1
|
Almeida JLD, Dumouchel J, Santos JJDN, Dulac Y, Cabral AR, Héroux M. Construction, monitoring, and efficiency of a biofilter treating a high flow, lean, landfill gas. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:455-464. [PMID: 39423711 DOI: 10.1016/j.wasman.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The City of Montreal has committed to achieve carbon neutrality by 2050. To meet this commitment, the city has adopted the Climate Plan 2020-2030, which includes the treatment of landfill gas (LFG). Within this framework, this research aimed to investigate the efficiency of a biofilter designed to treat high volumes of low-concentration LFG collected from lateral trenches at the Complexe Environnemental de Saint-Michel (CESM) in Montreal. The methane oxidation layer (MOL) of this biofilter, employed a material composed of 50% compost and 50% wood chips. Over a 54-week monitoring period, the system effectively maintained temperature conditions favorable to bacterial activity and methane oxidation. To assess the accuracy of predicting the hydraulic behavior of a methane oxidation biosystem (MOB) using numerical modeling, the biofilter was designed and constructed with specific features. In particular, the pore voids at the interface between the MOL and the gas distribution layer (GDL) were intentionally blocked along the downstream quarter of the biofilter length. This design ensures that water reaches the occlusion point due to the capillary barrier effect. Moisture content values remained within the expected range for most of the monitoring phase but increased with time. Despite this issue, the biofilter achieved an average efficiency higher than 95%. The findings underscore the capability of biosystems to manage substantial volumes of lean LFG, but also highlight the importance of acclimatizing the compost before exposure to maximum landfill load.
Collapse
Affiliation(s)
| | - Joelle Dumouchel
- Université de Sherbrooke, 2500 Boul. de l'Université Sherbrooke, Québec J1K2R1, Canada.
| | | | - Yohan Dulac
- Université de Sherbrooke, 2500 Boul. de l'Université Sherbrooke, Québec J1K2R1, Canada.
| | - Alexandre R Cabral
- Université de Sherbrooke, 2500 Boul. de l'Université Sherbrooke, Québec J1K2R1, Canada.
| | - Martin Héroux
- Université de Sherbrooke, 2500 Boul. de l'Université Sherbrooke, Québec J1K2R1, Canada; Previously with the City of Montréal, 2235 Rue Michel-Jurdant, Montréal, Québec H1Z 4N1, Canada.
| |
Collapse
|
2
|
Brilli L, Toscano P, Carotenuto F, Di Lonardo S, Di Tommasi P, Magliulo V, Manco A, Vitale L, Zaldei A, Gioli B. Long-term investigation of methane and carbon dioxide emissions in two Italian landfills. Heliyon 2024; 10:e29356. [PMID: 38644898 PMCID: PMC11033122 DOI: 10.1016/j.heliyon.2024.e29356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Landfills play a key role as greenhouse gas (GHGs) emitters, and urgently need assessment and management plans development to swiftly reduce their climate impact. In this context, accurate emission measurements from landfills under different climate and management would reduce the uncertainty in emission accounting. In this study, more than one year of long-term high-frequency data of CO2 and CH4 fluxes were collected in two Italian landfills (Giugliano and Case Passerini) with contrasting management (gas recovery VS no management) using eddy covariance (EC), with the aim to i) investigate the relation between climate drivers and CO2 and CH4 fluxes at different time intervals and ii) to assess the overall GHG balances including the biogas extraction and energy recovery components. Results indicated a higher net atmospheric CO2 source (5.7 ± 5.3 g m2 d-1) at Giugliano compared to Case Passerini (2.4 ± 4.9 g m2 d-1) as well as one order of magnitude higher atmospheric CH4 fluxes (6.0 ± 5.7 g m2 d-1 and 0.7 ± 0.6 g m2 d-1 respectively). Statistical analysis highlighted that fluxes were mainly driven by thermal variables, followed by water availability, with their relative importance changing according to the time-interval considered. The rate of change in barometric pressure (dP/dt) influenced CH4 patterns and magnitude in the classes ranging from -1.25 to +1.25 Pa h-1, with reduction when dP/dt > 0 and increase when dP/dt < 0, whilst a clear pattern was not observed when all dP/dt classes were analyzed. When including management, the total atmospheric GHG balance computed for the two landfills of Giugliano and Case Passerini was 174 g m2 d-1 and 79 g m2 d-1 respectively, of which 168 g m2 d-1 and 20 g m2 d-1 constituted by CH4 fluxes.
