1
|
Chung JT, Rafiei M, Chau Y. Self-adjuvanted L-arginine-modified dextran-based nanogels for sustained local antigenic protein delivery to antigen-presenting cells and enhanced cellular and humoral immune responses. Biomater Sci 2024; 12:1771-1787. [PMID: 38385306 DOI: 10.1039/d3bm01150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In the development of cancer vaccines, antigens are delivered to elicit potent and specific T-cell responses to eradicate tumour cells. Nonetheless, successful vaccines are often hampered by the poor immunogenicity of tumour antigens, rapid clearance by the innate immunity, and limited cross-presentation on MHC-I to activate CD8+ T-cells arm. To address these issues, we developed dextran-based nanogels to promote antigen uptake, storage, and cross-presentation on MHC-I, while directing immunogenic maturation of the antigen-presenting cells (APCs). To promote the nanocarriers interaction with cells, we modified DX with L-arginine (Arg), whose immunomodulatory activities have been well documented. The ArgDX nanogel performance was compared with the nanogel modified with L-histidine (His) and L-glutamate (Glut). Moreover, we introduced pH-sensitive hydrazone crosslinking during the nanogel formation for the conjugation and controlled release of antigen ovalbumin (OVA). The OVA-laden nanogels have an average size of 325 nm. We demonstrated that the nanogels could rapidly release cargoes upon a pH change from 7 to 5 within 8 days, indicating the controlled release of antigens in the acidic cellular compartments upon internalization. Our results revealed that the ArgDX nanogel could promote greater antigen uptake and storage in DCs in vitro and promoted a stronger immunogenic maturation of DCs and M1 polarization of the macrophages. The OVA signals were co-localized with lysosomal compartments up till 96 hours post-treatment and washing, suggesting the nanogels could facilitate prolonged antigen storage and supply from endo-lysosomal compartments. Furthermore, all the tested nanogel formulations retained antigens at the skin injection sites until day 21. Such delayed clearance could be due to the formation of micron-sized aggregates of OVA-laden nanogels, extending the interactions with the resident DCs. Amongst the amino acid modifications, ArgDX nanogels promoted the highest level of lymph node homing signal CCR7 on DCs. The nanogels also showed higher antigen presentation on both MHC-I and II than DX in vitro. In the in vivo immune studies, ArgDX nanogels were more superior in inducing cellular and humoral immunity than the other treatment groups on day 21 post-treatment. These results suggested that ArgDX nanogel is a promising self-adjuvanted nanocarrier for vaccine delivery.
Collapse
Affiliation(s)
- Jin Teng Chung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Mehrnoosh Rafiei
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
2
|
Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, Wang Y, Wang T, Xiang J, Wang B. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol 2023; 16:59. [PMID: 37277776 DOI: 10.1186/s13045-023-01453-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Amino acids are basic nutrients for immune cells during organ development, tissue homeostasis, and the immune response. Regarding metabolic reprogramming in the tumor microenvironment, dysregulation of amino acid consumption in immune cells is an important underlying mechanism leading to impaired anti-tumor immunity. Emerging studies have revealed that altered amino acid metabolism is tightly linked to tumor outgrowth, metastasis, and therapeutic resistance through governing the fate of various immune cells. During these processes, the concentration of free amino acids, their membrane bound transporters, key metabolic enzymes, and sensors such as mTOR and GCN2 play critical roles in controlling immune cell differentiation and function. As such, anti-cancer immune responses could be enhanced by supplement of specific essential amino acids, or targeting the metabolic enzymes or their sensors, thereby developing novel adjuvant immune therapeutic modalities. To further dissect metabolic regulation of anti-tumor immunity, this review summarizes the regulatory mechanisms governing reprogramming of amino acid metabolism and their effects on the phenotypes and functions of tumor-infiltrating immune cells to propose novel approaches that could be exploited to rewire amino acid metabolism and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Luming Yang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Zhaole Chu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Meng Liu
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qiang Zou
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jinyang Li
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yazhou Wang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China.
