1
|
Wu H, Wang S, Dai FB, Tang CL. Research progress in the clinical application of inhaled anesthetic sevoflurane. Med Gas Res 2025; 15:85-92. [PMID: 39436171 PMCID: PMC11515067 DOI: 10.4103/mgr.medgasres-d-23-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 10/23/2024] Open
Abstract
Sevoflurane has been widely used in clinical anesthesia as an inhalation anesthetic. With the development of medicine, there have been several new applications in recent years, such as daytime surgery, labor analgesia, and combined nerve block for some surgeries. Moreover, as research progresses, it has been found that it not only has potential organ protection effects but can also be used to treat severe asthma and relieve the tracheal spasm state. In addition, local administration can effectively treat vascular ulcers. We briefly review the organ protective effect of sevoflurane, its application in dental treatment, asthma treatment, vascular ulcer treatment and some new progress in clinical application.
Collapse
Affiliation(s)
- Hao Wu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of Science and Technology of China, Hefei, Anhui Province, China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of Science and Technology of China, Hefei, Anhui Province, China
| | - Fei-Biao Dai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of Science and Technology of China, Hefei, Anhui Province, China
| | - Chao-Liang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of Science and Technology of China, Hefei, Anhui Province, China
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Örnek E, Alkan M, Erel S, Yığman Z, Dursun AD, Dağlı A, Sarıkaya B, Kip G, Polat Y, Arslan M. Effects of Sevoflurane and Fullerenol C60 on the Heart and Lung in Lower-Extremity Ischemia-Reperfusion Injury in Streptozotocin-Induced Diabetes Mice. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1232. [PMID: 39202513 PMCID: PMC11356023 DOI: 10.3390/medicina60081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Lower-extremity ischemia-reperfusion injury can induce distant organ ischemia, and patients with diabetes are particularly susceptible to ischemia-reperfusion injury. Sevoflurane, a widely used halogenated inhalation anesthetic, and fullerenol C60, a potent antioxidant, were investigated for their effects on heart and lung tissues in lower-extremity ischemia-reperfusion injury in streptozotocin (STZ)-induced diabetic mice. Materials and Methods: A total of 41 mice were divided into six groups: control (n = 6), diabetes-control (n = 7), diabetes-ischemia (n = 7), diabetes-ischemia-fullerenol C60 (n = 7), diabetes-ischemia-sevoflurane (n = 7), and diabetes-ischemia-fullerenol C60-sevoflurane (n = 7). Diabetes was induced in mice using a single intraperitoneal dose of 55 mg/kg STZ in all groups except for the control group. Mice in the control and diabetes-control groups underwent midline laparotomy and were sacrificed after 120 min. The DIR group underwent 120 min of lower-extremity ischemia followed by 120 min of reperfusion. In the DIR-F group, mice received 100 μg/kg fullerenol C60 intraperitoneally 30 min before IR. In the DIR-S group, sevoflurane and oxygen were administered during the IR procedure. In the DIR-FS group, fullerenol C60 and sevoflurane were administered. Biochemical and histological evaluations were performed on collected heart and lung tissues. Results: Histological examination of heart tissues showed significantly higher necrosis, polymorphonuclear leukocyte infiltration, edema, and total damage scores in the DIR group compared to controls. These effects were attenuated in fullerenol-treated groups. Lung tissue examination revealed more alveolar wall edema, hemorrhage, vascular congestion, polymorphonuclear leukocyte infiltration, and higher total damage scores in the DIR group compared to controls, with reduced injury parameters in the fullerenol-treated groups. Biochemical analyses indicated significantly higher total oxidative stress, oxidative stress index, and paraoxonase-1 levels in the DIR group compared to the control and diabetic groups. These levels were lower in the fullerenol-treated groups. Conclusions: Distant organ damage in the lung and heart tissues due to lower-extremity ischemia-reperfusion injury can be significantly reduced by fullerenol C60.
Collapse
Affiliation(s)
- Ender Örnek
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
| | - Metin Alkan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
| | - Selin Erel
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
| | - Zeynep Yığman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (Z.Y.); (A.D.)
- Neuroscience and Neurotechnology Center of Excellence (NOROM), Gazi University, Ankara 06560, Turkey
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey; (A.D.D.); (B.S.)
| | - Aslı Dağlı
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (Z.Y.); (A.D.)
- Medical Laboratory Techniques Program, Department of Medical Services and Techniques, Vocational School of Health Services, Atılım University, Ankara 06830, Turkey
| | - Badegül Sarıkaya
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey; (A.D.D.); (B.S.)
| | - Gülay Kip
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
| | - Yücel Polat
- Tekirdağ Dr İsmail Fehmi Cumalıoğlu City Hospital, Department of Cardiovascular Surgery, Tekirdağ 59030, Turkey;
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
- Life Sciences Application and Research Center, Gazi University, Ankara 06560, Turkey
- Laboratory Animal Breeding and Experimental Research Center (GUDAM), Gazi University, Ankara 06560, Turkey
| |
Collapse
|
3
|
Kang C, Cho AR, Kim H, Kwon JY, Lee HJ, Kim E. Sedation with propofol and isoflurane differs in terms of microcirculatory parameters: A randomized animal study using dorsal skinfold chamber mouse model. Microvasc Res 2024; 153:104655. [PMID: 38232898 DOI: 10.1016/j.mvr.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
OBJECTIVE This study aimed to explore the effects of sedative doses of propofol and isoflurane on microcirculation in septic mice compared to controls. Isoflurane, known for its potential as a sedation drug in bedside applications, lacks clarity regarding its impact on the microcirculation system. The hypothesis was that propofol would exert a more pronounced influence on the microvascular flow index, particularly amplified in septic conditions. MATERIAL AND METHODS Randomized study was conducted from December 2020 to October 2021 involved 60 BALB/c mice, with 52 mice analyzed. Dorsal skinfold chambers were implanted, followed by intraperitoneal injections of either sterile 0.9 % saline or lipopolysaccharide for the control and sepsis groups, respectively. Both groups received propofol or isoflurane treatment for 120 min. Microcirculatory parameters were obtained via incident dark-field microscopy videos, along with the mean blood pressure and heart rate at three time points: before sedation (T0), 30 min after sedation (T30), and 120 min after sedation (T120). Endothelial glycocalyx thickness and syndecan-1 concentration were also analyzed. RESULTS In healthy controls, both anesthetics reduced blood pressure. However, propofol maintained microvascular flow, differing significantly from isoflurane at T120 (propofol, 2.8 ± 0.3 vs. isoflurane, 1.6 ± 0.9; P < 0.001). In the sepsis group, a similar pattern occurred at T120 without statistical significance (propofol, 1.8 ± 1.1 vs. isoflurane, 1.2 ± 0.7; P = 0.023). Syndecan-1 levels did not differ between agents, but glycocalyx thickness index was significantly lower in the isoflurane-sepsis group than propofol (P = 0.001). CONCLUSIONS Propofol potentially offers protective action against microvascular flow deterioration compared to isoflurane, observed in control mice. Furthermore, a lower degree of sepsis-induced glycocalyx degradation was evident with propofol compared to isoflurane.