Collapse
Affiliation(s)
- L. Brilli
- National Research Council of Italy, Institute of BioEconomy (CNR-IBE), Firenze, 50145, Italy
| | - P. Toscano
- National Research Council of Italy, Institute of BioEconomy (CNR-IBE), Firenze, 50145, Italy
| | - F. Carotenuto
- National Research Council of Italy, Institute of BioEconomy (CNR-IBE), Firenze, 50145, Italy
| | - S. Di Lonardo
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems (CNR-IRET), Sesto Fiorentino, 50019, Florence, Italy
| | - P. Di Tommasi
- National Research Council of Italy, Institute for Agricultural and Forest Systems in the Mediterranean (CNR-ISAFOM), Ercolano, 80056, Naples, Italy
| | - V. Magliulo
- National Research Council of Italy, Institute for Agricultural and Forest Systems in the Mediterranean (CNR-ISAFOM), Ercolano, 80056, Naples, Italy
| | - A. Manco
- National Research Council of Italy, Institute for Agricultural and Forest Systems in the Mediterranean (CNR-ISAFOM), Ercolano, 80056, Naples, Italy
| | - L. Vitale
- National Research Council of Italy, Institute for Agricultural and Forest Systems in the Mediterranean (CNR-ISAFOM), Ercolano, 80056, Naples, Italy
| | - A. Zaldei
- National Research Council of Italy, Institute of BioEconomy (CNR-IBE), Firenze, 50145, Italy
| | - B. Gioli
- National Research Council of Italy, Institute of BioEconomy (CNR-IBE), Firenze, 50145, Italy
| |
Collapse
|
3
|
Xie H, Gu X, Yan H, Bouazza A, Zuo X, Peng Y. Field investigation of temporal variation and diffusion of hydrogen sulfide on waste working face and intermediate landfill cover. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:11-22. [PMID: 37384970 DOI: 10.1016/j.wasman.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
This paper presents the study on the variation, influencing factors and diffusion regularity of hydrogen sulfide (H2S) concentration and surface flux on the working face and intermediate geomembrane cover of a landfill. Field investigations were conducted using static chambers at a large-scale municipal solid waste landfill in Hangzhou, China, from January 2019 to June 2021. The analytical models of H2S transport in the working face and intermediate cover were developed to investigate the surface flux under various conditions. The CALPUFF model was used to demonstrate the diffusion path. The H2S surface flux on the working face ranged from 7.1 × 10-3 to 1.7 mg/m2/h, whereas the range was found to be 1.5 × 10-4 to 0.9 mg/m2/h on the intermediate geomembrane cover. This observation indicated that the geomembrane can reduce H2S emissions. In addition, the H2S surface fluxes at the HDPE GMB seams and near the gas collecting wells were generally 1-2 orders of magnitude larger than that in the intact GMB. The analytical model estimates that the intact GMB exhibits a diffusion coefficient of H2S ranging from 2.7 × 10-11 to 2.2 × 10-10 m2/s. However, the diffusion coefficient increases significantly to a range of 3.3 × 10-11-9.8 × 10-7 m2/s on the GMB seams. According to CALPUFF results, only the H2S diffusion from the working face had areas exceeding the standard concentration.