| | - Tao Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Junyu Xiang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
3
|
Jiang L, Guo P, Ju J, Zhu X, Wu S, Dai J. Inhalation of L-arginine-modified liposomes targeting M1 macrophages to enhance curcumin therapeutic efficacy in ALI. Eur J Pharm Biopharm 2023; 182:21-31. [PMID: 36442537 DOI: 10.1016/j.ejpb.2022.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), characterized by uncontrolled lung inflammation, is one of the most devastating diseases with high morbidity and mortality. As the first line of defense system, macrophages play a crucial role in the pathogenesis of ALI/ARDS. Therefore, it has great potential to selectively target M1 macrophages to improve the therapeutic effect of anti-inflammatory drugs. l-arginine plays a key role in regulating the immune function of macrophages. The receptors mediating l-arginine uptake are highly expressed on the surface of M1-type macrophages. In this study, we designed an l-arginine-modified liposome for aerosol inhalation to target M1 macrophages in the lung, and the anti-inflammatory drug curcumin was encapsulated in liposomes as model drug. Compared with unmodified curcumin liposome (Cur-Lip), l-arginine functionalized Cur-Lip (Arg-Cur-Lip) exhibited higher uptake by M1 macrophages in vitro and higher accumulation in inflamed lungs in vivo. Furthermore, Arg-Cur-Lip showed more potent therapeutic effects in LPS-induced RAW 264.7 cells and the rat model of ALI. Overall, these findings indicate that l-arginine-modified liposomes have great potential to enhance curcumin treatment of ALI/ARDS by targeting M1 macrophages, which may provide an option for the treatment of acute lung inflammatory diseases such as coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome and middle east respiratory syndrome.
Collapse
Affiliation(s)
- Linxia Jiang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Pengchuan Guo
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Jiarui Ju
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Xiaoyan Zhu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Shiyue Wu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Jundong Dai
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China.
| |
Collapse
|
4
|
Sato I, Yamamoto S, Kakimoto M, Fujii M, Honma K, Kumazaki S, Matsui M, Nakayama H, Kirihara S, Ran S, Usui S, Shinohata R, Kitamori K, Hirohata S, Watanabe S. Suppression of nitric oxide synthase aggravates non-alcoholic steatohepatitis and atherosclerosis in SHRSP5/Dmcr rat via acceleration of abnormal lipid metabolism. Pharmacol Rep 2022; 74:669-683. [PMID: 35819592 DOI: 10.1007/s43440-022-00380-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a progressive subtype of non-alcoholic fatty liver disease (NAFLD) that is closely related to cardiovascular disease (CVD). Nitric oxide (NO) plays a critical role in the control of various biological processes. Dysfunction of the NO signaling pathway is associated with various diseases such as atherosclerosis, vascular inflammatory disease, and diabetes. Recently, it has been reported that NO is related to lipid and cholesterol metabolism. Chronic NO synthase (NOS) inhibition accelerates NAFLD by increasing hepatic lipid deposition. However, the detailed relationship between NO and abnormal lipid and cholesterol metabolism in NAFLD/NASH has not been completely explained. We aimed to determine the effects of NOS inhibition by N omega-nitro-L-arginine methyl ester hydrochloride (L-NAME), a NOS inhibitor, on NASH and CVD via lipid and cholesterol metabolism. METHODS Stroke-prone spontaneously hypertensive rats were fed a high-fat and high-cholesterol diet for 8 weeks and administered L-NAME for the last 2 weeks. Following blood and tissue sampling, biochemical analysis, histopathological staining, quantitative RT-PCR analysis, and western blotting were performed. RESULTS L-NAME markedly increased hepatic triglyceride (TG) and cholesterol levels by promoting TG synthesis and cholesterol absorption from the diet. L-NAME increased the mRNA levels of inflammatory markers and fibrotic areas in the liver. Cholesterol secretion from the liver was promoted in rats administered L-NAME, which increased serum cholesterol. L-NAME significantly increased the level of oxidative stress marker and lipid deposition in the arteries. CONCLUSIONS NOS inhibition simultaneously aggravates NASH and atherosclerosis via hepatic lipid and cholesterol metabolism.