Collapse
Affiliation(s)
- Christine Kang
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea; Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ah-Reum Cho
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea; Department of Anesthesia and Pain Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.
| | - Haekyu Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea; Department of Anesthesia and Pain Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jae-Young Kwon
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea; Department of Anesthesia and Pain Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hyeon Jeong Lee
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea; Department of Anesthesia and Pain Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Eunsoo Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea; Department of Anesthesia and Pain Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
4
|
Zhai R, Lenga Ma Bonda W, Leclaire C, Saint-Béat C, Theilliere C, Belville C, Coupet R, Blondonnet R, Bouvier D, Blanchon L, Sapin V, Jabaudon M. Effects of sevoflurane on lung epithelial permeability in experimental models of acute respiratory distress syndrome. J Transl Med 2023; 21:397. [PMID: 37331963 DOI: 10.1186/s12967-023-04253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Preclinical studies in acute respiratory distress syndrome (ARDS) have suggested that inhaled sevoflurane may have lung-protective effects and clinical trials are ongoing to assess its impact on major clinical outcomes in patients with ARDS. However, the underlying mechanisms of these potential benefits are largely unknown. This investigation focused on the effects of sevoflurane on lung permeability changes after sterile injury and the possible associated mechanisms. METHODS To investigate whether sevoflurane could decrease lung alveolar epithelial permeability through the Ras homolog family member A (RhoA)/phospho-Myosin Light Chain 2 (Ser19) (pMLC)/filamentous (F)-actin pathway and whether the receptor for advanced glycation end-products (RAGE) may mediate these effects. Lung permeability was assessed in RAGE-/- and littermate wild-type C57BL/6JRj mice on days 0, 1, 2, and 4 after acid injury, alone or followed by exposure at 1% sevoflurane. Cell permeability of mouse lung epithelial cells was assessed after treatment with cytomix (a mixture of TNFɑ, IL-1β, and IFNγ) and/or RAGE antagonist peptide (RAP), alone or followed by exposure at 1% sevoflurane. Levels of zonula occludens-1, E-cadherin, and pMLC were quantified, along with F-actin immunostaining, in both models. RhoA activity was assessed in vitro. RESULTS In mice after acid injury, sevoflurane was associated with better arterial oxygenation, decreased alveolar inflammation and histological damage, and non-significantly attenuated the increase in lung permeability. Preserved protein expression of zonula occludens-1 and less increase of pMLC and actin cytoskeletal rearrangement were observed in injured mice treated with sevoflurane. In vitro, sevoflurane markedly decreased electrical resistance and cytokine release of MLE-12 cells, which was associated with higher protein expression of zonula occludens-1. Improved oxygenation levels and attenuated increase in lung permeability and inflammatory response were observed in RAGE-/- mice compared to wild-type mice, but RAGE deletion did not influence the effects of sevoflurane on permeability indices after injury. However, the beneficial effect of sevoflurane previously observed in wild-type mice on day 1 after injury in terms of higher PaO2/FiO2 and decreased alveolar levels of cytokines was not found in RAGE-/- mice. In vitro, RAP alleviated some of the beneficial effects of sevoflurane on electrical resistance and cytoskeletal rearrangement, which was associated with decreased cytomix-induced RhoA activity. CONCLUSIONS Sevoflurane decreased injury and restored epithelial barrier function in two in vivo and in vitro models of sterile lung injury, which was associated with increased expression of junction proteins and decreased actin cytoskeletal rearrangement. In vitro findings suggest that sevoflurane may decrease lung epithelial permeability through the RhoA/pMLC/F-actin pathway.
Collapse
Affiliation(s)
- Ruoyang Zhai
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Woodys Lenga Ma Bonda
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Charlotte Leclaire
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Cécile Saint-Béat
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Camille Theilliere
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Corinne Belville
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Randy Coupet
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Raiko Blondonnet
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Damien Bouvier
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Loic Blanchon
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Vincent Sapin
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| |
Collapse
|
5
|
Liu L, Ma Z, Han Q, Meng W, Ye H, Zhang T, Xia Y, Xiang Z, Ke Y, Guan X, Shi Q, Ataullakhanov FI, Panteleev M. Phenylboronic Ester-Bridged Chitosan/Myricetin Nanomicelle for Penetrating the Endothelial Barrier and Regulating Macrophage Polarization and Inflammation against Ischemic Diseases. ACS Biomater Sci Eng 2023. [PMID: 37327139 DOI: 10.1021/acsbiomaterials.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The brain and liver are more susceptible to ischemia and reperfusion (IR) injury (IRI), which triggers the reactive oxygen species (ROS) burst and inflammatory cascade and results in severe neuronal damage or hepatic injury. Moreover, the damaged endothelial barrier contributes to proinflammatory activity and limits the delivery of therapeutic agents such as some macromolecules and nanomedicine despite the integrity being disrupted after IRI. Herein, we constructed a phenylboronic-decorated chitosan-based nanoplatform to deliver myricetin, a multifunctional polyphenol molecule for the treatment of cerebral and hepatic ischemia. The chitosan-based nanostructures are widely studied cationic carriers for endothelium penetration such as the blood-brain barrier (BBB) and sinusoidal endothelial barrier (SEB). The phenylboronic ester was chosen as the ROS-responsive bridging segment for conjugation and selective release of myricetin molecules, which meanwhile scavenged the overexpressed ROS in the inflammatory environment. The released myricetin molecules fulfill a variety of roles including antioxidation through multiple phenolic hydroxyl groups, inhibition of the inflammatory cascade by regulation of the macrophage polarization from M1 to M2, and endothelial injury repairment. Taken together, our present study provides valuable insight into the development of efficient antioxidant and anti-inflammatory platforms for potential application against ischemic disease.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongbo Ye
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fazly I Ataullakhanov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| |
Collapse
|
6
|
Experimental and Clinical Aspects of Sevoflurane Preconditioning and Postconditioning to Alleviate Hepatic Ischemia-Reperfusion Injury: A Scoping Review. Int J Mol Sci 2023; 24:ijms24032340. [PMID: 36768670 PMCID: PMC9916998 DOI: 10.3390/ijms24032340] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/21/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inflammatory process inherent in organ transplantation procedures. It is associated with tissue damage and, depending on its intensity, can impact early graft function. In liver transplantation (LT), strategies to alleviate IRI are essential in order to increase the use of extended criteria donor (ECD) grafts, which are more susceptible to IRI, as well as to improve postoperative graft and patient outcomes. Sevoflurane, a commonly used volatile anesthetic, has been shown to reduce IRI. This scoping review aims to give a comprehensive overview of the existing experimental and clinical data regarding the potential benefits of sevoflurane for hepatic IRI (HIRI) and to identify any gaps in knowledge to guide further research. We searched Medline and Embase for relevant articles. A total of 380 articles were identified, 45 of which were included in this review. In most experimental studies, the use of sevoflurane was associated with a significant decrease in biomarkers of acute liver damage and oxidative stress. Administration of sevoflurane before hepatic ischemia (preconditioning) or after reperfusion (postconditioning) appears to be protective. However, in the clinical setting, results are conflicting. While some studies showed a reduction of postoperative markers of liver injury, the benefit of sevoflurane on clinical outcomes and graft survival remains unclear. Further prospective clinical trials remain necessary to assess the clinical relevance of the use of sevoflurane as a protective factor against HIRI.
Collapse
|
7
|
Zhang X, Zhao Y, Liu L, He Y. Syndecan-1: A Novel Diagnostic and Therapeutic Target in Liver Diseases. Curr Drug Targets 2023; 24:1155-1165. [PMID: 37957867 DOI: 10.2174/0113894501250057231102061624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
Syndecan-1 (SDC-1), known as a coreceptor of various growth factors or an integrin binding partner, regulates various cell behaviours. Under certain pathological conditions, SDC-1 is shed from the cell surface and plays a protective or pathogenic role in various diseases. In the liver, SDC-1 is highly expressed in hepatocytes, where it is localized on the basolateral surface. It is critical to the cellular and molecular functions of hepatocytes, including their attachment to hepatitis viruses. Previous studies have reported that SDC-1 may function as a novel and promising diagnostic and therapeutic marker for various liver diseases, such as drug-induced liver injury, liver fibrosis, and liver cancer. In this review, we summarize related research and highlight the mechanisms by which SDC-1 participates in the pathogenesis of liver diseases, as well as its potential diagnostic and therapeutic applications. This review is expected to lay the foundation for further therapeutic strategies to target SDC-1 in liver diseases.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Yalei Zhao
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Liangru Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Yingli He
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| |
Collapse
|
8
|
Wang YL, Zhang Y, Cai DS. Hepatoprotective effects of sevoflurane against hepatic ischemia-reperfusion injury by regulating microRNA-124-3p-mediated TRAF3/CREB axis. Cell Death Dis 2022; 8:105. [PMID: 35260558 PMCID: PMC8904859 DOI: 10.1038/s41420-021-00784-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022]
Abstract
The purpose of the present study is to define the role of sevoflurane (SEV) in hepatic ischemia-reperfusion (I/R) injury as well as its underlying mechanism. Initially, hepatic I/R animal models and I/R hepatocyte models were established in C57BL/6 mice and normal mouse hepatocytes (BNL CL.2) after SEV preconditioning, respectively, followed by detection of microRNA-124-3p (miR-124-3p), TRAF3, and CREB expression by RT-qPCR and Western blot analysis. In addition, miR-124-3p, TRAF3 and CREB expression in hepatocytes was altered to identify their roles in modulating the levels of glutathione transferase (GST), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and inflammation-related factors and hepatocyte apoptosis by ELISA and flow cytometry respectively. The effects of SEV on the miR-124-3p/TRAF3/CREB axis were also verified in vitro and in vivo. IP assay was performed to verify the effect of TRAF3 on CREB ubiquitination in BNL CL.2 cells, and the cycloheximide (CHX) intervention experiment to detect the stability of CREB protein. SEV augmented the miR-124-3p expression in I/R animal and cell models. Moreover, SEV was observed to suppress I/R-induced liver damage, GST, ALT, and AST levels, hepatocyte apoptosis and inflammation. Overexpression of miR-124-3p resulted in alleviation of hepatic I/R injury, which was countered by TRAF3 overexpression. miR-124-3p targeted TRAF3, while TRAF3 promoted CREB ubiquitination and reduced protein stability of CREB. SEV could impede I/R-induced liver damage, GST, ALT, and AST levels, hepatocyte apoptosis and inflammation via mediation of the miR-124-3p/TRAF3/CREB axis in vitro and in vivo. Collectively, SEV may upregulate miR-124-3p to inhibit TRAF3 expression, thereby reducing the ubiquitination and degradation of CREB, alleviating hepatic I/R injury.
