1
|
Zucker CL, Bernstein PS, Schalek RL, Lichtman JW, Dowling JE. High-throughput ultrastructural analysis of macular telangiectasia type 2. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1428777. [PMID: 39140090 PMCID: PMC11319912 DOI: 10.3389/fopht.2024.1428777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
Introduction Macular Telangiectasia type 2 (MacTel), is an uncommon form of late-onset, slowly-progressive macular degeneration. Associated with regional Müller glial cell loss in the retina and the amino acid serine synthesized by Müller cells, the disease is functionally confined to a central retinal region - the MacTel zone. Methods We have used high-throughput multi-resolution electron microscopy techniques, optimized for disease analysis, to study the retinas from two women, mother and daughter, aged 79 and 48 years respectively, suffering from MacTel. Results In both eyes, the principal observations made were changes specific to mitochondrial structure both outside and within the MacTel zone in all retinal cell types, with the exception of those in the retinal pigment epithelium (RPE). The lesion areas, which are a hallmark of MacTel, extend from Bruch's membrane and the choriocapillaris, through all depths of the retina, and include cells from the RPE, retinal vascular elements, and extensive hypertrophic basement membrane material. Where the Müller glial cells are lost, we have identified a significant population of microglial cells, exclusively within the Henle fiber layer, which appear to ensheathe the Henle fibers, similar to that seen normally by Müller cells. Discussion Since Müller cells synthesize retinal serine, whereas retinal neurons do not, we propose that serine deficiency, required for normal mitochondrial function, may relate to mitochondrial changes that underlie the development of MacTel. With mitochondrial changes occurring retina-wide, the question remains as to why the Müller cells are uniquely susceptible within the MacTel zone.
Collapse
Affiliation(s)
- Charles L. Zucker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Richard L. Schalek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - John E. Dowling
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| |
Collapse
|
2
|
Sheng X, Zhang C, Zhao J, Xu J, Zhang P, Ding Q, Zhang J. Microvascular destabilization and intricated network of the cytokines in diabetic retinopathy: from the perspective of cellular and molecular components. Cell Biosci 2024; 14:85. [PMID: 38937783 PMCID: PMC11212265 DOI: 10.1186/s13578-024-01269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Microvascular destabilization is the primary cause of the inner blood-retinal barrier (iBRB) breakdown and increased vascular leakage in diabetic retinopathy (DR). Microvascular destabilization results from the combinational effects of increased levels of growth factors and cytokines, involvement of inflammation, and the changed cell-to-cell interactions, especially the loss of endothelial cells and pericytes, due to hyperglycemia and hypoxia. As the manifestation of microvascular destabilization, the fluid transports via paracellular and transcellular routes increase due to the disruption of endothelial intercellular junctional complexes and/or the altered caveolar transcellular transport across the retinal vascular endothelium. With diabetes progression, the functional and the structural changes of the iBRB components, including the cellular and noncellular components, further facilitate and aggravate microvascular destabilization, resulting in macular edema, the neuroretinal damage and the dysfunction of retinal inner neurovascular unit (iNVU). Although there have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying the microvascular destabilization, some still remain to be fully elucidated. Recent data indicate that targeting the intricate signaling pathways may allow to against the microvascular destabilization. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in the microvascular destabilization in DR. In this review, we discuss: (1) the brief introduction of DR and microvascular destabilization; (2) the cellular and molecular components of iBRB and iNVU, and the breakdown of iBRB; (3) the matrix and cell-to-cell contacts to maintain microvascular stabilization, including the endothelial glycocalyx, basement membrane, and various cell-cell interactions; (4) the molecular mechanisms mediated cell-cell contacts and vascular cell death; (5) the altered cytokines and signaling pathways as well as the intricate network of the cytokines involved in microvascular destabilization. This comprehensive review aimed to provide the insights for microvascular destabilization by targeting the key molecules or specific iBRB cells, thus restoring the function and structure of iBRB and iNVU, to treat DR.
Collapse
Affiliation(s)
- Xia Sheng
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Chunmei Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jiwei Zhao
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jianping Xu
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Peng Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Quanju Ding
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, National Clinical Research Center for Eye Diseases, Shanghai, China.
- The International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
- C-MER (Shenzhen) Dennis Lam Eye Hospital, Shenzhen, China.
- C-MER International Eye Care Group, C-MER Dennis Lam & Partners Eye Center, Hong Kong, China.
| |
Collapse
|
3
|
Lin X, Huang S, Gao S, Liu J, Tang J, Yu M. Integrin β5 subunit regulates hyperglycemia-induced vascular endothelial cell apoptosis through FoxO1-mediated macroautophagy. Chin Med J (Engl) 2024; 137:565-576. [PMID: 37500497 PMCID: PMC10932531 DOI: 10.1097/cm9.0000000000002769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Hyperglycemia frequently induces apoptosis in endothelial cells and ultimately contributes to microvascular dysfunction in patients with diabetes mellitus (DM). Previous research reported that the expression of integrins as well as their ligands was elevated in the diseased vessels of DM patients. However, the association between integrins and hyperglycemia-induced cell death is still unclear. This research was designed to investigate the role played by integrin subunit β5 (ITGB5) in hyperglycemia-induced endothelial cell apoptosis. METHODS We used leptin receptor knockout (Lepr-KO) ( db / db ) mice as spontaneous diabetes animal model. Selective deletion of ITGB5 in endothelial cell was achieved by injecting vascular targeted adeno-associated virus via tail vein. Besides, we also applied small interfering RNA in vitro to study the mechanism of ITGB5 in regulating high glucose-induced cell apoptosis. RESULTS ITGB5 and its ligand, fibronectin, were both upregulated after exposure to high glucose in vivo and in vitro . ITGB5 knockdown alleviated hyperglycemia-induced vascular endothelial cell apoptosis and microvascular rarefaction in vivo.In vitro analysis revealed that knockdown of either ITGB5 or fibronectin ameliorated high glucose-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). In addition, knockdown of ITGB5 inhibited fibronectin-induced HUVEC apoptosis, which indicated that the fibronectin-ITGB5 interaction participated in high glucose-induced endothelial cell apoptosis. By using RNA-sequencing technology and bioinformatic analysis, we identified Forkhead Box Protein O1 (FoxO1) as an important downstream target regulated by ITGB5. Moreover, we demonstrated that the excessive macroautophagy induced by high glucose can contribute to HUVEC apoptosis, which was regulated by the ITGB5-FoxO1 axis. CONCLUSION The study revealed that high glucose-induced endothelial cell apoptosis was positively regulated by ITGB5, which suggested that ITGB5 could potentially be used to predict and treat DM-related vascular complications.
Collapse
Affiliation(s)
- Xuze Lin
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Sizhuang Huang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Side Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Jinxing Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Jiong Tang
- Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan 650000, China
| | - Mengyue Yu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
4
|
Wang Z, Zhang N, Lin P, Xing Y, Yang N. Recent advances in the treatment and delivery system of diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1347864. [PMID: 38425757 PMCID: PMC10902204 DOI: 10.3389/fendo.2024.1347864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic retinopathy (DR) is a highly tissue-specific neurovascular complication of type 1 and type 2 diabetes mellitus and is among the leading causes of blindness worldwide. Pathophysiological changes in DR encompass neurodegeneration, inflammation, and oxidative stress. Current treatments for DR, including anti-vascular endothelial growth factor, steroids, laser photocoagulation, and vitrectomy have limitations and adverse reactions, necessitating the exploration of novel treatment strategies. This review aims to summarize the current pathophysiology, therapeutic approaches, and available drug-delivery methods for treating DR, and discuss their respective development potentials. Recent research indicates the efficacy of novel receptor inhibitors and agonists, such as aldose reductase inhibitors, angiotensin-converting enzyme inhibitors, peroxisome proliferator-activated receptor alpha agonists, and novel drugs in delaying DR. Furthermore, with continuous advancements in nanotechnology, a new form of drug delivery has been developed that can address certain limitations of clinical drug therapy, such as low solubility and poor penetration. This review serves as a theoretical foundation for future research on DR treatment. While highlighting promising therapeutic targets, it underscores the need for continuous exploration to enhance our understanding of DR pathogenesis. The limitations of current treatments and the potential for future advancements emphasize the importance of ongoing research in this field.
