - Mohamad Ali Roozegar
- Department of Periodontics, Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|