Collapse
Affiliation(s)
- Haijian Xie
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hangzhou 310007, China
| | - Xiting Gu
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hangzhou 310007, China
| | - Huaxiang Yan
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Abdelmalek Bouazza
- Department of Civil Engineering, 23 College Walk, Monash University, Vic. 3800, Australia
| | - Xinru Zuo
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hangzhou 310007, China
| | - Yingfei Peng
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hangzhou 310007, China
| |
Collapse
|
4
|
Mousavi MS, Eun J. Effect of increased temperature and leachate recirculation on biogas production and settlement of municipal solid waste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1026-1035. [PMID: 36564864 DOI: 10.1177/0734242x221144563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This study evaluated the effects of increased temperature and leachate recirculation on volatile solids (VS), biogas, hydrogen sulphide (H2S) leachate quality (pH and chemical oxygen demand) and the settlement of municipal solid waste (MSW). Three large-scale tests were conducted with no leachate recirculation at 21°C, weekly leachate recirculation at 20°C and weekly leachate recirculation at 50°C. Leachate recirculation and increased temperature accelerated biodegradation and pushed forward the onset time (from 27 to 8 days). The increase of biodegradation activity was reflected in the change of biogas production, VS and settlement. Compressibility index Cc, increased from 0.71 and 0.77 at 21°C to 0.83 when the temperature was 50°C. In addition, leachate recirculation and high temperature reduced H2S concentration levels by inhibiting the growth of sulphate-reducing bacteria and leachate recirculation lowered H2S production by dissolving the high H2S presence. The results showed that MSW can have significantly changed mechanical and biochemical behaviour under different temperatures and saturations. The results help understand the processes in landfills for more effective short-term and long-term design and management.
Collapse
Affiliation(s)
- M Sina Mousavi
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Jongwan Eun
- Department of Civil and Environmental Engineering, College of Engineering, University of Nebraska-Lincoln, Omaha, NE, USA
| |
Collapse
|
5
|
Herath PL, Jayawardana DT, Bandara NJGJ. Surface emission determination of selected trace gases from an active municipal solid waste dumpsite under the surface physicochemical heterogeneity. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 160:51-58. [PMID: 36787656 DOI: 10.1016/j.wasman.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Karadiyana municipal solid waste (MSW) dumpsite in Colombo, Sri Lanka, has been in operation for over 30 years and was evaluated for its surface Volatile Organic Compounds (VOCs), Ammonia (NH3), and Hydrogen sulfide (H2S) emissions. Based on the surface conditions and waste characters, the dump surface was divided into eight cells, and multiple samplings were done using static flux chamber methods. The study observed that the average flux rates of VOCs, H2S, and NH3 were 137.2 ± 243.8, 6.63 ± 15.9, and 14.2 ± 16.2 mg m-2h-1 throughout the dump site. The highest average VOCs and H2S flux rates (828.6, 24.3 mg m-2h-1) were reported from new organic waste with a considerable fraction (62.5, 35.6 %) from the total emission (61.0, 3.1 Kg d-1). Leachate-flowing trenches produced the highest NH3 flux rate (36.0 mg m-2h-1), while the highest emission fraction (47.5 %) from the total (12.0 Kg d-1) was reported on old mixed waste with vegetation. The moisture content of the organic waste layers is positively correlated with these trace gas flux rates, and the NH3 flux rates depend on the pH of the surface. Results showed that the age of the waste determines the trace gas emission rate, and leachate provides an ideal pathway for landfill trace gas migration to the atmosphere. Gas collection and purification systems are essential for the initial waste dumping area and leachate treatment system. The arrangement of a proper drainage system on the dump would reduce trace gas emissions.
Collapse
Affiliation(s)
- P L Herath
- Department of Forestry and Environmental Science, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka; Centre for Forestry and Environment, Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.
| | - D T Jayawardana
- Department of Forestry and Environmental Science, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka; Centre for Forestry and Environment, Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.
| | - N J G J Bandara
- Department of Forestry and Environmental Science, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka; Centre for Forestry and Environment, Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.