Collapse
Affiliation(s)
- Ikumi Sato
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shusei Yamamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
- Academic Field of Health Science, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Mai Kakimoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Moe Fujii
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Koki Honma
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shota Kumazaki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Mami Matsui
- Department of Medical Technology, Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Hinako Nakayama
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Sora Kirihara
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shang Ran
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shinichi Usui
- Department of Pathobiological Science and Technology, School of Health Science, Faculty of Medicine, Tottori University, 86, Nishi-machi, Yonago-shi, Tottori, 683-8503, Japan
| | - Ryoko Shinohata
- Academic Field of Health Science, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Kazuya Kitamori
- Collage of Human Life and Environment, Kinjo Gakuin University, 2-1723, Omori, Moriyama-ku, Nagoya-shi, Aichi, 463-8521, Japan
| | - Satoshi Hirohata
- Academic Field of Health Science, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shogo Watanabe
- Academic Field of Health Science, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
| |
Collapse
|
5
|
Dong L, Peng Z, Liu J, Li H, Wang T, Wang S, Wang H, Huo Y, Yu L. Extra arginine supplementation during the suckling period alleviates weaning stress through the regulation of dendritic cells and Notch2 signaling in piglets. Food Funct 2022; 13:8652-8661. [PMID: 35899814 DOI: 10.1039/d1fo03720j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aims to study the effects of extra arginine (Arg) supplementation during the suckling period on the weaning stress and intestinal barrier function of breastfed piglets. Forty 7-day-old breastfed piglets divided into the control group (CON) and Arg group (Arg) were fed with extra saline or Arg (250 mg per kg per d body weight), respectively. All piglets were weaned when they were 21 days old. Eight piglets from each group were sacrificed before weaning and on the 3rd-day after weaning, respectively. The results showed that Arg improved the average daily weight gain of piglets before weaning (P < 0.01) and decreased the average daily weight loss after weaning (P < 0.05). Weaning decreased the ratio of the villus length versus crypt depth (V/C) in the SI (P < 0.001), while Arg increased the V/C of the jejunum (P < 0.05). Arg increased the levels of immunoglobulins in the serum and SI (P < 0.05), decreased pro-inflammatory cytokines and increased anti-inflammatory cytokines in the SI (P < 0.05). In addition, Arg supplementation increased the numbers of SWC3a+CD40+ (P < 0.01) and SWC3a+SLAII+ DCs (P < 0.05), down-regulated Notch2 expression and up-regulated Jagged1 expression in the ilea of weaning piglets (P < 0.05). In conclusion, Arg supplementation during the suckling period decreased the LDH leakage in the SI, improved the intestinal morphology, down-regulated the contents of pro-inflammatory cytokines, accelerated the accumulation of DC precursors before weaning and increased the number of mature DCs after weaning, and thus improved the growth performance and reduced the weaning stress of piglets, and this might be associated with the regulation of Notch2 signaling.
Collapse
Affiliation(s)
- Li Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Zhong Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Jun Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Hongmin Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Tianlong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Shunan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Hongrong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Yongjiu Huo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Lihuai Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| |
Collapse
|
6
|
The diverse roles of myeloid derived suppressor cells in mucosal immunity. Cell Immunol 2021; 365:104361. [PMID: 33984533 DOI: 10.1016/j.cellimm.2021.104361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The mucosal immune system plays a vital role in protecting the host from the external environment. Its major challenge is to balance immune responses against harmful and harmless agents and serve as a 'homeostatic gate keeper'. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of undifferentiated cells that are characterized by an immunoregulatory and immunosuppressive phenotype. Herein we postulate that MDSCs may be involved in shaping immune responses related to mucosal immunity, due to their immunomodulatory and tissue remodeling functions. Until recently, MDSCs were investigated mainly in cancerous diseases, where they induce and contribute to an immunosuppressive and inflammatory environment that favors tumor development. However, it is now becoming clear that MDSCs participate in non-cancerous conditions such as chronic infections, autoimmune diseases, pregnancy, aging processes and immune tolerance to commensal microbiota at mucosal sites. Since MDSCs are found in the periphery only in small numbers under normal conditions, their role is highlighted during pathologies characterized by acute or chronic inflammation, when they accumulate and become activated. In this review, we describe several aspects of the current knowledge characterizing MDSCs and their involvement in the regulation of the mucosal epithelial barrier, their crosstalk with commensal microbiota and pathogenic microorganisms, and their complex interactions with a variety of surrounding regulatory and effector immune cells. Finally, we discuss the beneficial and harmful outcomes of the MDSC regulatory functions in diseases affecting mucosal tissues. We wish to illuminate the pivotal role of MDSCs in mucosal immunity, the limitations in our understanding of all the players and the intricate challenges stemming from the complex interactions of MDSCs with their environment.