Collapse
Affiliation(s)
- Yi-Liang Wang
- Department of Anaesthesiology, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ying Zhang
- Department of Thyroid and Breast Surgery, Liaoning Provincial People's Hospital, Shenyang, 110001, PR China
| | - Da-Sheng Cai
- Department of Anaesthesiology, The First Hospital of China Medical University, Shenyang, 110001, PR China.
| |
Collapse
|
9
|
Ji H, Li H, Zhang H, Cheng Z. Role of microRNA‑218‑5p in sevoflurane‑induced protective effects in hepatic ischemia/reperfusion injury mice by regulating GAB2/PI3K/AKT pathway. Mol Med Rep 2021; 25:1. [PMID: 34726254 PMCID: PMC8600399 DOI: 10.3892/mmr.2021.12517] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury (HIRI) often occurs following tissue resection, hemorrhagic shock or transplantation surgery. Previous investigations showed that sevoflurane (Sevo), an inhalation anesthetic, had protective properties against different organ damage in animal models including HIRI. This study is aimed to investigate the underlying mechanisms involved in the protective effects of Sevo on HIRI. The present study results showed that treatment with Sevo improved histologic damage, inflammatory response, oxidative stress and apoptosis after hepatic I/R, indicating the protective role of Sevo against liver I/R injury. Importantly, in order to determine the molecular mechanism of Sevo in HIRI, the focus of the study was on microRNA (miR) regulation. By retrieving the microarray data in the Gene Expression Omnibus dataset (GSE72315), miR-218-5p was found to be significantly downregulated by Sevo. Moreover, miR-218-5p overexpression using agomiR-218-5p reversed the protective roles of Sevo against HIRI. Furthermore, GAB2, a positive regulator of PI3K/AKT signaling pathway, was found as a target gene of miR-218-5p. It was also found that the Sevo-mediated protective effects may be dependent on the activation of GAB2/PI3K/AKT. Collectively, these data revealed that Sevo alleviated HIRI in mice by restraining apoptosis, relieving oxidative stress and inflammatory response through the miR-218-5p/GAB2/PI3K/AKT pathway, which helps in understanding the novel mechanism of the hepatic-protection of Sevo.
Collapse
Affiliation(s)
- Hui Ji
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| | - Hui Li
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| | - Haixia Zhang
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| | - Zhijun Cheng
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| |
Collapse
|
10
|
Huang YQ, Wen RT, Li XT, Zhang J, Yu ZY, Feng YF. The Protective Effect of Dexmedetomidine Against Ischemia-Reperfusion Injury after Hepatectomy: A Meta-Analysis of Randomized Controlled Trials. Front Pharmacol 2021; 12:747911. [PMID: 34712138 PMCID: PMC8546301 DOI: 10.3389/fphar.2021.747911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Hepatic inflow occlusion proceeded to reduce blood loss during hepatectomy induces ischemia-reperfusion (IR) injury in the remnant liver. Dexmedetomidine, a selective α2-adrenoceptor agonist used as an anesthetic adjuvant, has been shown to attenuate IR injury in preclinical and clinical studies. However, a meta-analysis is needed to systematically evaluate the protective effect of perioperative dexmedetomidine use on IR injury induced by hepatectomy. Methods: A prospectively registered meta-analysis following Cochrane and PRISMA guidelines concerning perioperative dexmedetomidine use on IR injury after hepatectomy was performed via searching Cochrane Library, PubMed, EMBASE, ClinicalTrials.gov, Web of Science, CNKI, WanFang, and Sinomed for eligible randomized controlled trials up to 2021.3.31. The main outcome is postoperative liver function. Risk of bias was assessed by the Cochrane Risk of Bias tool. Review Manager 5.3 and Stata12.0 were applied to perform data analyses. Results: Eight RCTs enrolling 468 participants were included. Compared with 0.9% sodium chloride, dexmedetomidine decreased serum concentration of ALT (WMD = −66.54, 95% CI: −92.10–−40.98), AST (WMD= −82.96, 95% CI: −106.74–−59.17), TBIL (WMD = −4.51, 95% CI: −7.32–−1.71), MDA (WMD = −3.09, 95% CI: −5.17–−1.01), TNF-α (WMD = −36.54, 95% CI: −61.33–−11.95) and IL-6 (WMD = −165.05, 95% CI: −225.76–−104.34), increased SOD activity (WMD = 24.70, 95% CI: 18.09–31.30) within postoperative one day. There was no significant difference in intraoperative or postoperative recovery parameters between groups. Conclusions: Perioperative administration of dexmedetomidine can exert a protective effect on liver IR injury after hepatectomy. Additional studies are needed to further evaluate postoperative recovery outcomes of dexmedetomidine with different dosing regimens.
Collapse
Affiliation(s)
- Ya-Qun Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China.,Department of Pharmaceutical Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, China.,Department of Pharmaceutical Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiao-Tong Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Jiao Zhang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China.,Department of Pharmaceutical Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhi-Ying Yu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Yu-Fei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| |
Collapse
|
11
|
Shinohara A, Ushiyama A, Iijima T. Time-Dependent Dynamics Required for the Degradation and Restoration of the Vascular Endothelial Glycocalyx Layer in Lipopolysaccharide-Treated Septic Mice. Front Cardiovasc Med 2021; 8:730298. [PMID: 34595224 PMCID: PMC8476805 DOI: 10.3389/fcvm.2021.730298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
The endothelial glycocalyx (GCX) plays a key role in the development of organ failure following sepsis. Researchers have investigated GCX degradation caused by pathological conditions. Nonetheless, the GCX restoration process remains poorly understood. Herein, we developed a model in which GCX restoration could be reproduced in mice using in vivo imaging and a dorsal skinfold chamber (DSC). The severity of sepsis was controlled by adjusting the dose of lipopolysaccharide (LPS) used to trigger GCX degradation in BALB/c mice. We evaluated the GCX thickness, leukocyte-endothelial interactions, and vascular permeability using in vivo imaging through DSC under intravital microscopy. The plasma concentration of syndecan-1(Sdc-1), a GCX structural component, was also determined as a marker of GCX degradation. Thus, we developed a reproducible spontaneous GCX recovery model in mice. Degraded GCX was restored within 24 h by the direct visualization of the endothelial GCX thickness, and leukocyte-endothelial interactions. In contrast, indirectly related indicators of recovery from sepsis, such as body weight and blood pressure, required a longer recovery time. This model can be used to study intractable angiopathy following sepsis.