| |
Collapse
|
6
|
Kissas K, Kjeldsen P, Ibrom A, Scheutz C. The effect of barometric pressure changes on the performance of a passive biocover system, Skellingsted landfill, Denmark. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 156:216-226. [PMID: 36493665 DOI: 10.1016/j.wasman.2022.11.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the performance of a passive biocover system at a Danish landfill. The overall methane oxidation efficiency of the system was assessed by comparing annual whole-site methane emissions before and after biocover installation. Annual whole-site methane emission predictions were calculated based on empirical models developed by a discrete number of tracer gas dispersion measurements. Moreover, a series of field campaigns and continuous flux measurements was carried out to evaluate the functionality of an individual biowindow. The results indicated that biocover system performance highly depended on barometric pressure variations. Under decreasing barometric pressure, estimated efficiency declined to 20%, while under increasing barometric pressure, nearly 100% oxidation was achieved. In-situ measurements on a specific biowindow showed a similar oxidation efficiency pattern in respect to barometric pressure changes despite the difference in spatial representation. Eddy covariance results revealed pronounced seasonal variability in the investigated biowindow, measuring higher methane fluxes during the cold period compared to the warm period. Results from the in-situ campaigns confirmed this finding, reporting a threefold increase in the biowindow's methane oxidation capacity from April to May. The annual average oxidation efficiency of the system was estimated to range between 51% and 65%, taking into consideration the impact of changes in barometric pressure and seasonal variability. This indicated an annual reduction in landfill's methane emissions between 24 and 35 tonnes. This study revealed the challenge facing current approaches in documenting accurately the performance of a passive biocover system, due to the short-term variability of oxidation efficiency, which is influenced by barometric pressure changes.
Collapse
Affiliation(s)
- K Kissas
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - P Kjeldsen
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - A Ibrom
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - C Scheutz
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Delgado M, López A, Esteban-García AL, Lobo A. The importance of particularising the model to estimate landfill GHG emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116600. [PMID: 36326528 DOI: 10.1016/j.jenvman.2022.116600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Methane generation in landfills can be estimated using mathematical models. One of the most widespread estimation models is that developed by the Intergovernmental Panel on Climate Change (IPCC). Despite its popularity, the simplicity that characterises this model markedly limits the possibility of representing operation alternatives, which can strongly impact surface emissions and hinder the introduction of local data that are sometimes available. In this study, the IPCC model was applied to a case study from which field data on gas emissions were available. To fit the model to the studied landfill conditions, a series of modifications were made, including changes in Degradable Organic Carbon (DOC) and methane generation rate constant (k) values, and degradation times for some waste fractions, and by considering leachate carbon and the inclusion of gas lateral migration phenomena or changes in the methane oxidation factor. The model's Final Version improved the fit of its Initial Version to the experimentally estimated values in the case study by more than 65%. Some modifications, such as considering the carbon dragged by leachate or the contour migration of gas, have a minor impact on the model's fit. However, changes in the degradation time of some fractions according to their particular pretreatment or the modification of parameter k in accordance with the moisture conditions in each landfill phase, strongly influence the model's results. This highlights the importance of particularising estimation models to achieve more accurate results, which allow better estimates of the efficiency of mitigation measures for landfill gas emissions in each facility.
Collapse
Affiliation(s)
- Mónica Delgado
- Grupo de Ingeniería Ambiental, Departamento de Ciencias y Técnicas del Agua y del Medio ambiente, Universidad de Cantabria, Avda. Los Castros n. 44, 39005, Santander, Cantabria, Spain
| | - Ana López
- Grupo de Ingeniería Ambiental, Departamento de Ciencias y Técnicas del Agua y del Medio ambiente, Universidad de Cantabria, Avda. Los Castros n. 44, 39005, Santander, Cantabria, Spain
| | - Ana Lorena Esteban-García
- Grupo de Ingeniería Ambiental, Departamento de Ciencias y Técnicas del Agua y del Medio ambiente, Universidad de Cantabria, Avda. Los Castros n. 44, 39005, Santander, Cantabria, Spain
| | - Amaya Lobo
- Grupo de Ingeniería Ambiental, Departamento de Ciencias y Técnicas del Agua y del Medio ambiente, Universidad de Cantabria, Avda. Los Castros n. 44, 39005, Santander, Cantabria, Spain.