Collapse
|
7
|
Palmieri EM, McGinity C, Wink DA, McVicar DW. Nitric Oxide in Macrophage Immunometabolism: Hiding in Plain Sight. Metabolites 2020; 10:metabo10110429. [PMID: 33114647 PMCID: PMC7693038 DOI: 10.3390/metabo10110429] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric Oxide (NO) is a soluble endogenous gas with various biological functions like signaling, and working as an effector molecule or metabolic regulator. In response to inflammatory signals, immune myeloid cells, like macrophages, increase production of cytokines and NO, which is important for pathogen killing. Under these proinflammatory circumstances, called “M1”, macrophages undergo a series of metabolic changes including rewiring of their tricarboxylic acid (TCA) cycle. Here, we review findings indicating that NO, through its interaction with heme and non-heme metal containing proteins, together with components of the electron transport chain, functions not only as a regulator of cell respiration, but also a modulator of intracellular cell metabolism. Moreover, diverse effects of NO and NO-derived reactive nitrogen species (RNS) involve precise interactions with different targets depending on concentration, temporal, and spatial restrictions. Although the role of NO in macrophage reprogramming has been in evidence for some time, current models have largely minimized its importance. It has, therefore, been hiding in plain sight. A review of the chemical properties of NO, past biochemical studies, and recent publications, necessitates that mechanisms of macrophage TCA reprogramming during stimulation must be re-imagined and re-interpreted as mechanistic results of NO exposure. The revised model of metabolic rewiring we describe here incorporates many early findings regarding NO biochemistry and brings NO out of hiding and to the forefront of macrophages immunometabolism.
Collapse
|
8
|
Khoshnejad M, Perales-Puchalt A, Dia Y, Xiao P, Patel A, Xu Z, Zhu X, Yun K, Baboo I, Qureshi R, Humeau L, Muthumani K, Weiner DB. Synthetic DNA Delivery of an Engineered Arginase Enzyme Can Modulate Specific Immunity In Vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:652-663. [PMID: 32802913 PMCID: PMC7406982 DOI: 10.1016/j.omtm.2020.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022]
Abstract
Arginase is a complex and unique enzyme that plays diverse roles in health and disease. By metabolizing arginine, it can shape the outcome of innate and adaptive immune responses. The immunomodulatory capabilities of arginase could potentially be applied for local immunosuppression or induction of immune tolerance. With the use of an enhanced DNA delivery approach, we designed and studied a DNA-encoded secretable arginase enzyme as a tool for immune modulation and evaluated its immunomodulatory function in vivo. Strong immunosuppression of cluster of differentiation 4 (CD4) and CD8 T cells, as well as macrophages and dendritic cells, was observed in vitro in the presence of an arginase-rich supernatant. To further evaluate the efficacy of DNA-encoded arginase on in vivo immunosuppression against an antigen, a cancer antigen vaccine model was used in the presence or absence of DNA-encoded arginase. Significant in vivo immunosuppression was observed in the presence of DNA-encoded arginase. The efficacy of this DNA-encoded arginase delivery was examined in a local, imiquimod-induced, psoriasis-like, skin-inflammation model. Pretreatment of animals with the synthetic DNA-encoded arginase led to significant decreases in skin acanthosis, proinflammatory cytokines, and costimulatory molecules in extracted macrophages and dendritic cells. These results draw attention to the potential of direct in vivo-delivered arginase to function as an immunomodulatory agent for treatment of local inflammation or autoimmune diseases.