Collapse
Affiliation(s)
| | | | | | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Chen K, Wang Y, Huang Y, Liu X, Tian X, Yang Y, Dong A. Cross-species scRNA-seq reveals the cellular landscape of retina and early alterations in type 2 diabetes mice. Genomics 2023; 115:110644. [PMID: 37279838 DOI: 10.1016/j.ygeno.2023.110644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) analysis have provided an unprecedented resolution for the studies on diabetic retinopathy (DR). However, the early changes in the retina in diabetes remain unclear. A total of 8 human and mouse scRNA-seq datasets, containing 276,402 cells were analyzed individually to comprehensively delineate the retinal cell atlas. The neural retinas were isolated from the type 2 diabetes (T2D) and control mice, and scRNA-seq analysis was conducted to evaluate the early effects of diabetes on the retina. Bipolar cell (BC) heterogeneity were identified. We found some stable BCs across multiple datasets, and explored their biological functions. A new RBC subtype (Car8_RBC) in the mouse retina was validated using the multi-color immunohistochemistry. AC149090.1 was significantly upregulated in the rod cells, ON cone BCs (CBCs), OFF CBCs, and RBCs in T2D mice. Additionally, the interneurons, especially BCs, were the most vulnerable cells to diabetes by integrating scRNA-seq and genome-wide association studies (GWAS) analyses. In conclusion, this study delineated a cross-species retinal cell atlas and uncovered the early pathological alterations in the retina of T2D mice.
Collapse
Affiliation(s)
- Kai Chen
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Yinhao Wang
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310003, China
| | - Youyuan Huang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Xinxin Liu
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China.
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China.
| | - Aimei Dong
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China; Department of General Practice, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
6
|
Bedggood P, Ding Y, Metha A. Measuring red blood cell shape in the human retina. OPTICS LETTERS 2023; 48:1554-1557. [PMID: 37221708 DOI: 10.1364/ol.483062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/11/2023] [Indexed: 05/25/2023]
Abstract
The free diameter of a red blood cell generally exceeds the lumen diameter of capillaries in the central nervous system, requiring significant cellular deformation. However, the deformations undertaken are not well established under natural conditions due to the difficulty in observing corpuscular flow in vivo. Here we describe a novel, to the best of our knowledge, method to noninvasively study the shape of red blood cells as they traverse the narrow capillary networks of the living human retina, using high-speed adaptive optics. One hundred and twenty-three capillary vessels were analyzed in three healthy subjects. For each capillary, image data were motion-compensated and then averaged over time to reveal the appearance of the blood column. Data from hundreds of red blood cells were used to profile the average cell in each vessel. Diverse cellular geometries were observed across lumens ranging from 3.2 to 8.4 µm in diameter. As capillaries narrowed, cells transitioned from rounder to more elongated shapes and from being counter-aligned to aligned with the axis of flow. Remarkably, in many vessels the red blood cells maintained an oblique orientation relative to the axis of flow.
Collapse
|
7
|
Goodman D, Ness S. The Role of Oxidative Stress in the Aging Eye. Life (Basel) 2023; 13:life13030837. [PMID: 36983992 PMCID: PMC10052045 DOI: 10.3390/life13030837] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Given the expanding elderly population in the United States and the world, it is important to understand the processes underlying both natural and pathological age-related changes in the eye. Both the anterior and posterior segment of the eye undergo changes in biological, chemical, and physical properties driven by oxidative stress. With advancing age, changes in the anterior segment include dermatochalasis, blepharoptosis, thickening of the sclera, loss of corneal endothelial cells, and stiffening of the lens. Changes in the posterior segment include lowered viscoelasticity of the vitreous body, photoreceptor cell loss, and drusen deposition at the macula and fovea. Age-related ocular pathologies including glaucoma, cataracts, and age-related macular degeneration are largely mediated by oxidative stress. The prevalence of these diseases is expected to increase in the coming years, highlighting the need to develop new therapies that address oxidative stress and slow the progression of age-related pathologies.
Collapse
Affiliation(s)
- Deniz Goodman
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Steven Ness
- Department of Ophthalmology, Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
8
|
Eide PK. Cellular changes at the glia-neuro-vascular interface in definite idiopathic normal pressure hydrocephalus. Front Cell Neurosci 2022; 16:981399. [PMID: 36119130 PMCID: PMC9478415 DOI: 10.3389/fncel.2022.981399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a subtype of dementia with overlap toward Alzheimer's disease. Both diseases show deposition of the toxic metabolites amyloid-β and tau in brain. A unique feature with iNPH is that a subset of patients may improve clinically following cerebrospinal fluid (CSF) diversion (shunt) surgery. The patients responding clinically to shunting are denoted Definite iNPH, otherwise iNPH is diagnosed as Possible iNPH or Probable iNPH, high-lightening that the clinical phenotype and underlying pathophysiology remain debated. Given the role of CSF disturbance in iNPH, the water channel aquaporin-4 (AQP4) has been suggested a crucial role in iNPH. Altered expression of AQP4 at the astrocytic endfeet facing the capillaries could affect glymphatic function, i.e., the perivascular transport of fluids and solutes, including soluble amyloid-β and tau. This present study asked how altered perivascular expression of AQP4 in subjects with definite iNPH is accompanied with cellular changes at the glia-neuro-vascular interface. For this purpose, information was retrieved from a database established by the author, including prospectively collected management data, physiological data and information from brain biopsy specimens examined with light and electron microscopy. Individuals with definite iNPH were included together with control subjects who matched the definite iNPH cohort closest in gender and age. Patients with definite iNPH presented with abnormally elevated pulsatile intracranial pressure measured overnight. Cortical brain biopsies showed reduced expression of AQP4 at astrocytic endfeet both perivascular and toward neuropil. This was accompanied with reduced expression of the anchor molecule dystrophin (Dp71) at astrocytic perivascular endfeet, evidence of altered cellular metabolic activity in astrocytic endfoot processes (reduced number of normal and increased number of pathological mitochondria), and evidence of reactive changes in astrocytes (astrogliosis). Moreover, the definite iNPH subjects demonstrated in cerebral cortex changes in capillaries (reduced thickness of the basement membrane between astrocytic endfeet and endothelial cells and pericytes, and evidence of impaired blood-brain-barrier integrity). Abnormal changes in neurons were indicated by reduced post-synaptic density length, and reduced number of normal mitochondria in pre-synaptic terminals. In summary, definite iNPH is characterized by profound cellular changes at the glia-neurovascular interface, which probably reflect the underlying pathophysiology.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Per Kristian Eide
| |
Collapse
|
9
|
Fehér J, Élő Á, István L, Nagy ZZ, Radák Z, Scuderi G, Artico M, Kovács I. Microbiota mitochondria disorders as hubs for early age-related macular degeneration. GeroScience 2022; 44:2623-2653. [PMID: 35978068 PMCID: PMC9385247 DOI: 10.1007/s11357-022-00620-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/01/2022] [Indexed: 01/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease affecting the central area (macula lutea) of the retina. Research on the pathogenic mechanism of AMD showed complex cellular contribution governed by such risk factors as aging, genetic predisposition, diet, and lifestyle. Recent studies suggested that microbiota is a transducer and a modifier of risk factors for neurodegenerative diseases, and mitochondria may be one of the intracellular targets of microbial signaling molecules. This review explores studies supporting a new concept on the contribution of microbiota-mitochondria disorders to AMD. We discuss metabolic, vascular, immune, and neuronal mechanism in AMD as well as key alterations of photoreceptor cells, retinal pigment epithelium (RPE), Bruch's membrane, choriocapillaris endothelial, immune, and neuronal cells. Special attention was paid to alterations of mitochondria contact sites (MCSs), an organelle network of mitochondria, endoplasmic reticulum, lipid droplets (LDs), and peroxisomes being documented based on our own electron microscopic findings from surgically removed human eyes. Morphometry of Bruch's membrane lipids and proteoglycans has also been performed in early AMD and aged controls. Microbial metabolites (short-chain fatty acids, polyphenols, and secondary bile acids) and microbial compounds (lipopolysaccharide, peptidoglycan, and bacterial DNA)-now called postbiotics-in addition to local effects on resident microbiota and mucous membrane, regulate systemic metabolic, vascular, immune, and neuronal mechanisms in normal conditions and in various common diseases. We also discuss their antioxidant, anti-inflammatory, and metabolic effects as well as experimental and clinical observations on regulating the main processes of photoreceptor renewal, mitophagy, and autophagy in early AMD. These findings support an emerging concept that microbiota-mitochondria disorders may be a crucial pathogenic mechanism of early AMD; and similarly, to other age-related neurodegenerative diseases, new treatment approaches should be targeted at these disorders.