| |
Collapse
|
8
|
Williams JP, Ars S, Vogel F, Regehr A, Kang M. Differentiating and Mitigating Methane Emissions from Fugitive Leaks from Natural Gas Distribution, Historic Landfills, and Manholes in Montréal, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16686-16694. [PMID: 36375177 DOI: 10.1021/acs.est.2c06254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rapidly reducing urban methane (CH4) emissions is a critical component of strategies aimed at limiting climate change. Individual source measurements provide the details necessary to develop actionable mitigation strategies and are highly complementary to mobile surveys and other top-down methods. Here, we perform 615 individual source measurements in Montréal, Canada, to quantify CH4 emissions from historic landfills, manholes, and fugitive emissions from natural gas (NG) distribution systems. We find that in 2020, historic landfills produced 901 (452 to 1541, 95% c.i.) tons of CH4, manholes emitted 786 (32 to 2602, 95% c.i.) tons of CH4, and NG distribution systems emitted 451 (176-843, 95% c.i.) tons of CH4, placing them all within the top four CH4 sources in Montréal. Methane emissions from both historic landfills and manholes are not accounted for in any greenhouse gas inventory. We find that geochemistry alone cannot positively identify source subcategories (e.g., type of manhole or NG infrastructure) in almost all cases, although C2/C1 ratios can distinguish NG distribution sources from biogenic sources (historic landfills and manholes). Using our individual source measurement data, we show that historic landfills have the greatest potential for CH4 reductions but the highest mitigation costs, unless we target the highest emitting landfills. In contrast, CH4 emissions from manholes can be reduced at low costs, but reduction methods are commercially unavailable. For NG distribution, methods such as increasing repair rates for high-emitting industrial meters can greatly reduce mitigation costs and emissions. Overall, our results highlight the role of individual source measurements in developing actionable CH4 mitigation strategies to meet municipal, regional, and national climate action plans.
Collapse
Affiliation(s)
- James P Williams
- Department of Civil Engineering, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Sebastien Ars
- Environment and Climate Change Canada, Climate Research Division, Toronto, Ontario M3H 5T4, Canada
| | - Felix Vogel
- Environment and Climate Change Canada, Climate Research Division, Toronto, Ontario M3H 5T4, Canada
| | - Amara Regehr
- Department of Civil Engineering, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Mary Kang
- Department of Civil Engineering, McGill University, Montréal, Québec H3A 0G4, Canada
| |
Collapse
|
9
|
Kissas K, Ibrom A, Kjeldsen P, Scheutz C. Annual upscaling of methane emission field measurements from two Danish landfills, using empirical emission models. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:191-201. [PMID: 35850004 DOI: 10.1016/j.wasman.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
An empirical model was developed and employed to estimate annual methane (CH4) emissions from two Danish landfills (Skellingsted and AV Miljø). The overall aim was to provide accurate annual CH4 emission estimates based on discrete emission field measurements and to address temporal variability caused by the impact of barometric pressure. Four non-linear regression models were developed, corresponding to the two landfills as well as to the western and eastern waste sections of AV Miljø. A comparison of model predictions with on-site eddy covariance fluxes showed that the models can accurately predict short-term emission variability. Predicted annual CH4 emissions for the Skellingsted and AV Miljø landfills were 69 ± 4 and 80 ± 4 tonnes, respectively, whereas for the western and eastern sections of the AV Miljø landfill, emissions were estimated at 63 ± 3 and 19 ± 1 tonnes, respectively. The results demonstrate that even though maximum emissions from Skellingsted were approximately threefold compared to AV Miljø, annual predicted CH4 emissions for Skellingsted were lower. This was because during the most frequently occurring pressure change events, emission rates were higher at AV Miljø in comparison to Skellingsted. An optimised sampling strategy was proposed, targeting the determination of an empirical emission model though the effective use of discrete field measurements. Analysis of annual emission estimates, based on the number of the tracer dispersion method (TDM) measurements, showed that both the number as well as the distribution of performed TDM measurements across the range of expected dP/dt influence the uncertainty.