Collapse
Affiliation(s)
- Makan Khoshnejad
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Alfredo Perales-Puchalt
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Yaya Dia
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Peng Xiao
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xizhou Zhu
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Kun Yun
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Ishana Baboo
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Rehman Qureshi
- Center for Systems and Computational Biology, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - Kar Muthumani
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Darling R, Senapati S, Christiansen J, Liu L, Ramer-Tait AE, Narasimhan B, Wannemuehler M. Polyanhydride Nanoparticles Induce Low Inflammatory Dendritic Cell Activation Resulting in CD8 + T Cell Memory and Delayed Tumor Progression. Int J Nanomedicine 2020; 15:6579-6592. [PMID: 32982219 PMCID: PMC7490050 DOI: 10.2147/ijn.s261041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Adjuvants and immunotherapies designed to activate adaptive immunity to eliminate infectious disease and tumors have become an area of interest aimed at providing a safe and effective strategy to prevent or eliminate disease. Existing approaches would benefit from the development of immunization regimens capable of inducing efficacious cell-mediated immunity directed toward CD8+ T cell-specific antigens. This goal is critically dependent upon appropriate activation of antigen-presenting cells (APCs) most notably dendritic cells (DCs). In this regard, polyanhydride particles have been shown to be effectively internalized by APCs and induce activation. Methods Here, a prophylactic vaccine regimen designed as a single-dose polyanhydride nanovaccine encapsulating antigen is evaluated for the induction of CD8+ T cell memory in a model system where antigen-specific protection is restricted to CD8+ T cells. Bone marrow-derived dendritic cells (BMDCs) are used as an in vitro model system to evaluate the magnitude and phenotype of APC activation. Primary DCs, particularly those with described ability to activate CD8+ T cells, are also evaluated for their in vitro responses to polyanhydride nanoparticles. Results Herein, polyanhydride nanoparticles are shown to induce potent in vitro upregulation of costimulatory molecules on the cell surface of BMDCs. In contrast to the classically used TLR agonists, nanoparticles did not induce large amounts of pro-inflammatory cytokines, did not induce characteristic metabolic response of DCs, nor produce innate antimicrobial effector molecules, such as nitric oxide (NO). The polyanhydride nanovaccine results in protective CD8+ T cell responses as measured by inhibition of tumor progression and survival. Discussion Together, these results suggest that the use of a polyanhydride-based nanovaccine can be an effective approach to inducing antigen-specific CD8+ T cell memory by providing antigen delivery and DC activation while avoiding overt inflammatory responses typically associated with traditional adjuvants.
Collapse
Affiliation(s)
- Ross Darling
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Sujata Senapati
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - John Christiansen
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Michael Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, USA
| |
Collapse
|
10
|
Mangal JL, Inamdar S, Yang Y, Dutta S, Wankhede M, Shi X, Gu H, Green M, Rege K, Curtis M, Acharya AP. Metabolite releasing polymers control dendritic cell function by modulating their energy metabolism. J Mater Chem B 2020; 8:5195-5203. [PMID: 32427266 PMCID: PMC8294829 DOI: 10.1039/d0tb00790k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolites control immune cell functions, and delivery of these metabolites in a sustained manner may be able to modulate function of the immune cells. In this study, alpha-ketoglutarate (aKG) and diol based polymeric-microparticles (termed paKG MPs) were synthesized to provide sustained release of aKG and promote an immunosuppressive cellular phenotype. Notably, after association with dendritic cells (DCs), paKG MPs modulated the intracellular metabolic-profile/pathways, and decreased glycolysis and mitochondrial respiration in vitro. These metabolic changes resulted in modulation of MHC-II, CD86 expression in DCs, and altered the frequency of regulatory T cells (Tregs), and T-helper type-1/2/17 cells in vitro. This unique strategy of intracellular delivery of key-metabolites in a sustained manner provides a new direction in immunometabolism field-based immunotherapy with potential applications in different diseases associated with immune disorders.