Collapse
Affiliation(s)
- János Fehér
- PRIMAVERA Program, Nutripharma Hungaria Ltd., Budapest, Hungary
| | - Ágnes Élő
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lilla István
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zsolt Radák
- grid.472475.70000 0000 9243 1481Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Gianluca Scuderi
- grid.7841.aOphthalmology Unit, NESMOS Department, Sant’Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Artico
- grid.417007.5Department of Sensory Organs, “Sapienza” University of Rome, Roma, Italy
| | - Illés Kovács
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary ,grid.5386.8000000041936877XDepartment of Ophthalmology, Weill Cornell Medical College, New York City, NY USA
| |
Collapse
|
10
|
Taurone S, De Ponte C, Rotili D, De Santis E, Mai A, Fiorentino F, Scarpa S, Artico M, Micera A. Biochemical Functions and Clinical Characterizations of the Sirtuins in Diabetes-Induced Retinal Pathologies. Int J Mol Sci 2022; 23:ijms23074048. [PMID: 35409409 PMCID: PMC8999941 DOI: 10.3390/ijms23074048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR) is undoubtedly one of the most prominent causes of blindness worldwide. This pathology is the most frequent microvascular complication arising from diabetes, and its incidence is increasing at a constant pace. To date, the insurgence of DR is thought to be the consequence of the intricate complex of relations connecting inflammation, the generation of free oxygen species, and the consequent oxidative stress determined by protracted hyperglycemia. The sirtuin (SIRT) family comprises 7 histone and non-histone protein deacetylases and mono (ADP-ribosyl) transferases regulating different processes, including metabolism, senescence, DNA maintenance, and cell cycle regulation. These enzymes are involved in the development of various diseases such as neurodegeneration, cardiovascular pathologies, metabolic disorders, and cancer. SIRT1, 3, 5, and 6 are key enzymes in DR since they modulate glucose metabolism, insulin sensitivity, and inflammation. Currently, indirect and direct activators of SIRTs (such as antagomir, glycyrrhizin, and resveratrol) are being developed to modulate the inflammation response arising during DR. In this review, we aim to illustrate the most important inflammatory and metabolic pathways connecting SIRT activity to DR, and to describe the most relevant SIRT activators that might be proposed as new therapeutics to treat DR.
Collapse
Affiliation(s)
- Samanta Taurone
- IRCCS—Fondazione Bietti, via Livenza 3, 00198 Rome, Italy;
- Correspondence: ; Tel.: +39-06-85-356-727; Fax: +39-06-84-242-333
| | - Chiara De Ponte
- Department of Sensory Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (M.A.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.); (F.F.)
| | - Elena De Santis
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.); (F.F.)
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.); (F.F.)
| | - Susanna Scarpa
- Experimental Medicine Department, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (M.A.)
| | | |
Collapse
|
11
|
Gu X, Ge L, Ren B, Fang Y, Li Y, Wang Y, Xu H. Glucocorticoids Promote Extracellular Matrix Component Remodeling by Activating YAP in Human Retinal Capillary Endothelial Cells. Front Cell Dev Biol 2022; 9:738341. [PMID: 34970541 PMCID: PMC8712730 DOI: 10.3389/fcell.2021.738341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Remodeling of extracellular matrix (ECM) components of endothelial cells is the main cause of retinal vascular basement membrane (BM) thickening, which leads to the initiation and perpetuation of microvasculopathy of diabetic retinopathy (DR). Excessive amounts of glucocorticoids (GCs) are related to the presence and severity of DR, however transcriptional effects of GCs on the biology of human retinal capillary endothelial cells (HRCECs) and its impacts on DR are still unclear. Here, we showed that GC (hydrocortisone) treatment induced ECM component [fibronectin (FN) and type IV collagen (Col IV)] expression and morphological changes in HRCECs via the glucocorticoid receptor (GR), which depended on the nuclear translocation of YAP coactivator. Mechanistically, GCs induced stress fiber formation in HRCECs, while blocking stress fiber formation inhibited GC-induced YAP nuclear translocation. Overexpression of FN, but not Col IV, activated YAP through the promotion of stress fiber formation via ECM-integrin signaling. Thus, a feedforward loop is established to sustain YAP activity. Using mRNA sequencing of HRCECs with overexpressed YAP or GC treatment, we found a similarity in Gene Ontology (GO) terms, differentially expressed genes (DEGs) and transcription factors (TFs) between the two RNA-seq datasets. In vivo, YAP was activated in retina vascular ECs of STZ-induced diabetic mice, and TF prediction analysis of published RNA-seq data of dermal vascular ECs from T2DM patients showed that GR and TEAD (the main transcription factor for YAP) were enriched. Together, GCs activate YAP and promote ECM component (FN and Col IV) remodeling in retinal capillary endothelial cells, and the underlying regulatory mechanism may provide new insights into the vascular BM thickening of the retina in the early pathogenesis of DR.
Collapse
Affiliation(s)
- Xianliang Gu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yajie Fang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yi Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
12
|
Little K, Llorián-Salvador M, Scullion S, Hernández C, Simó-Servat O, Del Marco A, Bosma E, Vargas-Soria M, Carranza-Naval MJ, Van Bergen T, Galbiati S, Viganò I, Musi CA, Schlingemann R, Feyen J, Borsello T, Zerbini G, Klaassen I, Garcia-Alloza M, Simó R, Stitt AW. Common pathways in dementia and diabetic retinopathy: understanding the mechanisms of diabetes-related cognitive decline. Trends Endocrinol Metab 2022; 33:50-71. [PMID: 34794851 DOI: 10.1016/j.tem.2021.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes (T2D) is associated with multiple comorbidities, including diabetic retinopathy (DR) and cognitive decline, and T2D patients have a significantly higher risk of developing Alzheimer's disease (AD). Both DR and AD are characterized by a number of pathological mechanisms that coalesce around the neurovascular unit, including neuroinflammation and degeneration, vascular degeneration, and glial activation. Chronic hyperglycemia and insulin resistance also play a significant role, leading to activation of pathological mechanisms such as increased oxidative stress and the accumulation of advanced glycation end-products (AGEs). Understanding these common pathways and the degree to which they occur simultaneously in the brain and retina during diabetes will provide avenues to identify T2D patients at risk of cognitive decline.
Collapse
Affiliation(s)
- Karis Little
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - María Llorián-Salvador
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Sarah Scullion
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Cristina Hernández
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain
| | - Olga Simó-Servat
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain
| | - Angel Del Marco
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Esmeralda Bosma
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | | | - Silvia Galbiati
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilaria Viganò
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Clara Alice Musi
- Università Degli Studi di Milano and Istituto di Ricerche Farmacologiche Mario Negri- IRCCS, Milano, Italy
| | - Reiner Schlingemann
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland
| | | | - Tiziana Borsello
- Università Degli Studi di Milano and Istituto di Ricerche Farmacologiche Mario Negri- IRCCS, Milano, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Rafael Simó
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain.
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|
13
|
Abstract
Diabetic retinopathy is a microvascular pathology, which is the most common complication of diabetes mellitus. Improvement of instrumental diagnostics of retinal pathologies has contributed to identification of various phenotypes of the progression of ocular fundus pathology in diabetes based on specific changes in the retina - biomarkers. In particular, microaneurysms initially described in diabetes, which are a manifestation of a wide range of systemic pathologies and retinal diseases, are an indicator of the severity of diabetic retinopathy. Dynamic changes in the number of microaneurysms are a confirmed prognostic biomarker of clinically significant macular edema. In diabetic retinopathy, microaneurysms are one of the earliest recognizable signs, and the dynamic of their formation and disappearance may serve as a predictor for the disease progression. This literature review presents the characteristics of microaneurysms based on various imaging techniques, and analyses the link between structural features and dynamic changes in microaneurysms, and progression of diabetic retinopathy.