Collapse
Affiliation(s)
- Akane Shinohara
- Division of Anesthesiology, Department of Perioperative Medicine, Showa University, School of Dentistry, Tokyo, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| | - Takehiko Iijima
- Division of Anesthesiology, Department of Perioperative Medicine, Showa University, School of Dentistry, Tokyo, Japan
| |
Collapse
|
12
|
He B, Yang F, Ning Y, Li Y. Sevoflurane alleviates hepatic ischaemia/reperfusion injury by up-regulating miR-96 and down-regulating FOXO4. J Cell Mol Med 2021; 25:5899-5911. [PMID: 34061461 PMCID: PMC8256341 DOI: 10.1111/jcmm.16063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023] Open
Abstract
Hepatic ischaemia/reperfusion (I/R) injury represents an event characterized by anoxic cell death and an inflammatory response, that can limit the treatment efficacy of liver surgery. Ischaemic preconditioning agents such as sevoflurane (Sevo) have been highlighted to play protective roles in hepatic I/R injury. The current study aimed to investigate the molecular mechanism underlying the effects associated with Sevo in hepatic I/R injury. Initially, mouse hepatic I/R injury models were established via occlusion of the hepatic portal vein and subsequent reperfusion. The expression of forkhead box protein O4 (FOXO4) was detected using reverse transcription quantitative polymerase chain reaction and Western blot analysis from clinical liver tissue samples obtained from patients who had previously undergone liver transplantation, mouse I/R models and oxygen-deprived hepatocytes. The morphology of the liver tissues was analysed using haematoxylin-eosin (HE) staining, with apoptosis detected via TUNEL staining. Immunohistochemistry methods were employed to identify the FOXO4-positive cells. Mice with knocked out FOXO4 (FOXO4-KO mice) were subjected to I/R. In this study, we found FOXO4 was highly expressed following hepatic I/R injury. After treatment with Sevo, I/R modelled mice exhibited an alleviated degree of liver injury, fewer apoptotic cells and FOXO4-positive cells. FOXO4 was a target gene of miR-96. Knockdown of FOXO4 could alleviate hepatic I/R injury and decrease cell apoptosis. Taken together, the key observations of our study suggest that Sevo alleviates hepatic I/R injury by means of promoting the expression of miR-96 while inhibiting FOXO4 expression. This study highlights the molecular mechanism mediated by Sevo in hepatic I/R injury.
Collapse
Affiliation(s)
- Binghua He
- Jinan UniversityGuangzhouChina
- Department of Anesthesiologythe Central Hospital of ShaoyangShaoyangChina
| | - Fan Yang
- Department of Anesthesiologythe Central Hospital of ShaoyangShaoyangChina
| | - Yingxia Ning
- Department of Gynecology and ObstetricsThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yalan Li
- Department of Anesthesiologythe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
13
|
Ma H, Yang B, Yu L, Gao Y, Ye X, Liu Y, Li Z, Li H, Li E. Sevoflurane protects the liver from ischemia-reperfusion injury by regulating Nrf2/HO-1 pathway. Eur J Pharmacol 2021; 898:173932. [PMID: 33631180 DOI: 10.1016/j.ejphar.2021.173932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
We aimed to investigate the role and mechanism of sevoflurane (SEV) preconditioning in liver ischemia-reperfusion (I/R) injury. In vivo, rats were randomly divided into Sham group, I/R rat model group, I/R + SEV group and SEV group. In vitro, hypoxia-reoxygenation (H/R) cell model were established. Hematoxylin-Eosin (H&E) and TUNEL assay were used to evaluate the degree of tissue damage and detect apoptosis in rats, respectively. HO-1, nuclear Nrf2 and cytosolic Nrf2 expressions were detected by immunohistochemical staining, Western blot analysis and quantitative real-time PCR (qRT-PCR), respectively. Contents of Lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS) were determined by corresponding kits. Inflammatory factor levels, cell viability, apoptosis were detected by enzyme-linked immunosorbent assay (ELISA), MTT assay, and flow cytometry, respectively.In the I/R group, liver damage was severe, apoptosis-positive cells were increased, HO-1 and nuclear Nrf2 expressions were increased, and cytosolic Nrf2 expression was decreased. After SEV pretreatment, the degree of liver injury and apoptosis in rats were significantly reduced, HO-1 and nuclear Nrf2 expressions were increased significantly, and cytosolic Nrf2 expression was decreased. 4% SEV had the best mitigating effect on H/R-induced liver cell damage, as evidenced by reduced contents of LDH and MDA, decreased inflammatory factors, a lowered apoptosis rate, inhibited ROS production, effectively promoted Nrf2 nucleation, and activated Nrf/HO-1 pathway. ML385 pretreatment significantly inhibited the effect of SEV on hepatocytes.Sevoflurane protects the liver from ischemia-reperfusion injury by regulating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hongyan Ma
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Baoyi Yang
- Department of Neursurgery, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No.26, Heping Road, Dongli District, Harbin, Heilongjiang, 150040, China
| | - Lu Yu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yang Gao
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Xiangmei Ye
- Laboratory of Hemooncology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Ying Liu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Zhengtian Li
- Department of Tumor Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, No.194, Xuefu Road, Harbin, Heilongjiang, 150001, China
| | - Enyou Li
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
14
|
The Endothelial Glycocalyx and Organ Preservation-From Physiology to Possible Clinical Implications for Solid Organ Transplantation. Int J Mol Sci 2021; 22:ijms22084019. [PMID: 33924713 PMCID: PMC8070558 DOI: 10.3390/ijms22084019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/14/2023] Open
Abstract
The endothelial glycocalyx is a thin layer consisting of proteoglycans, glycoproteins and glycosaminoglycans that lines the luminal side of vascular endothelial cells. It acts as a barrier and contributes to the maintenance of vascular homeostasis and microperfusion. During solid organ transplantation, the endothelial glycocalyx of the graft is damaged as part of Ischemia Reperfusion Injury (IRI), which is associated with impaired organ function. Although several substances are known to mitigate glycocalyx damage, it has not been possible to use these substances during graft storage on ice. Normothermic machine perfusion (NMP) emerges as an alternative technology for organ preservation and allows for organ evaluation, but also offers the possibility to treat and thus improve organ quality during storage. This review highlights the current knowledge on glycocalyx injury during organ transplantation, presents ways to protect the endothelial glycocalyx and discusses potential glycocalyx protection strategies during normothermic machine perfusion.
Collapse
|
15
|
Xiao X, Liu D, Chen S, Li X, Ge M, Huang W. Sevoflurane preconditioning activates HGF/Met-mediated autophagy to attenuate hepatic ischemia-reperfusion injury in mice. Cell Signal 2021; 82:109966. [PMID: 33639217 DOI: 10.1016/j.cellsig.2021.109966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/26/2022]
Abstract
Sevoflurane (SEV) preconditioning plays a protective effect against liver ischemia reperfusion (IR) injury, while the role of autophagy in SEV-mediated hepatoprotection and the precise mechanism is unclear. In the current study, mice were pretreated with SEV or autophagy inhibitor before liver IR injury. In vitro, primary rat hepatocytes were pretreated with SEV and then exposed to hypoxia/reoxygenation (H/R). Liver function was measured by biochemical and histopathological examinations, and markers associated with inflammation, oxidation, apoptosis and autophagy were subsequently measured. We found that SEV preconditioning dramatically reduced hepatic damage, alleviated cell inflammatory response, oxidative stress and apoptosis in mice suffering hepatic IR injury, whereas these protective effects were abolished by the autophagy inhibitor 3-MA. In addition, pretreatment with SEV markedly activated HGF/Met signaling pathway regulation. Besides, pretreatment with an hepatocyte growth factor (HGF) inhibitor or knocking down HGF expression significantly downregulated phosphorylated met (p-met) and autophagy levels, and abolished the protective effects of SEV against hepatic IR or hepatocyte H/R injury. Conversely, HGF overexpression efficiently increased the p-met and autophagy levels and strengthened the protective effects of SEV. These results indicated that sevoflurane preconditioning ameliorates hepatic IR injury by activating HGF/Met-mediated autophagy.