Collapse
Affiliation(s)
- Joslyn L Mangal
- Biological Design Graduate Program, School for Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA.
| | - Sahil Inamdar
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Yi Yang
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Subhadeep Dutta
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Mamta Wankhede
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Xiaojian Shi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85281, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85281, USA
| | - Matthew Green
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Kaushal Rege
- Biological Design Graduate Program, School for Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA. and Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA and School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Marion Curtis
- Mayo Clinic, Department of Immunology, Scottsdale, AZ 85259, USA
| | - Abhinav P Acharya
- Biological Design Graduate Program, School for Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA. and Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
11
|
Stojić-Vukanić Z, Pilipović I, Bufan B, Stojanović M, Leposavić G. Age and sex determine CD4+ T cell stimulatory and polarizing capacity of rat splenic dendritic cells. Biogerontology 2019; 21:83-107. [PMID: 31646402 DOI: 10.1007/s10522-019-09845-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
The study investigated influence of sex and age on splenic myeloid dendritic cells (DCs) from Dark Agouti rats. Freshly isolated DCs from young males exhibited less mature phenotype and greater endocytic capacity compared with those from age-matched females. Upon LPS stimulation in vitro they were less potent in stimulating allogeneic CD4+ cells in mixed leukocyte reaction (MLR), due to lower expression of MHC II, and greater NO and IL-10 production. In accordance with higher TGF-β production, young male rat DCs were less potent in stimulating IL-17 production in MLR than those from young females. Irrespective of sex, endocytic capacity and responsiveness of DCs to LPS stimulation in culture, judging by their allostimulatory capacity in MLR decreased with age, reflecting decline in MHC II surface density followed by their greater NO production; the effects more prominent in females. Additionally, compared with LPS-stimulated DCs from young rats, those from sex-matched aged rats were more potent in stimulating IL-10 production in MLR, whereas capacity of DCs from aged female and male rats to stimulate IL-17 production remained unaltered and decreased, respectively. This reflected age-related shift in IL-6/TGF-β production level ratio in LPS-stimulated DC cultures towards TGF-β, and sex-specific age-related remodeling CD4+ cell cytokine pathways. Additionally, compared with LPS-stimulated DCs from young rats, those cells from sex-matched aged rats were less potent in stimulating IFN-γ production in MLR, the effect particularly prominent in MLRs encompassing male rat DCs. The study showed that stimulatory and polarizing capacity of DCs depends on rat sex and age.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia.
| |
Collapse
|
12
|
Darling RJ, Senapati S, Kelly SM, Kohut ML, Narasimhan B, Wannemuehler MJ. STING pathway stimulation results in a differentially activated innate immune phenotype associated with low nitric oxide and enhanced antibody titers in young and aged mice. Vaccine 2019; 37:2721-2730. [PMID: 30987850 PMCID: PMC6499688 DOI: 10.1016/j.vaccine.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND One of the most concerning public health issues, related to vaccination and disease prevention, is the inability to induce durable immune responses following a single-dose immunization. In this regard, the nature of the inflammatory environment induced by vaccine adjuvants can negatively impact the resulting immune response. To address these concerns, new strategies to vaccine design are needed in order to improve the outcomes of immune responses, particularly in immunologically disadvantaged populations. METHODS Comparisons of the scope of innate immune activation induced by TLR agonists versus cyclic dinucleotides (CDNs) was performed. Their effects on the activation characteristics (e.g., metabolism, cytokine secretion) of bone marrow derived dendritic cells (BMDCs) were studied. In addition, the differential effects on in vivo induction of antibody responses were measured. RESULTS As compared to TLR ligands, the stimulation of BMDCs with CDNs induced distinctly different metabolic outcomes. Marked differences were observed in the production of nitric oxide (NO) and the cytokine BAFF. These distinct differences were correlated with improved (i.e., more rapid and persistent) vaccine antibody responses in both aged and young mice. CONCLUSIONS Our results illustrate that the innate immune pathway targeted by adjuvants can critically impact the outcome of the immune response post-vaccination. Specifically, CDN stimulation of APCs induced an activation phenotype that was characterized by decreased innate effector molecule production (e.g., NO) and increased BAFF. This was attributed to the induction of an innate inflammatory environment that enabled the host to make the most of the existing B lymphocyte potential. The use of adjuvants that differentially engage mechanisms of innate immune activation would be particularly advantageous for the generation of robust, single dose vaccines. The results of this study demonstrated that CDNs induced differential innate activation and enhanced vaccine induced antibody responses in both young and aged mice.