Collapse
|
14
|
Updates on the Current Treatments for Diabetic Retinopathy and Possibility of Future Oral Therapy. J Clin Med 2021; 10:jcm10204666. [PMID: 34682788 PMCID: PMC8537579 DOI: 10.3390/jcm10204666] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/23/2022] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes and one of the leading causes of vision loss worldwide. Despite extensive efforts to reduce visual impairment, the prevalence of DR is still increasing. The initial pathophysiology of DR includes damage to vascular endothelial cells and loss of pericytes. Ensuing hypoxic responses trigger the expression of vascular endothelial growth factor (VEGF) and other pro-angiogenic factors. At present, the most effective treatment for DR and diabetic macular edema (DME) is the control of blood glucose levels. More advanced cases require laser, anti-VEGF therapy, steroid, and vitrectomy. Pan-retinal photocoagulation for non-proliferative diabetic retinopathy (NPDR) is well established and has demonstrated promising outcomes for preventing the progressive stage of DR. Furthermore, the efficacy of laser therapies such as grid and subthreshold diode laser micropulse photocoagulation (SDM) for DME has been reported. Vitrectomy has been performed for vitreous hemorrhage and tractional retinal detachment for patients with PDR. In addition, anti-VEGF treatment has been widely used for DME, and recently its potential to prevent the progression of PDR has been remarked. Even with these treatments, many patients with DR lose their vision and suffer from potential side effects. Thus, we need alternative treatments to address these limitations. In recent years, the relationship between DR, lipid metabolism, and inflammation has been featured. Research in diabetic animal models points to peroxisome proliferator-activated receptor alpha (PPARα) activation in cellular metabolism and inflammation by oral fenofibrate and/or pemafibrate as a promising target for DR. In this paper, we review the status of existing therapies, summarize PPARα activation therapies for DR, and discuss their potentials as promising DR treatments.
Collapse
|
15
|
From remodeling to quiescence: The transformation of the vascular network. Cells Dev 2021; 168:203735. [PMID: 34425253 DOI: 10.1016/j.cdev.2021.203735] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
The vascular system is essential for embryogenesis, healing, and homeostasis. Dysfunction or deregulated blood vessel function contributes to multiple diseases, including diabetic retinopathy, cancer, hypertension, or vascular malformations. A balance between the formation of new blood vessels, vascular remodeling, and vessel quiescence is fundamental for tissue growth and function. Whilst the major mechanisms contributing to the formation of new blood vessels have been well explored in recent years, vascular remodeling and quiescence remain poorly understood. In this review, we highlight the cellular and molecular mechanisms responsible for vessel remodeling and quiescence during angiogenesis. We further underline how impaired remodeling and/or destabilization of vessel networks can contribute to vascular pathologies. Finally, we speculate how addressing the molecular mechanisms of vascular remodeling and stabilization could help to treat vascular-related disorders.
Collapse
|
16
|
Alarcon-Martinez L, Yemisci M, Dalkara T. Pericyte morphology and function. Histol Histopathol 2021; 36:633-643. [PMID: 33595091 DOI: 10.14670/hh-18-314] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The proper delivery of blood is essential for healthy neuronal function. The anatomical substrate for this precise mechanism is the neurovascular unit, which is formed by neurons, glial cells, endothelia, smooth muscle cells, and pericytes. Based on their particular location on the vessel wall, morphology, and protein expression, pericytes have been proposed as cells capable of regulating capillary blood flow. Pericytes are located around the microvessels, wrapping them with their processes. Their morphology and protein expression substantially vary along the vascular tree. Their contractibility is mediated by a unique cytoskeleton organization formed by filaments of actin that allows pericyte deformability with the consequent mechanical force transferred to the extracellular matrix for changing the diameter. Pericyte ultrastructure is characterized by large mitochondria likely to provide energy to regulate intracellular calcium concentration and fuel contraction. Accordingly, pericytes with compromised energy show a sustained intracellular calcium increase that leads to persistent microvascular constriction. Pericyte morphology is highly plastic and adapted for varying contractile capability along the microvascular tree, making pericytes ideal cells to regulate the capillary blood flow in response to local neuronal activity. Besides the vascular regulation, pericytes also play a role in the maintenance of the blood-brain/retina barrier, neovascularization and angiogenesis, and leukocyte transmigration. Here, we review the morphological and functional features of the pericytes as well as potential specific markers for the study of pericytes in the brain and retina.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, Canada.
| | - Muge Yemisci
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
17
|
Liu M, Shang M, Wang Y, Li Q, Liu X, Yang L, Zhang Q, Zhang K, Liu S, Nie F, Zeng F, Wen Y, Liu W. Effects of TNF-α-308G/A Polymorphism on the Risk of Diabetic Nephropathy and Diabetic Retinopathy: An Updated Meta-Analysis. Horm Metab Res 2020; 52:724-731. [PMID: 32369834 DOI: 10.1055/a-1161-0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are the major factors of morbidity and mortality in the patients with diabetes mellitus (DM). Growing studies have investigated the relationship between the TNF-α-308G/A polymorphism and the susceptibility to DN and DR, without achieving consensus. Thus, we conducted this meta-analysis to reach more comprehensive conclusions for these issues. Eligible studies were retrieved through electronic databases such as PubMed, Embase, Web of Science and China National Knowledge Infrastructure. Summary of odds ratios (OR) and 95% confidence intervals (CIs) were generated to evaluate the intensity of the associations. Statistical analyses were performed by STATA 11.0 and RevMan 5.2. There are fourteen eligible publications involving nineteen studies in this meta-analysis. TNF-α-308G/A polymorphism was significantly related to increasing risk of DN under recessive model (OR=1.37, 95% CI=1.03-1.83) and homozygous model (OR=1.54, 95% CI=1.15-2.06). Moreover, the similar results were also obtained in Asian groups for DN (recessive: OR=1.69, 95% CI=1.18-2.42; homozygous: OR=1.99, 95% CI=1.38-2.86; respectively), and significant association was also detected between TNF-α-308G/A and DN susceptibility in type 2 DM in recessive model (OR=1.39, 95% CI=1.02-1.89). No significant association was observed between TNF-α-308G/A and DR susceptibility in total analyses and subgroup analyses by ethnicity and type of DM. TNF-α-308G/A polymorphism may enhance the susceptibility to diabetic nephropathy, especially in Asian population and in T2DM patients, but not diabetic retinopathy.
Collapse
Affiliation(s)
- Mengwei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Mengke Shang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Yue Wang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Qian Li
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Xiuping Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Luping Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Qian Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Kaili Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Shan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Fangfang Nie
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Fanxin Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Youhan Wen
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Wanyang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
18
|
Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2020; 82:100903. [PMID: 32950677 DOI: 10.1016/j.preteyeres.2020.100903] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Vascular basement membrane (BM) thickening has been hailed over half a century as the most prominent histological lesion in diabetic microangiopathy, and represents an early ultrastructural change in diabetic retinopathy (DR). Although vascular complications of DR have been clinically well established, specific cellular and molecular mechanisms underlying dysfunction of small vessels are not well understood. In DR, small vessels develop insidiously as BM thickening occurs. Studies examining high resolution imaging data have established BM thickening as one of the foremost structural abnormalities of retinal capillaries. This fundamental structural change develops, at least in part, from excess accumulation of BM components. Although BM thickening is closely associated with the development of DR, its contributory role in the pathogenesis of DR is coming to light recently. DR develops over several years before clinical manifestations appear, and it is during this clinically silent period that hyperglycemia induces excess synthesis of BM components, contributes to vascular BM thickening, and promotes structural and functional lesions including cell death and vascular leakage in the diabetic retina. Studies using animal models show promising results in preventing BM thickening with subsequent beneficial effects. Several gene regulatory approaches are being developed to prevent excess synthesis of vascular BM components in an effort to reduce BM thickening. This review highlights current understanding of capillary BM thickening development, role of BM thickening in retinal vascular lesions, and strategies for preventing vascular BM thickening as a potential therapeutic strategy in alleviating characteristic lesions associated with DR.
Collapse
Affiliation(s)
- Sayon Roy
- Boston University School of Medicine, Boston, MA, USA.
| | - Dongjoon Kim
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
19
|
Age-related changes in retrobulbar circulation: a literature review. Int Ophthalmol 2019; 40:493-501. [DOI: 10.1007/s10792-019-01176-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022]
Abstract
Abstract
Introduction
The advances in research methods used in ophthalmology allow for an increasingly accurate examination of the eyes, as well as the morphology and function of the vessels. Colour Doppler imaging is still the first-line method for the analysis of parameters of retrobulbar circulation. Therefore, the aim of this work was to present the current state of knowledge about anatomical and functional age-related changes in retrobulbar arteries.
Methods
A literature search was performed mainly based on the PubMed database.