Collapse
Affiliation(s)
- Xiaoyu Xiao
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Department of Anesthesiology, Fifth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 519000, Guangdong, China
| | - Dezhao Liu
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Sufang Chen
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Xiang Li
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Mian Ge
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Wenqi Huang
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
16
|
The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovasc Eng Technol 2020; 12:37-71. [PMID: 32959164 PMCID: PMC7505222 DOI: 10.1007/s13239-020-00485-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
Purpose In 2007 the two senior authors wrote a review on the structure and function of the endothelial glycocalyx layer (Weinbaum in Annu Rev Biomed Eng 9:121–167, 2007). Since then there has been an explosion of interest in this hydrated gel-like structure that coats the luminal surface of endothelial cells that line our vasculature due to its important functions in (A) basic vascular physiology and (B) vascular related diseases. This review will highlight the major advances that have occurred since our 2007 paper. Methods A literature search mainly focusing on the role of the glycocalyx in the two major areas described above was performed using electronic databases. Results In part (A) of this review, the new formulation of the century old Starling principle, now referred to as the Michel–Weinbaum glycoclayx model or revised Starling hypothesis, is described including new subtleties and physiological ramifications. New insights into mechanotransduction and release of nitric oxide due to fluid shear stress sensed by the glycocalyx are elaborated. Major advances in understanding the organization and function of glycocalyx components, and new techniques for measuring both its thickness and spatio-chemical organization based on super resolution, stochastic optical reconstruction microscopy (STORM) are presented. As discussed in part (B) of this review, it is now recognized that artery wall stiffness associated with hypertension and aging induces glycocalyx degradation, endothelial dysfunction and vascular disease. In addition to atherosclerosis and cardiovascular diseases, the glycocalyx plays an important role in lifestyle related diseases (e.g., diabetes) and cancer. Infectious diseases including sepsis, Dengue, Zika and Corona viruses, and malaria also involve the glycocalyx. Because of increasing recognition of the role of the glycocalyx in a wide range of diseases, there has been a vigorous search for methods to protect the glycocalyx from degradation or to enhance its synthesis in disease environments. Conclusion As we have seen in this review, many important developments in our basic understanding of GCX structure, function and role in diseases have been described since the 2007 paper. The future is wide open for continued GCX research.
Collapse
|
17
|
Maldonado F, Morales D, Gutiérrez R, Barahona M, Cerda O, Cáceres M. Effect of sevoflurane and propofol on tourniquet-induced endothelial damage: a pilot randomized controlled trial for knee-ligament surgery. BMC Anesthesiol 2020; 20:121. [PMID: 32434495 PMCID: PMC7238658 DOI: 10.1186/s12871-020-01030-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The glycocalyx layer is a key structure in the endothelium. Tourniquet-induced ischemic periods are used during orthopedic surgery, and the reactive oxygen species generated after ischemia-reperfusion may mediate the shedding of the glycocalyx. Here, we describe the effects of tourniquet-induced ischemia-reperfusion and compare the effects of sevoflurane and propofol on the release of endothelial biomarkers after ischemia-reperfusion in knee-ligament surgery. METHODS This pilot, single-center, blinded, randomized, controlled trial included 16 healthy patients. After spinal anesthesia, hypnosis was achieved with sevoflurane or propofol according to randomization. During the perioperative period, five venous blood samples were collected for quantification of syndecan-1, heparan sulfate, and thrombomodulin from blood serum by using ELISA assays kits. Sample size calculation was performed to detect a 25% change in the mean concentration of syndecan-1 with an alpha of 0.05 and power of 80%. RESULTS For our primary outcome, a two-way ANOVA with post-hoc Bonferroni correction analysis showed no differences in syndecan-1 concentrations between the sevoflurane and propofol groups at any time point. In the sevoflurane group, we noted an increase in syndecan-1 concentrations 90 min after tourniquet release in the sevoflurane group from 34.6 ± 24.4 ng/mL to 47.9 ± 29.8 ng/mL (Wilcoxon test, p < 0.01) that was not observed in patients randomized to the propofol group. The two-way ANOVA showed no intergroup differences in heparan sulfate and thrombomodulin levels. CONCLUSIONS Superficial endothelial damage without alterations in the cell layer integrity was observed after tourniquet knee-ligament surgery. There was no elevation in serum endothelial biomarkers in the propofol group patients. Sevoflurane did not show the protective effect observed in in vitro and in vivo studies. TRIAL REGISTRATION The trial was registered in www.clinicaltrials.gov (ref: NCT03772054, Registered 11 December 2018).
Collapse
Affiliation(s)
- Felipe Maldonado
- Department of Anesthesia and Perioperative Medicine. Hospital Clínico de la Universidad de Chile. Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rodrigo Gutiérrez
- Department of Anesthesia and Perioperative Medicine. Hospital Clínico de la Universidad de Chile. Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico de la Universidad de Chile. Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Maximiliano Barahona
- Department of Orthopaedic Surgery, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Facultad de Medicina. Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile. .,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile. .,The Wound Repair, Treatment and Health (WoRTH) Initiative, Facultad de Medicina. Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile.
| |
Collapse
|
18
|
Qiu S, Liu B, Mo Y, Wang X, Zhong L, Han X, Mi F. MicroRNA-153-3p increases autophagy in sevoflurane-preconditioned mice to protect against ischaemic/reperfusion injury after knee arthroplasty. J Cell Mol Med 2020; 24:5330-5340. [PMID: 32239627 PMCID: PMC7205820 DOI: 10.1111/jcmm.15188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/16/2020] [Accepted: 03/01/2020] [Indexed: 12/17/2022] Open
Abstract
The use of tourniquet during total knee arthroplasty (TKA) can result in ischaemia/reperfusion injury (IRI). Of interest, microRNAs (miRs) are reported to be involved in various kinds of IRI due to their ability in modulating autophagy. Therefore, the study aimed to investigate the effect of miR‐153‐3p on autophagy in IRI in vitro and in vivo under sevoflurane preconditioning. In the in vitro model, chondrocytes from naive mice were treated with 0% FBS alone or in combination with sevoflurane. Additionally, in vivo assays were conducted in mouse models with tourniquet‐induced IRI after TKA under or without sevoflurane preconditioning. The pathological observation in vivo validated that sevoflurane preconditioning protected the knee joint against IRI. Moreover, miR‐153‐3p expression was diminished in chondrocytes of the in vitro model and in cartilage tissue of the in vivo model, but its expression was appreciably up‐regulated in the presence of sevoflurane preconditioning. Mechanistic study showed that miR‐153‐3p disrupted the interaction between Bcl‐2 and Beclin1 by targeting Bcl‐2, thereby facilitating autophagy in chondrocytes under sevoflurane preconditioning. Furthermore, the experiments in human chondrocytes also verified the protective effects of miR‐153‐3p against IRI were realized through inhibiting Bcl‐2. Collectively, miR‐153‐3p overexpression blocks the interaction between Bcl‐2 and Beclin1 via down‐regulation of Bcl‐2 to promote autophagy of chondrocytes, thus protecting knee joint against IRI after TKA under sevoflurane preconditioning.