Collapse
Affiliation(s)
- Ross J Darling
- Iowa State University, Department of Veterinary Microbiology and Preventative Medicine, United States
| | - Sujata Senapati
- Iowa State University, Department of Chemical and Biological Engineering, United States
| | - Sean M Kelly
- Iowa State University, Department of Chemical and Biological Engineering, United States
| | - Marian L Kohut
- Iowa State University, Department of Kinesiology, United States; Nanovaccine Institute, Iowa State University, United States
| | - Balaji Narasimhan
- Iowa State University, Department of Chemical and Biological Engineering, United States; Nanovaccine Institute, Iowa State University, United States
| | - Michael J Wannemuehler
- Iowa State University, Department of Veterinary Microbiology and Preventative Medicine, United States; Nanovaccine Institute, Iowa State University, United States.
| |
Collapse
|
13
|
Paiatto LN, Silva FGD, Yamada ÁT, Tamashiro WMSC, Simioni PU. Adoptive transfer of dendritic cells expressing CD11c reduces the immunological response associated with experimental colitis in BALB/c mice. PLoS One 2018; 13:e0196994. [PMID: 29738575 PMCID: PMC5940207 DOI: 10.1371/journal.pone.0196994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 04/24/2018] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION In addition to conventional therapies, several new strategies have been proposed for modulating autoimmune diseases, including the adoptive transfer of immunological cells. In this context, dendritic cells (DCs) appear to be one of the most promising treatments for autoimmune disorders. The present study aimed to evaluate the effects of adoptive transfer of DCs obtained from both naïve and ovalbumin (OVA)-tolerant mice on the severity of TNBS induced colitis and analyze the eventual protective mechanisms. METHODS AND RESULTS To induce oral tolerance, BALB/c mice were fed 4mg/mL OVA solution for seven consecutive days. Spleen DCs were isolated from tolerant (tDC) and naïve (nDC) mice, and then adoptively transferred to syngeneic mice. Three days later, colitis was induced in DC treated mice by intrarectal instillation of 100μg2,4,6-trinitrobenzenesulfonic acid (TNBS) dissolved in 50% ethanol. Control subjects received only intrarectal instillation of either TNBS solution or a vehicle. Five days later, mice from all groups were euthanized and examined for physiological and immunological parameters. Regarding the phenotype, we observed that the frequencies of CD11+ MHC II+ and CD11+ MHCII+ CD86+ cells were significantly lower in DCs isolated from tolerant mice than in those from naive mice. However, pretreatment with both types of DCs was able to significantly reduce clinical signs of colitis such as diarrhea, rectal prolapse, bleeding, and cachexia, although only treatment with tDCs was able to prevent weight loss from instillation of TNBS. In vitro proliferation of spleen cells from mice treated with either type of DCs was significantly lower than that observed in splenic cell cultures of naïve mice. Although no significant difference was observed in the frequencies of Treg cells in the experimental groups, the frequency of Th17+CD4+cellsand the secretion of IL-17 were more reduced in the cultures of spleen cells from mice treated with either type of DCs. The levels of IL-9 and IFN-γ were lower in supernatants of cells from mice treated with nDCs. CONCLUSION The results allow us to conclude that the adoptive transfer of cells expressing CD11c is able to reduce the clinical and immunological signs of drug-induced colitis. Adoptive transfer of CD11c+DC isolated from both naive and tolerant mice altered the proliferative and T cell responses. To the best of our knowledge, there is no previously published data showing the protective effects of DCs from naïve or tolerant mice in the treatment of colitis.