Results
The anatomy of retrobulbar arteries, histological background of age-related vascular changes, age-related changes in retrobulbar blood flow in the ophthalmic artery, central retinal artery, short posterior ciliary arteries, and the reference values for the age-dependent retrobulbar circulation parameters measured by colour Doppler imaging are discussed in this review.
Conclusion
The age of the subject should always be taken into account when interpreting the parameters of retrobulbar blood flow measured by colour Doppler imaging.
Collapse
|
20
|
Nag TC, Maurya M, Roy TS. Age-related changes of the human retinal vessels: Possible involvement of lipid peroxidation. Ann Anat 2019; 226:35-47. [PMID: 31330304 DOI: 10.1016/j.aanat.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Aging of the human retina is accompanied by oxidative stress that exerts profound changes in the retinal neurons. It is unknown if oxidative stress influences the cellular components of the retinal vessels in some ways. METHODS We examined changes in retinal vessels in human donor eyes (age: 35-94 years; N=18) by light and transmission electron microscopy, TUNEL and immunohistochemistry for biomarkers of vascular smooth muscle cells (SMC; actin), oxidative stress (4-hydroxy 2-nonenal [HNE] and nitrotyrosine), microglia (Iba-1) and vessels (isolectin B4). RESULTS The earliest changes in the endothelium and pericytes of capillaries are apparent from the seventh decade. With aging, there is clear loss of organelles and cytoplasmic filaments, and a progressive thickening of the endothelial and pericyte basal lamina. Loss of filaments, accumulation of lipofuscin and autophagic vacuoles are significant events in aging pericytes and SMC. Actin immunolabelling reveals discontinuity in arterial SMC layers during eighth decade, indicating partial degeneration of SMC. This is followed by hyalinization, with degeneration of the endothelium and SMC in arteries and arterioles of the nerve fibre layer (NFL) and ganglion cell layer in ninth decade. Iba-1 positive microglia were in close contact with the damaged vessels in inner retina, and their cytoplasm was rich in lysosomes. HNE immunoreactivity, but not of nitrotyrosine, was detected in aged vessels from seventh decade onwards, suggesting that lipid peroxidation is a major problem of aged vessels. However, TUNEL positivity seen during this period was limited to few arteries and venules of NFL. CONCLUSION This study shows prominent age-related alterations of the pericytes and SMC of retinal vessels. These changes may limit the energy supply to the neurons and be responsible for age-related loss of neurons of the inner retina.
Collapse
Affiliation(s)
- Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
21
|
Nebbioso M, Lambiase A, Cerini A, Limoli PG, La Cava M, Greco A. Therapeutic Approaches with Intravitreal Injections in Geographic Atrophy Secondary to Age-Related Macular Degeneration: Current Drugs and Potential Molecules. Int J Mol Sci 2019; 20:ijms20071693. [PMID: 30987401 PMCID: PMC6479480 DOI: 10.3390/ijms20071693] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
The present review focuses on recent clinical trials that analyze the efficacy of intravitreal therapeutic agents for the treatment of dry age-related macular degeneration (AMD), such as neuroprotective drugs, and complement inhibitors, also called immunomodulatory or anti-inflammatory agents. A systematic literature search was performed to identify randomized controlled trials published prior to January 2019. Patients affected by dry AMD treated with intravitreal therapeutic agents were included. Changes in the correct visual acuity and reduction in geographic atrophy progression were evaluated. Several new drugs have shown promising results, including those targeting the complement cascade and neuroprotective agents. The potential action of the two groups of drugs is to block complement cascade upregulation of immunomodulating agents, and to prevent the degeneration and apoptosis of ganglion cells for the neuroprotectors, respectively. Our analysis indicates that finding treatments for dry AMD will require continued collaboration among researchers to identify additional molecular targets and to fully interrogate the utility of pluripotent stem cells for personalized therapy.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Alberto Cerini
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | | | - Maurizio La Cava
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Antonio Greco
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
22
|
Human blood vessel organoids as a model of diabetic vasculopathy. Nature 2019; 565:505-510. [PMID: 30651639 DOI: 10.1038/s41586-018-0858-8] [Citation(s) in RCA: 450] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/06/2018] [Indexed: 12/17/2022]
Abstract
The increasing prevalence of diabetes has resulted in a global epidemic1. Diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and amputation of lower limbs. These are often caused by changes in blood vessels, such as the expansion of the basement membrane and a loss of vascular cells2-4. Diabetes also impairs the functions of endothelial cells5 and disturbs the communication between endothelial cells and pericytes6. How dysfunction of endothelial cells and/or pericytes leads to diabetic vasculopathy remains largely unknown. Here we report the development of self-organizing three-dimensional human blood vessel organoids from pluripotent stem cells. These human blood vessel organoids contain endothelial cells and pericytes that self-assemble into capillary networks that are enveloped by a basement membrane. Human blood vessel organoids transplanted into mice form a stable, perfused vascular tree, including arteries, arterioles and venules. Exposure of blood vessel organoids to hyperglycaemia and inflammatory cytokines in vitro induces thickening of the vascular basement membrane. Human blood vessels, exposed in vivo to a diabetic milieu in mice, also mimic the microvascular changes found in patients with diabetes. DLL4 and NOTCH3 were identified as key drivers of diabetic vasculopathy in human blood vessels. Therefore, organoids derived from human stem cells faithfully recapitulate the structure and function of human blood vessels and are amenable systems for modelling and identifying the regulators of diabetic vasculopathy, a disease that affects hundreds of millions of patients worldwide.
Collapse
|
23
|
Lei X, Zhou Y, Ren C, Chen X, Shang R, He J, Dou J. Typhae pollen polysaccharides ameliorate diabetic retinal injury in a streptozotocin-induced diabetic rat model. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:169-176. [PMID: 29802904 DOI: 10.1016/j.jep.2018.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/22/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to ancient traditional Chinese medicine, Typhae Pollen (TP) is commonly used to treat fundus haemorrhage because it improves blood circulation. AIMS OF THE STUDY This study evaluated the role of the main TP component, polysaccharides (TPP), on diabetic retinopathy (DR) and its possible mechanisms of inhibiting inflammation and improving blood circulation. MATERIALS AND METHODS After successful establishment of a diabetic rat model, TPP was administered to diabetic rats for treatment, and the rats were sacrificed at 12 weeks. Retinal electrophysiology and ultrastructures were observed, and serum interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) levels were also measured. Changes in the retinal expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) were examined by immunofluorescence. A mouse model of acute blood stasis was then established, and the effects of TPP on haemorheology were observed. The anti-inflammatory effect of TPP was analysed based on the changes in abdominal capillary permeability and the degree of auricle swelling in the mice. RESULTS In streptozotocin (STZ)-induced DR rats, TPP (0.4 g/kg) treatment restored electrophysiology indexes and retinal ultrastructures, reduced serum IL-6 and TNF-α levels, decreased VEGF and bFGF expression in retinal tissues, and improved haemorheology indexes. Moreover, TPP reduced abdominal capillary permeability and relieved auricle swelling in a dose-dependent manner. CONCLUSIONS TPP treatment ameliorated DR by inhibiting inflammation and improving blood circulation.