Collapse
Affiliation(s)
- Shuang Qiu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Benjuan Liu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Yanshuai Mo
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Xueqin Wang
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Lina Zhong
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Xiao Han
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Fuli Mi
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
19
|
Abassi Z, Armaly Z, Heyman SN. Glycocalyx Degradation in Ischemia-Reperfusion Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:752-767. [PMID: 32035883 DOI: 10.1016/j.ajpath.2019.08.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
The glycocalyx is a layer coating the luminal surface of vascular endothelial cells. It is vital for endothelial function as it participates in microvascular reactivity, endothelium interaction with blood constituents, and vascular permeability. Structural and functional damage to glycocalyx occurs in various disease states. A prominent clinical situation characterized by glycocalyx derangement is ischemia-reperfusion (I/R) of the whole body as well as during selective I/R to organs such as the kidney, heart, lung, or liver. Degradation of the glycocalyx is now considered a cornerstone in I/R-related endothelial dysfunction, which further impairs local microcirculation with a feed-forward loop of organ damage, due to vasoconstriction, leukocyte adherence, and activation of the immune response. Glycocalyx damage during I/R is evidenced by rising plasma levels of its principal constituents, heparan sulfate and syndecan-1. By contrast, the concentrations of these compounds in the circulation decrease after successful protective interventions in I/R, suggesting their use as surrogate biomarkers of endothelial integrity. In light of the importance of the glycocalyx in preserving endothelial cell integrity and its involvement in pathologic conditions, several promising therapeutic strategies to restore the damaged glycocalyx and to attenuate its deleterious consequences have been suggested. This review focuses on alterations of glycocalyx during I/R injury in general (to vital organs in particular), and on maneuvers aimed at glycocalyx recovery during I/R injury.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology, The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa, Israel; Laboratory Medicine, Rambam Health Campus, Haifa, Israel.
| | - Zaher Armaly
- Department of Nephrology, Nazareth Hospital, Nazareth, Azrieli Faculty of Medicine-Bar Ilan University, Jerusalem, Israel
| | - Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel
| |
Collapse
|
20
|
Endothelial Glycocalyx Impairment in Disease: Focus on Hyaluronan Shedding. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:768-780. [PMID: 32035885 DOI: 10.1016/j.ajpath.2019.11.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Hyaluronan (HA) is a ubiquitous glycosaminoglycan of the extracellular matrix. It is present in the endothelial glycocalyx covering the apical surface of endothelial cells. The endothelial glycocalyx regulates blood vessel permeability and homeostasis. HA plays a central role in numerous functions of the endothelial surface layer, protecting the endothelial cells, regulating the barrier permeability, and ensuring mechanosensing, which is essential to nitric oxide production and flow-induced vasodilation. During acute injury, inflammatory conditions, or many other pathologic conditions, the endothelial glycocalyx is damaged, and its degradation is accompanied by shedding of one or more glycocalyx components into the blood. Syndecan-1, heparan sulfate, and HA are the main components whose shedding has been claimed to represent the endothelial glycocalyx state of health. This review focuses on endothelial glycocalyx HA and highlights its key roles in the functions of the endothelial glycocalyx, its shedding in several pathologic conditions such as sepsis, diabetes, chronic and acute kidney injury, ischemia/reperfusion, atherosclerosis, and inflammation, which are all accompanied by increased circulating HA levels. Plasma/serum HA level is becoming recognized as a biomarker of endothelial glycocalyx damage in select pathologies. Hyaluronidase, the main HA-degrading enzyme, and its involvement in the impairment of endothelial glycocalyx are also addressed.
Collapse
|
21
|
Distinctive effect of anesthetics on the effect of limb remote ischemic postconditioning following ischemic stroke. PLoS One 2020; 15:e0227624. [PMID: 31945776 PMCID: PMC6964983 DOI: 10.1371/journal.pone.0227624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Limb remote ischemic postconditioning (LRIP) has been reported as an effective method to reduce the induced experimental stroke damage after ischemic reperfusion (IR) injury. Studies suggest that anesthetics used during induction of ischemic stroke can reduce IR injury, which could affect the actual mechanisms of neuroprotection by LRIP. This study focuses on the comparative effects of anesthetics such as isoflurane and ketamine-xylazine on ischemic injury when used during LRIP. Adult C57BL/6 mice were anesthetized by isoflurane or halothane, and transient middle cerebral artery occlusion (MCAO) was induced through insertion of the filament. Under isoflurane or ketamine-xylazine anesthesia, LRIP was performed after 90 min of reperfusion by carrying out three cycles of 5 min ischemia/5 min reperfusion of the bilateral hind limbs for one session per day for a total of 3 days. Results showed that the use of different anesthetics—isoflurane or ketamine-xylazine—during LRIP had no effects on body weight. However, LRIP was able to improve neurological function as observed by the neurological deficit score in ischemic mice. Interestingly, the neurological deficit in the group where ketamine-xylazine was used was better than the group where isoflurane was used during LRIP. Furthermore, the LRIP was able to prolong the period of the ischemic mice on the rotarod and this effect was more significant in the groups where ketamine-xylazine was used during LRIP. Moreover, LRIP significantly attenuated the infarction volume; however, this effect was independent of the anesthetic used during LRIP. From these results, we conclude that ischemic mice that were subjected to LRIP under ketamine-xylazine anesthesia had better neurological deficit outcomes after stroke.
Collapse
|
22
|
Zhang Y, Liu M, Yang Y, Cao J, Mi W. Dexmedetomidine exerts a protective effect on ischemia-reperfusion injury after hepatectomy: A prospective, randomized, controlled study. J Clin Anesth 2019; 61:109631. [PMID: 31669050 DOI: 10.1016/j.jclinane.2019.109631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/19/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
STUDY OBJECTIVE Dexmedetomidine, a highly selective α2-receptor agonist, has been widely used for protection against ischemia-reperfusion (IR) injury. We hypothesized that dexmedetomidine might exert a protective effect on IR injury after hepatectomy. DESIGN A prospective, randomized, single-blind study was conducted in 58 patients undergoing hepatectomy who were randomly assigned to two study groups. The dexmedetomidine group (D group) received a loading dose of 0.5 μg/kg for 10 min, and maintained it with 0.5 μg/kg/h until resection of the liver lobes. The control group (C group), received 0.9% sodium chloride administered in the same volume and infusion rate as D group. Eleven patients had hepatic inflow occlusion in D group as did 14 patients in C group. MEASUREMENTS The primary outcome was the serum concentration of α-glutathione S-transferase (α-GST), which reflects hepatic ischemic injury. Secondary outcomes included laboratory variables reflecting inflammatory responses, liver and kidney function, and blood coagulation, as well as hemodynamic changes, recovery variables, and complications related to anesthesia and surgery. RESULTS The concentration of α-GST at 0.5 h after resection was significantly lower in the dexmedetomidine group than the control group (9.1 ± 3.4 ng/mL vs 15.8 ± 6.5 ng/mL; p < .01), and was also significantly lower in the dexmedetomidine group in subgroup analyses of patients with and without hepatic inflow occlusion. While the concentrations of α-GST at 0.5 h after resection in patients with or without occlusion in D group were comparable, in C group the α-GST concentration without occlusion was significantly higher than that with occlusion. There was an interaction between dexmedetomidine and no occlusion (p < .01), and its concentration in D group without occlusion was the lowest of all subgroups. In addition, there were significant differences in interleukin (IL)-6 and tumor necrosis (TNF)-α concentrations at 24 h after hepatectomy between the two groups, and mean arterial pressure, heart rate, and the bispectral index were also significantly lower in D group than in C group (p < .05). There were significant differences between the two groups in ALT and AST at 2 h and 24 h after the resection of the liver lobe. However, there were no significant differences in renal function, recovery variables, blood coagulation. No severe complications related surgeries and anesthesia were found in both groups. CONCLUSION Dexmedetomidine exerts a protective effect on ischemia-reperfusion injury after hepatectomy.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Chinese PLA, Beijing, China; Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Miao Liu
- Institute of Geriatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu Yang
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiangbei Cao
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weidong Mi
- Medical School of Chinese PLA, Beijing, China; Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
23
|
Xu G, Wang X, Xiong Y, Ma X, Qu L. Effect of sevoflurane pretreatment in relieving liver ischemia/reperfusion-induced pulmonary and hepatic injury. Acta Cir Bras 2019; 34:e201900805. [PMID: 31618405 PMCID: PMC6799973 DOI: 10.1590/s0102-865020190080000005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/18/2019] [Indexed: 02/18/2023] Open
Abstract
Purpose To investigate the effect of sevoflurane preconditioning on
ischemia/reperfusion (I/R)-induced pulmonary/hepatic injury Methods Fifty-one Wistar rats were randomly grouped into sham, I/R, and sevoflurane
groups. After reperfusion, the structural change of the lung was measured by
Smith score, the wet and dry weights (W/D) were determined, malondialdehyde
(MDA) myeloperoxidase (MPO) content was determined colorimetrically and by
fluorescence, respectively, and matrix metalloprotein-9 (MMP-9) mRNA was
quantified by RT-PCR. Biopsy and morphological analyses were performed on
liver tissue, activities of aspartate aminotransferase (AST) and alanine
aminotransferase (ALT) were determined, and tumor necrosis factor-alpha
(TNF-α) level was determined. Results The sham group showed no changes in tissue structure. Structural lesions in
the sevoflurane and I/R groups were mild and severe, respectively. Smith
score, W/D, MDA, MPO, and MMP mRNA showed the same trend, and were increased
in the I/R group and recovered in the sevoflurane group, compared with the
sham group (both P<0.05). AST and ALT were significantly increased
compared to the sham group (AST: 655±52.06 vs . 29±9.30
U/L; ALT: 693±75.56 vs . 37±6.71 U/L; P<0.05). In the
sevoflurane group, AST and ALT levels were significantly decreased
(464±47.71 and 516±78.84 U/L; P<0.001). TNF-α presented similar
results. Conclusion The protection of lung and liver by sevoflurane may be mediated by inhibited
leukocyte recruitment and MMP-9 secretion.