Collapse
Affiliation(s)
- Lisiery N. Paiatto
- Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Fernanda G. D. Silva
- Faculty of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
- Department of Food, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Áureo T. Yamada
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Wirla M. S. C. Tamashiro
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Patricia U. Simioni
- Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
- Department of Biomedical Science, Faculty of Americana, FAM, Americana, São Paulo, Brazil
| |
Collapse
|
14
|
Thwe PM, Amiel E. The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Lett 2017; 412:236-242. [PMID: 29107106 DOI: 10.1016/j.canlet.2017.10.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/30/2017] [Accepted: 10/22/2017] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) are canonical antigen presenting cells of the immune system and serve as a bridge between innate and adaptive immune responses. When DCs are activated by a stimulus through toll-like receptors (TLRs), DCs undergo a process of maturation defined by cytokine & chemokine secretion, co-stimulatory molecule expression, antigen processing and presentation, and the ability to activate T cells. DC maturation is coupled with an increase in biosynthetic demand, which is fulfilled by a TLR-driven upregulation in glycolytic metabolism. Up-regulation of glycolysis in activated DCs provides these cells with molecular building blocks and cellular energy required for DC activation, and inhibition of glycolysis during initial activation impairs both the survival and effector function of activated DCs. Evidence shows that DC glycolytic upregulation is controlled by two distinct pathways, an early burst of glycolysis that is nitric oxide (NO) -independent, and a sustained commitment to glycolysis in NO-producing DC subsets. This review will address the complex role of NO in regulating DC metabolism and effector function.
Collapse
Affiliation(s)
- Phyu M Thwe
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA; Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Eyal Amiel
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA; Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
15
|
Immunometabolism, pregnancy, and nutrition. Semin Immunopathol 2017; 40:157-174. [PMID: 29071391 DOI: 10.1007/s00281-017-0660-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Abstract
The emerging field of immunometabolism has substantially progressed over the last years and provided pivotal insights into distinct metabolic regulators and reprogramming pathways of immune cell populations in various immunological settings. However, insights into immunometabolic reprogramming in the context of reproduction are still enigmatic. During pregnancy, the maternal immune system needs to actively adapt to the presence of the fetal antigens, i.e., by functional modifications of distinct innate immune cell subsets, the generation of regulatory T cells, and the suppression of an anti-fetal effector T cell response. Considering that metabolic pathways have been shown to affect the functional role of such immune cells in a number of settings, we here review the potential role of immunometabolism with regard to the molecular and cellular mechanisms necessary for successful reproduction. Since immunometabolism holds the potential for a therapeutic approach to alter the course of immune diseases, we further highlight how a targeted metabolic reprogramming of immune cells may be triggered by maternal anthropometric or nutritional aspects.
Collapse
|
16
|
Eleftheriadis T, Pissas G, Mavropoulos A, Liakopoulos V, Stefanidis I. Comparison of the effect of the aerobic glycolysis inhibitor dichloroacetate and of the Krebs cycle inhibitor LW6 on cellular and humoral alloimmunity. Biomed Rep 2017; 7:439-444. [PMID: 29181155 DOI: 10.3892/br.2017.980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
Cell metabolism is altered during T-cell and B-cell activation and differentiation. Clarifying the exact metabolic shifts may lead to the development of new immunosuppressive medications. In this study, the effect of the aerobic glycolysis inhibitor dichloroacetate (DCA) and of the Krebs cycle enzyme malate dehydrogenase 2 (MDH2) inhibitor LW6 on T-cell alloimmune clonal expansion and on alloantibody production, was evaluated. T-cell clonal expansion was assessed in two-way mixed lymphocyte reaction (MLR). Humoral alloimmunity was evaluated by the alloantibody production in one-way MLR. For this purpose, an antibody-mediated complement-dependent cytotoxicity assay was developed in which the supernatants from one-way MLRs were used against resting peripheral blood mononuclear cells (PBMCs) derived from the same individual that contributed the stimulator cells for the respective MLR. DCA had a minimum effect on alloimmune T-cell clonal expansion, whereas it increased humoral immunity significantly. LW6 decreased both alloimmune T-cell proliferation and alloantibody production. The results indicate that MDH2 may be a perfect target for the development of new immunosuppressive medications, especially when inhibition of both cellular and humoral alloimmunity is desirable.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|