Collapse
Affiliation(s)
- Xiaoqin Lei
- Affiliated Guangren Hospital of Xi'an Jiaotong University, 21 Jiefang Road, Xi'an 710004, PR China; Department of Ophthalmology, Xi'an No.4 Hospital, 21 Jiefang Road, Xi'an 710004, PR China.
| | - Yunyun Zhou
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xi'an-Xianyang New Economic Zone, Shaanxi Province 712046, PR China.
| | - Cuicui Ren
- Department of Pharmacy, Xi'an No.1 Hospital, South Street Powder Lane No.30, Xi'an 710002, PR China.
| | - Xi Chen
- School of Pharmacy, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an 710061, PR China.
| | - Rongguo Shang
- School of Pharmacy, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an 710061, PR China.
| | - Jianyu He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, PR China.
| | - Jianwei Dou
- School of Pharmacy, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an 710061, PR China.
| |
Collapse
|
24
|
Pinhas A, Linderman R, Mo S, Krawitz BD, Geyman LS, Carroll J, Rosen RB, Chui TY. A method for age-matched OCT angiography deviation mapping in the assessment of disease- related changes to the radial peripapillary capillaries. PLoS One 2018; 13:e0197062. [PMID: 29795576 PMCID: PMC5993123 DOI: 10.1371/journal.pone.0197062] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To present a method for age-matched deviation mapping in the assessment of disease-related changes to the radial peripapillary capillaries (RPCs). METHODS We reviewed 4.5x4.5mm en face peripapillary OCT-A scans of 133 healthy control eyes (133 subjects, mean 41.5 yrs, range 11-82 yrs) and 4 eyes with distinct retinal pathologies, obtained using spectral-domain optical coherence tomography angiography. Statistical analysis was performed to evaluate the impact of age on RPC perfusion densities. RPC density group mean and standard deviation maps were generated for each decade of life. Deviation maps were created for the diseased eyes based on these maps. Large peripapillary vessel (LPV; noncapillary vessel) perfusion density was also studied for impact of age. RESULTS Average healthy RPC density was 42.5±1.47%. ANOVA and pairwise Tukey-Kramer tests showed that RPC density in the ≥60yr group was significantly lower compared to RPC density in all younger decades of life (p<0.01). Average healthy LPV density was 21.5±3.07%. Linear regression models indicated that LPV density decreased with age, however ANOVA and pairwise Tukey-Kramer tests did not reach statistical significance. Deviation mapping enabled us to quantitatively and visually elucidate the significance of RPC density changes in disease. CONCLUSIONS It is important to consider changes that occur with aging when analyzing RPC and LPV density changes in disease. RPC density, coupled with age-matched deviation mapping techniques, represents a potentially clinically useful method in detecting changes to peripapillary perfusion in disease.
Collapse
Affiliation(s)
- Alexander Pinhas
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States of America
- Department of Ophthalmology, State University of New York Downstate Medical Center, Brooklyn, NY, United States of America
| | - Rachel Linderman
- Department of Cell Biology, Neurology and Anatomy, The Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Shelley Mo
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States of America
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Brian D. Krawitz
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States of America
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Lawrence S. Geyman
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States of America
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Joseph Carroll
- Department of Cell Biology, Neurology and Anatomy, The Medical College of Wisconsin, Milwaukee, WI, United States of America
- Department of Ophthalmology & Visual Sciences, The Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Richard B. Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States of America
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Toco Y. Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States of America
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
25
|
Eidsvaag VA, Hansson HA, Heuser K, Nagelhus EA, Eide PK. Cerebral microvascular abnormalities in patients with idiopathic intracranial hypertension. Brain Res 2018; 1686:72-82. [PMID: 29477544 DOI: 10.1016/j.brainres.2018.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/16/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023]
Abstract
AIM Idiopathic intracranial hypertension (IIH) is characterized by symptoms indicative of increased intracranial pressure (ICP), such as headache and visual impairment. We have previously reported that brain biopsies from IIH patients show patchy astrogliosis and increased expression of the water channel aquaporin-4 (AQP4) at perivascular astrocytic endfeet. METHODS The present study was undertaken to investigate for ultrastructural changes of the cerebral capillaries in individuals with IIH. We examined by electron microscopy (EM) biopsies from the cortical parenchyma of 10 IIH patients and 8 reference subjects (patients, not healthy individuals), in whom tissue was retrieved from other elective and necessary brain surgeries (epilepsy, tumors or vascular diseases). IIH patients were diagnosed on the basis of typical clinical symptoms and abnormal intracranial pressure wave amplitudes during overnight ICP monitoring. RESULTS All 10 IIH patients underwent shunt surgery followed by favorable clinical outcome. EM revealed abnormal pericyte processes in IIH. The basement membrane (BM) showed more frequently evidence of degeneration in IIH, but neither the BM dimensions nor the pericyte coverage differed between IIH and reference tissue. The BM thickness increased significantly with increasing age. Reference individuals were older than IIH cases; observations may to some extent be age-related. CONCLUSION The present study disclosed marked changes of the cerebral cortical capillaries in IIH patients, suggesting that microvascular alterations are involved in the evolvement of IIH.
Collapse
Affiliation(s)
- Vigdis Andersen Eidsvaag
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway,; Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Hans-Arne Hansson
- Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Erlend A Nagelhus
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway,; Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway,.
| |
Collapse
|
26
|
Eidsvaag VA, Hansson HA, Heuser K, Nagelhus EA, Eide PK. Brain Capillary Ultrastructure in Idiopathic Normal Pressure Hydrocephalus: Relationship With Static and Pulsatile Intracranial Pressure. J Neuropathol Exp Neurol 2017; 76:1034-1045. [PMID: 29040647 DOI: 10.1093/jnen/nlx091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a neurodegenerative disease of unknown cause. We investigated the morphology of capillaries in frontal cortex biopsies from iNPH patients and related the observations to overnight intracranial pressure (ICP) scores. A biopsy (0.9×10 mm) was taken from where the ICP sensor subsequently was inserted. Brain capillaries were investigated by electron microscopy of biopsies from 27 iNPH patients and 10 reference subjects, i.e. patients (not healthy individuals) without cerebrospinal fluid circulation disturbances, in whom normal brain tissue was removed as part of necessary neurosurgical treatment. Degenerating and degenerated pericyte processes were identified in 23/27 (85%) iNPH and 6/10 (60%) of reference specimens. Extensive disintegration of pericyte processes were recognized in 11/27 (41%) iNPH and 1/10 (10%) reference specimens. There were no differences in basement membrane (BM) thickness or pericyte coverage between iNPH and reference subjects. The pulsatile or static ICP scores did neither correlate with the BM thickness nor with pericyte coverage. We found increased prevalence of degenerating pericytes in iNPH while the BM thickness and pericyte coverage did not differ from the reference individuals. Observations in iNPH may to some extent be age-related since the iNPH patients were significantly older than the reference individuals.
Collapse
Affiliation(s)
- Vigdis Andersen Eidsvaag
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Faculty of Medicine; and Division of Physiology, Department of Molecular Medicine, GliaLab and Letten Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden; and Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Hans-Arne Hansson
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Faculty of Medicine; and Division of Physiology, Department of Molecular Medicine, GliaLab and Letten Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden; and Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Kjell Heuser
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Faculty of Medicine; and Division of Physiology, Department of Molecular Medicine, GliaLab and Letten Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden; and Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Erlend A Nagelhus
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Faculty of Medicine; and Division of Physiology, Department of Molecular Medicine, GliaLab and Letten Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden; and Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Per K Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Faculty of Medicine; and Division of Physiology, Department of Molecular Medicine, GliaLab and Letten Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden; and Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| |
Collapse
|
27
|