Collapse
Affiliation(s)
- Guiping Xu
- Professor, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Conception, design, intellectual and scientific content of the study; manuscript writing; critical revision; final approval
| | - Xiaoli Wang
- MD, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Acquisition and analysis of data, manuscript writing
| | - Yuxiang Xiong
- MD, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Acquisition and analysis of data
| | - Xueping Ma
- MD, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Acquisition and analysis of data
| | - Li Qu
- MD, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Acquisition and analysis of data
| |
Collapse
|
24
|
Sevoflurane Preconditioning plus Postconditioning Decreases Inflammatory Response with Hemodynamic Recovery in Experimental Liver Ischemia Reperfusion. Gastroenterol Res Pract 2019; 2019:5758984. [PMID: 31093276 PMCID: PMC6476030 DOI: 10.1155/2019/5758984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022] Open
Abstract
Objective The inhalation anesthetic sevoflurane has presented numerous biological activities, including anti-inflammatory properties and protective effects against tissue ischemic injury. This study investigated the metabolic, hemodynamic, and inflammatory effects of sevoflurane pre- and postconditioning for short periods in the rescue of liver ischemia-reperfusion (IR) injury using a rat model. Materials and Methods Twenty Wistar rats were divided into four groups: sham group, control ischemia group (partial warm liver ischemia for 45 min followed by 4 h of reperfusion), SPC group (administration of sevoflurane 2.5% for 15 min with 5 min of washout before liver IR), and SPPoC group (administration of sevoflurane 2.5% for 15 min before ischemia and 20 min during reperfusion). Results All animals showed a decrease in the mean arterial pressure (MAP) and portal vein blood flow during ischemia. After 4 h of reperfusion, only the SPPoC group had MAP recovery. In both the SPC and SPPoC groups, there was a decrease in the ALT level and an increase in the bicarbonate and potassium serum levels. Only the SPPoC group showed an increase in the arterial blood ionized calcium level and a decrease in the IL-6 level after liver reperfusion. Therefore, this study demonstrated that sevoflurane preconditioning reduces hepatocellular injury and acid-base imbalance in liver ischemia. Furthermore, sevoflurane postconditioning promoted systemic hemodynamic recovery with a decrease in inflammatory response.
Collapse
|
25
|
|
26
|
Sevoflurane relieves hepatic ischemia-reperfusion injury by inhibiting the expression of Grp78. Biosci Rep 2018; 38:BSR20180549. [PMID: 30217942 PMCID: PMC6172422 DOI: 10.1042/bsr20180549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/07/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022] Open
Abstract
Purpose: This article aimed to study the role of sevoflurane pre-conditioning in hepatic ischemia–reperfusion and its potential mechanism. Methods: Rat liver ischemia–reperfusion model was constructed. Serum TNF-α, IL-1β, IL-10, and IL-6 concentrations were detected by ELISA. Malondialdehyde (MDA), superoxide dismutase (SOD), and nitric oxide (NO) in liver homogenate were determined. Hematoxylin–Eosin (HE) staining, Tunel, and immunohistochemistry were performed. Ischemia–reperfusion hepatocyte model was established. Cells transfection was conducted. Apoptosis was observed by flow cytometry. Quantitative real-time PCR (qRT-PCR) and Western blotting analysis were used. Results: Compared with I/R group, liver damage degree, liver cell apoptosis, and glucose regulatory protein 78 (Grp78) expression was obviously reduced in rats of SEV group. TNF-α, IL-1β, and IL-6 concentrations were also significantly increased (P<0.01). MDA and NO concentrations were dramatically lower (P<0.01) and SOD concentration was significantly higher (P<0.01). Apoptosis rate, Grp78, PERK, eIF2α, and p-c-JNK/JNK expression was also significantly decreased (P<0.01). Sevoflurane significantly reduced apoptosis and expression of PERK, eIF2α, p-c-JNK/JNK by inhibiting the expression of Grp78 (P<0.01). Conclusion: Sevoflurane relieves hepatic ischemia–reperfusion injury by inhibiting the expression of Grp78.
Collapse
|
27
|
Dogné S, Flamion B, Caron N. Endothelial Glycocalyx as a Shield Against Diabetic Vascular Complications: Involvement of Hyaluronan and Hyaluronidases. Arterioscler Thromb Vasc Biol 2018; 38:1427-1439. [PMID: 29880486 PMCID: PMC6039403 DOI: 10.1161/atvbaha.118.310839] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/21/2018] [Indexed: 12/24/2022]
Abstract
The endothelial glycocalyx (EG), which covers the apical surface of the endothelial cells and floats into the lumen of the vessels, is a key player in vascular integrity and cardiovascular homeostasis. The EG is composed of PGs (proteoglycans), glycoproteins, glycolipids, and glycosaminoglycans, in particular hyaluronan (HA). HA seems to be implicated in most of the functions described for EG such as creating a space between blood and the endothelium, controlling vessel permeability, restricting leukocyte and platelet adhesion, and allowing an appropriate endothelial response to flow variation through mechanosensing. The amount of HA in the EG may be regulated by HYAL (hyaluronidase) 1, the most active somatic hyaluronidase. HYAL1 seems enriched in endothelial cells through endocytosis from the bloodstream. The role of the other main somatic hyaluronidase, HYAL2, in the EG is uncertain. Damage to the EG, accompanied by shedding of one or more of its components, is an early sign of various pathologies including diabetes mellitus. Shedding increases the blood or plasma concentration of several EG components, such as HA, heparan sulfate, and syndecan. The plasma levels of these molecules can then be used as sensitive markers of EG degradation. This has been shown in type 1 and type 2 diabetic patients. Recent experimental studies suggest that preserving the size and amount of EG HA in the face of diabetic insults could be a useful novel therapeutic strategy to slow diabetic complications. One way to achieve this goal, as suggested by a murine model of HYAL1 deficiency, may be to inhibit the function of HYAL1. The same approach may succeed in other pathological situations involving endothelial dysfunction and EG damage.
Collapse
Affiliation(s)
- Sophie Dogné
- From the Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Belgium.
| | - Bruno Flamion
- From the Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Belgium
| | - Nathalie Caron
- From the Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Belgium
| |
Collapse
|
28
|
Noel-Morgan J, Muir WW. Anesthesia-Associated Relative Hypovolemia: Mechanisms, Monitoring, and Treatment Considerations. Front Vet Sci 2018; 5:53. [PMID: 29616230 PMCID: PMC5864866 DOI: 10.3389/fvets.2018.00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/02/2018] [Indexed: 12/14/2022] Open
Abstract
Although the utility and benefits of anesthesia and analgesia are irrefutable, their practice is not void of risks. Almost all drugs that produce anesthesia endanger cardiovascular stability by producing dose-dependent impairment of cardiac function, vascular reactivity, and compensatory autoregulatory responses. Whereas anesthesia-related depression of cardiac performance and arterial vasodilation are well recognized adverse effects contributing to anesthetic risk, far less emphasis has been placed on effects impacting venous physiology and venous return. The venous circulation, containing about 65–70% of the total blood volume, is a pivotal contributor to stroke volume and cardiac output. Vasodilation, particularly venodilation, is the primary cause of relative hypovolemia produced by anesthetic drugs and is often associated with increased venous compliance, decreased venous return, and reduced response to vasoactive substances. Depending on factors such as patient status and monitoring, a state of relative hypovolemia may remain clinically undetected, with impending consequences owing to impaired oxygen delivery and tissue perfusion. Concurrent processes related to comorbidities, hypothermia, inflammation, trauma, sepsis, or other causes of hemodynamic or metabolic compromise, may further exacerbate the condition. Despite scientific and technological advances, clinical monitoring and treatment of relative hypovolemia still pose relevant challenges to the anesthesiologist. This short perspective seeks to define relative hypovolemia, describe the venous system’s role in supporting normal cardiovascular function, characterize effects of anesthetic drugs on venous physiology, and address current considerations and challenges for monitoring and treatment of relative hypovolemia, with focus on insights for future therapies.