Iacobaeus E, Sugars RV, Törnqvist Andrén A, Alm JJ, Qian H, Frantzen J, Newcombe J, Alkass K, Druid H, Bottai M, Röyttä M, Le Blanc K. Dynamic Changes in Brain Mesenchymal Perivascular Cells Associate with Multiple Sclerosis Disease Duration, Active Inflammation, and Demyelination. Stem Cells Transl Med 2017; 6:1840-1851. [PMID: 28941240 PMCID: PMC6430046 DOI: 10.1002/sctm.17-0028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
Vascular changes, including blood brain barrier destabilization, are common pathological features in multiple sclerosis (MS) lesions. Blood vessels within adult organs are reported to harbor mesenchymal stromal cells (MSCs) with phenotypical and functional characteristics similar to pericytes. We performed an immunohistochemical study of MSCs/pericytes in brain tissue from MS and healthy persons. Post‐mortem brain tissue from patients with early progressive MS (EPMS), late stage progressive MS (LPMS), and healthy persons were analyzed for the MSC and pericyte markers CD146, platelet‐derived growth factor receptor beta (PDGFRβ), CD73, CD271, alpha‐smooth muscle actin, and Ki67. The MS samples included active, chronic active, chronic inactive lesions, and normal‐appearing white matter. MSC and pericyte marker localization were detected in association with blood vessels, including subendothelial CD146+PDGFRβ+Ki67+ cells and CD73+CD271+PDGFRβ+Ki67– cells within the adventitia and perivascular areas. Both immunostained cell subpopulations were termed mesenchymal perivascular cells (MPCs). Quantitative analyses of immunostainings showed active lesions containing increased regions of CD146+PDGFRβ+Ki67+ and CD73+CD271+PDGFRβ+Ki67– MPC subpopulations compared to inactive lesions. Chronic lesions presented with decreased levels of CD146+PDGFRβ+Ki67+ MPC cells compared to control tissue. Furthermore, LPMS lesions displayed increased numbers of blood vessels harboring greatly enlarged CD73+CD271+ adventitial and perivascular areas compared to control and EPMS tissue. In conclusion, we demonstrate the presence of MPC subgroups in control human brain vasculature, and their phenotypic changes in MS brain, which correlated with inflammation, demyelination and MS disease duration. Our findings demonstrate that brain‐derived MPCs respond to pathologic mechanisms involved in MS disease progression and suggest that vessel‐targeted therapeutics may benefit patients with progressive MS. Stem Cells Translational Medicine2017;6:1840–1851
Collapse
Affiliation(s)
- Ellen Iacobaeus
- Division of Clinical Immunology, Department of Laboratory Medicine, Finland.,Department of Clinical Neuroscience, Finland
| | - Rachael V Sugars
- Division of Oral Facial Diagnostics and Surgery, Department of Dental Medicine, Finland
| | | | - Jessica J Alm
- Division of Clinical Immunology, Department of Laboratory Medicine, Finland.,Department of Pathology, University of Turku and Turku University Hospital, Finland
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Department of Medicine, Stockholm, Sweden
| | - Janek Frantzen
- Division of Clinical Neuroscience, Department of Neurosurgery, University of Turku and Turku University Hospital, Finland
| | - Jia Newcombe
- NeuroResource, UCL Institute of Neurology, University College London, London, England, United Kingdom
| | - Kanar Alkass
- KI Donatum, Department of Forensic Medicine, Stockholm, Sweden
| | - Henrik Druid
- KI Donatum, Department of Forensic Medicine, Stockholm, Sweden
| | - Matteo Bottai
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matias Röyttä
- Department of Pathology, University of Turku and Turku University Hospital, Finland
| | - Katarina Le Blanc
- Division of Clinical Immunology, Department of Laboratory Medicine, Finland.,Hematology Centre, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
Analytical Management of Patients Undergoing Oral Anticoagulant Therapy Could Have a Strong Impact on Clinical Outcomes: A Follow-up Study. Cardiol Ther 2017; 6:261-271. [PMID: 28526929 PMCID: PMC5688967 DOI: 10.1007/s40119-017-0090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 11/30/2022] Open
Abstract
Introduction Oral anticoagulant therapy, such as vitamin K antagonists (VKAs), is prominent for the prevention of cerebral ischemic stroke or systemic embolism and all-cause mortality in patients with atrial fibrillation, venous thromboembolism, and mechanical or biological valve. VKA treatment requires monitoring of the international normalized ratio (INR) in order to maintain it in a therapeutic range, avoiding side effects, the main and most significant of which is bleeding. The aim of the present study was to evaluate the event rates of several clinical composite outcomes, such as bleeding, thromboembolic events, and all-cause death. Methods We compared three organizational models distinguished by a total (from 1 January to 31 December 2015 in which PT/INR analysis with the relative internal and external quality controls was performed by the surveillance center) or partial (from 15 January to 15 July 2016 and from 15 August to 15 November 2016, in which the surveillance center had the ability to view only the PT/INR results or all patients analyses, including blood count, creatinine, liver enzymes, etc., respectively) analytical patient management. The present longitudinal follow-up study included 1225 patients, recruited from 1 January 2015 to 15 November 2016 at a surveillance center for the prevention of cerebral ischemic stroke and systemic embolism in Chieti (Italy). Results The results show a significant rise of the incidence rate ratio in patients undergoing VKA treatment during the period 15 January to 15 July 2016 compared to the previous one regarding total bleeding, especially for minor bleeding and digestive bleeding; thromboembolic events; and all-death cause. Conclusions These findings show that analytical and clinical data and information should be under the direct supervision and responsibility of the surveillance center. In fact, this approach seems to highlight the best results in terms of safety and therapeutic effectiveness.
Collapse
|
29
|
Reddy S, Amutha A, Rajalakshmi R, Bhaskaran R, Monickaraj F, Rangasamy S, Anjana RM, Abhijit S, Gokulakrishnan K, Das A, Mohan V, Balasubramanyam M. Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J Diabetes Complications 2017; 31:804-809. [PMID: 28336215 DOI: 10.1016/j.jdiacomp.2017.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023]
Abstract
AIM Young onset type 2 diabetes patients (T2DM-Y) have been shown to possess an increased risk of developing microvascular complications particularly diabetic retinopathy. However, the molecular mechanisms are not clearly understood. In this study, we investigated the serum levels of monocyte chemotactic protein 1 (MCP-1) and cathepsin-D in patients with T2DM-Y without and with diabetic retinopathy. METHODS In this case-control study, participants comprised individuals with normal glucose tolerance (NGT=40), patients with type 2 diabetes mellitus (T2DM=35), non-proliferative diabetic retinopathy (NPDR=35) and proliferative diabetic retinopathy (PDR=35). Clinical characterization of the study subjects was done by standard procedures and MCP-1 and cathepsin-D were measured by ELISA. RESULTS Compared to control individuals, patients with T2DM-Y, NPDR and PDR exhibited significantly (p<0.001) higher levels of MCP-1. Cathepsin-D levels were also significantly (p<0.001) higher in patients with T2DM-Y without and with diabetic retinopathy. Correlation analysis revealed a positive association (p<0.001) between MCP-1 and cathepsin-D levels. There was also a significant negative correlation of MCP1/cathepsin-D with C-peptide levels. The association of increased levels of MCP-1/cathepsin-D in patients with DR persisted even after adjusting for all the confounding factors. CONCLUSION As both MCP-1 and cathepsin-D are molecular signatures of cellular senescence, we suggest that these biomarkers might be useful to predict the development of retinopathy in T2DM-Y patients.
Collapse
Affiliation(s)
- Sruthi Reddy
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Anandakumar Amutha
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Ramachandran Rajalakshmi
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Regin Bhaskaran
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Finny Monickaraj
- Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sampathkumar Rangasamy
- Neurogenomics Division, Translational Genomics Research Institute, (TGen), Phoenix, AZ, USA
| | - Ranjit Mohan Anjana
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Shiny Abhijit
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Kuppan Gokulakrishnan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Arup Das
- Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India..
| |
Collapse
|
30
|
Protective Effect of Tang Wang One Decoction on the Retinal Vessels of Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8635127. [PMID: 28367226 PMCID: PMC5358445 DOI: 10.1155/2017/8635127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 11/29/2022]
Abstract
Objective. This study aimed to determine the influence of Tang Wang One Decoction (TWOD) on the retinal vessels of diabetic rats. Methods. The hemorheology of diabetic rats was observed. Morphological studies of retinal vessels were conducted using optical microscopy and electron microscopy. Immunological histochemistry assay was used to measure the expression levels of MMP-9, occludin, and claudin-5. Results. Obvious pathological damage was observed in the retinal vessels of diabetic rats. TWOD positively affected the hemorheology and morphology of retinal vessels. The decoction also decreased the expression of MMP-9 and increased the expression of occludin and claudin-5. Conclusions. The results suggest that the retinal protective effects of TWOD might be related to downregulation of MMP-9 and upregulation of occludin and claudin-5.