Collapse
Affiliation(s)
- Jessica Noel-Morgan
- Center for Cardiovascular & Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - William W Muir
- QTest Labs, Columbus, OH, United States.,College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| |
Collapse
|
29
|
Cerny V, Astapenko D, Brettner F, Benes J, Hyspler R, Lehmann C, Zadak Z. Targeting the endothelial glycocalyx in acute critical illness as a challenge for clinical and laboratory medicine. Crit Rev Clin Lab Sci 2017; 54:343-357. [PMID: 28958185 DOI: 10.1080/10408363.2017.1379943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of this manuscript is to review the role of endothelial glycocalyx (EG) in the field of critical and perioperative medicine and to discuss possible future directions for investigations in this area. Under physiological conditions, EG has several well-defined functions aimed to prevent the disruption of vessel wall integrity. Under pathological conditions, the EG represent one of the earliest sites of injury during inflammation. EG structure and function distortion contribute to organ dysfunction related to sepsis, trauma, or global ischemia of any origin. Discovering new therapeutic approaches (either pharmacological or non-pharmacological) aimed to protect the EG against injury represents a promising direction in clinical medicine. Further, the currently-used common interventions in the acutely ill - fluids, blood products, nutritional support, organ-supporting techniques (e.g. continuous renal replacement therapy, extracorporeal circulation), temperature modulation and many others - should be re-evaluated during acute illness in terms of their EG "friendliness". To assess new therapies that protect the EG, or to evaluate the effect of currently-used interventions on EG integrity, a relevant marker or method to determine EG damage is needed. Such marker or method should be available to clinicians within hours, preferably in the form of a point-of-care test at the bedside. Collaborative research between clinical disciplines and laboratory medicine is warranted, and targeting the EG represents major challenges for both.
Collapse
Affiliation(s)
- Vladimir Cerny
- a Department of Anaesthesiology, Perioperative Medicine and Intensive Care , JE Purkinje University, Masaryk Hospital , Usti nad Labem , Czech Republic.,b Centrum for Research and Development, University Hospital , Hradec Kralove , Czech Republic.,c Department of Anaesthesiology and Intensive Care , Charles University, Faculty of Medicine in Hradec Kralove , Hradec Kralove , Czech Republic.,d Department of Anaesthesia, Pain Management and Perioperative Medicine , Dalhousie University , Halifax , Canada
| | - David Astapenko
- c Department of Anaesthesiology and Intensive Care , Charles University, Faculty of Medicine in Hradec Kralove , Hradec Kralove , Czech Republic
| | - Florian Brettner
- e Department of Anaesthesiology , University Hospital of Munich, Ludwig-Maximilians University , Munich , Germany
| | - Jan Benes
- f Department of Anaesthesiology and Intensive Care Medicine , Charles University, Faculty of Medicine in Plzen , Plzen , Czech Republic.,g Biomedical Centre, Charles University, Faculty of Medicine in Plzen , Plzen , Czech Republic
| | - Radomir Hyspler
- b Centrum for Research and Development, University Hospital , Hradec Kralove , Czech Republic
| | - Christian Lehmann
- d Department of Anaesthesia, Pain Management and Perioperative Medicine , Dalhousie University , Halifax , Canada.,h Department of Microbiology and Immunology , Dalhousie University , Halifax , Canada.,i Department of Pharmacology , Dalhousie University , Halifax , Canada
| | - Zdenek Zadak
- b Centrum for Research and Development, University Hospital , Hradec Kralove , Czech Republic
| |
Collapse
|
30
|
Hu C, Li L. Pre-conditions for eliminating mitochondrial dysfunction and maintaining liver function after hepatic ischaemia reperfusion. J Cell Mol Med 2017; 21:1719-1731. [PMID: 28301072 PMCID: PMC5571537 DOI: 10.1111/jcmm.13129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
The liver, the largest organ with multiple synthesis and secretion functions in mammals, consists of hepatocytes and Kupffer, stem, endothelial, stellate and other parenchymal cells. Because of early and extensive contact with the external environment, hepatic ischaemia reperfusion (IR) may result in mitochondrial dysfunction, autophagy and apoptosis of cells and tissues under various pathological conditions. Because the liver requires a high oxygen supply to maintain normal detoxification and synthesis functions, it is extremely susceptible to ischaemia and subsequent reperfusion with blood. Consequently, hepatic IR leads to acute or chronic liver failure and significantly increases the total rate of morbidity and mortality through multiple regulatory mechanisms. An increasing number of studies indicate that mitochondrial structure and function are impaired after hepatic IR, but that the health of liver tissues or liver grafts can be effectively rescued by attenuation of mitochondrial dysfunction. In this review, we mainly focus on the subsequent therapeutic interventions related to the conservation of mitochondrial function involved in mitigating hepatic IR injury and the potential mechanisms of protection. Because mitochondria are abundant in liver tissue, clarification of the regulatory mechanisms between mitochondrial dysfunction and hepatic IR should shed light on clinical therapies for alleviating hepatic IR‐induced injury.
Collapse
Affiliation(s)
- Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Wu Y, Gu C, Huang X. Sevoflurane protects against hepatic ischemia/reperfusion injury by modulating microRNA-200c regulation in mice. Biomed Pharmacother 2016; 84:1126-1136. [PMID: 27780142 DOI: 10.1016/j.biopha.2016.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/14/2016] [Accepted: 10/09/2016] [Indexed: 12/22/2022] Open
Abstract
This present study was aimed to investigate the molecular mechanisms involved in sevoflurane protection of hepatic ischemia-reperfusion (I/R) injury. Firstly, we investigated the protective effects of sevoflurane against hepatic I/R injury. Biochemical analysis results showed that sevoflurane preconditioning significantly protected against hepatic I/R injury by reducing liver enzymes and improving antioxidant defense markers. We also found that sevoflurane attenuates I/R-induced hepatic cell death, by TUNEL staining, DNA fragmentation ELISA and PARP activity determination. Next, In order to find the molecular mechanism of sevoflurane preconditioning in hepatic I/R injury, we poured our attention to microRNAs regulation. We focused on miR-200c, one of microRNAs which screened from the gene expression omnibus (GEO). Furthermore, a hydrogen peroxide (H2O2)-induced oxidative stress apoptosis model was also established to mimic hepatic I/R injury, the effects of MiR-200c was investigated. We observed that MiR-200c inhibition decreased the H2O2-induced apoptosis of hepatic AML-12 cells. And also, ZEB1 is found as a target gene of miR-200c and is involved in H2O2-induced apoptosis. On the other hand, the in vivo model was established to examine whether sevoflurane protect against hepatic IR injury by downregulating MiR-200c. Together with the biochemical tests and apoptosis detection, results showed that over-expression of miR-200c significantly inhibited the protect effect of sevoflurane in Hepatic IR injury. Summarizing, sevoflurane preconditioning seems to ameliorate hepatic I/R injury in mice, mediated by mechanisms that include microRNA 200c down regulation. However, further more studies need to be carried out to verify this point.
Collapse
Affiliation(s)
- Yamou Wu
- Department of Anesthesiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Chengyong Gu
- Department of Anesthesiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215000, China.
| | - Xiaochen Huang
- Department of Anesthesiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215000, China
| |
Collapse
|