Collapse
|
31
|
Neriyanuri S, Pardhan S, Gella L, Pal SS, Ganesan S, Sharma T, Raman R. Retinal sensitivity changes associated with diabetic neuropathy in the absence of diabetic retinopathy. Br J Ophthalmol 2017; 101:1174-1178. [DOI: 10.1136/bjophthalmol-2016-309641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/08/2016] [Accepted: 12/29/2016] [Indexed: 11/04/2022]
|
32
|
Martinez B, Peplow PV. Immunomodulators and microRNAs as neurorestorative therapy for ischemic stroke. Neural Regen Res 2017; 12:865-874. [PMID: 28761412 PMCID: PMC5514854 DOI: 10.4103/1673-5374.208540] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most of all strokes are ischemic due to occlusion of a vessel, and comprise two main types, thrombotic and embolic. Inflammation and immune response play an important role in the outcome of ischemic stroke. Pharmaceutical and cell-based therapies with immunomodulatory properties could be of benefit in treating ischemic stroke. Possible changes in microRNAs brought about by immunomodulatory treatments may be important. The pharmaceutical studies described in this review have identified several differentially regulated miRNAs associated with disregulation of mRNA targets or the upregulation of several neuroprotective genes, thereby highlighting the potential neuroprotective roles of specific miRNAs such as miR-762, -1892, -200a, -145. MiR-124, -711, -145 are the strongly associated miRNAs predicted to mediate anti-inflammatory pathways and microglia/macrophage M2-like activation phenotype. The cell-based therapy studies reviewed have mainly utilized mesenchymal stem cells or human umbilical cord blood cells and shown to improve functional and neurological outcomes in stroke animals. MiR-145 and miR-133b were implicated in nerve cell remodeling and functional recovery after stroke. Human umbilical cord blood cells decreased proinflammatory factors and promoted M2 macrophage polarization in stroke diabetic animals.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular and Cellular Biology, University of California, Merced, CA, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Bigler M, Koutsantonis D, Odriozola A, Halm S, Tschanz SA, Zakrzewicz A, Weichert A, Baum O. Morphometry of skeletal muscle capillaries: the relationship between capillary ultrastructure and ageing in humans. Acta Physiol (Oxf) 2016; 218:98-111. [PMID: 27174490 DOI: 10.1111/apha.12709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/25/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
Abstract
AIM To determine whether the ultrastructure of the capillary system in human skeletal muscle changes during advancing senescence, we evaluated the compartmental and subcompartmental organization of capillaries from vastus lateralis muscle (VL) biopsies of 41 non-diseased persons aged 23-75 years. METHODS From each VL biopsy, 38-40 randomly selected capillaries were assessed by transmission electron microscopy and subsequent morphometry with a newly established tablet-based image analysis technique. RESULTS Quantification of the compartmental organization revealed most indicators of the capillary ultrastructure to be only non-significantly altered (P > 0.05) over age. However, the peri-capillary basement membrane (BM) was thicker in the older participants than in the younger ones (P ≤ 0.05). Regression analysis revealed a bipartite relationship between the two parameters: a homogenous slight increase in BM thickness up to the age of approximately 50 years was followed by a second phase with more scattered BM thickness values. In 44.5% of the capillary profiles, projections/filopodia of the pericytes (PCs) traversed the BM and invaded endothelial cells (ECs) visible as PC pegs in pale cytoplasm holes (EC sockets). Strikingly, PC pegs were often in proximity to the EC nucleus. In PC profiles, sockets were likewise detected in 14.2% of the capillaries. Within these PC sockets, cellular profiles were frequently seen, which could be assigned to EC filopodia, internal PC curling or PC-PC interactions. Quantification of the occurrence of peg-socket junctions revealed the proportions of empty EC sockets and empty PC sockets to increase (P ≤ 0.05) during ageing. CONCLUSION Our investigation demonstrates advancing senescence to be associated with increase in BM thickness and loss of EC and PC filopodia length in skeletal muscle capillaries.
Collapse
Affiliation(s)
- M. Bigler
- Institute of Anatomy; University of Bern; Bern Switzerland
| | | | - A. Odriozola
- Institute of Anatomy; University of Bern; Bern Switzerland
| | - S. Halm
- Institute of Anatomy; University of Bern; Bern Switzerland
| | - S. A. Tschanz
- Institute of Anatomy; University of Bern; Bern Switzerland
| | - A. Zakrzewicz
- Institute of Physiology; CharitéCrossOver (CCO); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - A. Weichert
- Institute of Physiology; CharitéCrossOver (CCO); Charité - Universitätsmedizin Berlin; Berlin Germany
- Department of Obstetrics; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - O. Baum
- Institute of Physiology; CharitéCrossOver (CCO); Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
34
|
Dal S, Sigrist S. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications. Diseases 2016; 4:E24. [PMID: 28933404 PMCID: PMC5456287 DOI: 10.3390/diseases4030024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Obesity and diabetes is generally accompanied by a chronic state of oxidative stress, disequilibrium in the redox balance, implicated in the development and progression of complications such as micro- and macro-angiopathies. Disorders in the inner layer of blood vessels, the endothelium, play an early and critical role in the development of these complications. Blunted endothelium-dependent relaxation and/or contractions are quietly associated to oxidative stress. Thus, preserving endothelial function and oxidative stress seems to be an optimization strategy in the prevention of vascular complications associated with diabetes. Diet is a major lifestyle factor that can greatly influence the incidence and the progression of type 2 diabetes and cardiovascular complications. The notion that foods not only provide basic nutrition but can also prevent diseases and ensure good health and longevity is now attained greater prominence. Some dietary and lifestyle modifications associated to antioxidative supply could be an effective prophylactic means to fight against oxidative stress in diabesity and complications. A significant benefit of phytochemicals (polyphenols in wine, grape, teas), vitamins (ascorbate, tocopherol), minerals (selenium, magnesium), and fruits and vegetables in foods is thought to be capable of scavenging free radicals, lowering the incidence of chronic diseases. In this review, we discuss the role of oxidative stress in diabetes and complications, highlight the endothelial dysfunction, and examine the impact of antioxidant foods, plants, fruits, and vegetables, currently used medication with antioxidant properties, in relation to the development and progression of diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Stéphanie Dal
- DIATHEC EA 7294 UMR Centre Européen d'Etude du Diabète (CeeD), Université de Strasbourg (UdS), boulevard René Leriche, Strasbourg 67200, France.
| | - Séverine Sigrist
- DIATHEC EA 7294 UMR Centre Européen d'Etude du Diabète (CeeD), Université de Strasbourg (UdS), boulevard René Leriche, Strasbourg 67200, France.
| |
Collapse
|
35
|
Pinckney A, Rigby MR, Keyes-Elstein L, Soppe CL, Nepom GT, Ehlers MR. Correlation Among Hypoglycemia, Glycemic Variability, and C-Peptide Preservation After Alefacept Therapy in Patients with Type 1 Diabetes Mellitus: Analysis of Data from the Immune Tolerance Network T1DAL Trial. Clin Ther 2016; 38:1327-1339. [PMID: 27209482 DOI: 10.1016/j.clinthera.2016.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE In natural history studies, maintenance of higher levels of C-peptide secretion (a measure of endogenous insulin production) correlates with a lower incidence of major hypoglycemic events in patients with type 1 diabetes mellitus (T1D), but it is unclear whether this is also true for drug-induced C-peptide preservation. METHODS We analyzed hypoglycemic events and glycemic control data from the T1DAL (Inducing Remission in New-Onset T1D with Alefacept) study, a trial of alefacept in new-onset T1D, which found significant C-peptide preservation at 1 and 2 years. We performed a post hoc analysis using mixed models of the association between the meal-stimulated 4-hour C-peptide AUC (4-hour AUC) and rates of major hypoglycemia, measures of glycemic control (glycosylated hemoglobin [HbA1c]; mean glucometer readings), and variability (glucometer SDs; highest and lowest readings), and an index of partial remission (insulin dose-adjusted HbA1c[ IDAA1c]). FINDINGS Data from 49 participants (33 in the alefacept group and 16 in the placebo group) were analyzed at baseline and 12 and 24 months. We found that the 4-hour AUC at baseline and at 1 year was a significant predictor of the number of hypoglycemic events during the ensuing 12-month interval (p = 0.030). There was a strong association between the 4-hour AUC and glucometer SDs (P < 0.001), highest readings (p < 0.001), and lowest readings (p = 0.03), all measures of glycemic variability. There was a strong inverse correlation between the 4-hour AUC and 2 measures of glycemic control: HbA1c and mean glucometer readings (both p < 0.001). There was also a strong inverse correlation between the 4-hour AUC and IDAA1c values (p < 0.001), as well as a strong correlation between IDAA1c values and glucometer SDs (p < 0.001), suggesting that reduced glycemic variability is associated with a trend toward partial remission. None of these analyses found a significant difference between the alefacept and placebo groups. IMPLICATIONS Measures of glycemic variability and control, including rates of hypoglycemia, are significantly correlated with preservation of C-peptide regardless of whether this is achieved by immune intervention with alefacept or natural variability in patients with new-onset T1D. Thus, preservation of endogenous insulin production by an immunomodulatory drug may confer clinical benefits similar to those seen in patients with higher C-peptide secretion due to slow disease progression.
Collapse
Affiliation(s)
- Ashley Pinckney
- Federal Systems Division, Rho Inc, Chapel Hill, North Carolina
| | - Mark R Rigby
- Section of Pediatric Endocrinology and Diabetology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Carol L Soppe
- Clinical Trials Group, Immune Tolerance Network, San Francisco, California
| | - Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Mario R Ehlers
- Clinical Trials Group, Immune Tolerance Network, San Francisco, California.
| |
Collapse
|