Collapse
Affiliation(s)
- K Kissas
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - A Ibrom
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - P Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - C Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Duan Z, Scheutz C, Kjeldsen P. Mitigation of methane emissions from three Danish landfills using different biocover systems. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 149:156-167. [PMID: 35738145 DOI: 10.1016/j.wasman.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The establishment of biocover systems is an emerging methodology in reducing methane (CH4) emissions from landfills. This study investigated the performance of three biocover systems with different designs (biowindow and passively and actively loaded biofilters) in mitigating CH4 emissions from three landfills in Denmark. A series of field tests were carried out to evaluate the functionality of each system, and total CH4 emissions from relevant landfill sections or the entire landfill were measured before and after biocover implementation. Surface CH4 concentration screening and local CH4 fluxes showed generally low emissions from the biowindow/biofilters (mostly < 5 g CH4 m-2 d-1), although some hotspots were identified on two actively loaded biofilters. One passively loaded biofilter exhibited high CH4 emissions, mainly due to gas overloading into the system. Gas concentration profiles measured at different locations suggested uneven gas distribution in the biofilters, and significant CH4 oxidation occurred in both the gas distribution layer (when oxygen was fed into the system) and the CH4 oxidation layer. High CH4 oxidation efficiencies of above 95% were found in all systems except for one biofilter (55%). Whole-site emission measurements showed CH4 reduction efficiencies between 29 and 72% after implementing biocover systems at the three landfills, suggesting that they were efficient in reducing CH4 emissions. The most challenging task for the passively loaded biocover systems was to control gas flow and secure homogenous gas distribution, while for actively loaded biocovers, it might be more important to eliminate emission hotspots for better functionality.
Collapse
Affiliation(s)
- Zhenhan Duan
- Department of Environmental Engineering, Building 115, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Charlotte Scheutz
- Department of Environmental Engineering, Building 115, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Peter Kjeldsen
- Department of Environmental Engineering, Building 115, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
11
|
Qin Y, Xi B, Sun X, Zhang H, Xue C, Wu B. Methane Emission Reduction and Biological Characteristics of Landfill Cover Soil Amended With Hydrophobic Biochar. Front Bioeng Biotechnol 2022; 10:905466. [PMID: 35757810 PMCID: PMC9213677 DOI: 10.3389/fbioe.2022.905466] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Biochar-amended landfill cover soil (BLCS) can promote CH4 and O2 diffusion, but it increases rainwater entry in the rainy season, which is not conducive to CH4 emission reduction. Hydrophobic biochar–amended landfill cover soil (HLCS) was prepared to investigate the changes in CH4 emission reduction and biological characteristics, and BLCS was prepared as control. Results showed that rainwater retention time in HLCS was reduced by half. HLCS had a higher CH4 reduction potential, achieving 100% CH4 removal at 25% CH4 content of landfill gas, and its main contributors to CH4 reduction were found to be at depths of 10–30 cm (upper layer) and 50–60 cm (lower layer). The relative abundances of methane-oxidizing bacteria (MOB) in the upper and lower layers of HLCS were 55.93% and 46.93%, respectively, higher than those of BLCS (50.80% and 31.40%, respectively). Hydrophobic biochar amended to the landfill cover soil can realize waterproofing, ventilation, MOB growth promotion, and efficient CH4 reduction.
Collapse
Affiliation(s)
- Yongli Qin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Hongxia Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Chennan Xue
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Beibei Wu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| |
Collapse
|
12
|
Scheutz C, Olesen AOU, Fredenslund AM, Kjeldsen P. Revisiting the passive biocover system at Klintholm landfill, six years after construction. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 145:92-101. [PMID: 35525002 DOI: 10.1016/j.wasman.2022.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
A biocover system was established at Klintholm landfill in Denmark in 2009 to mitigate methane emissions, and the system exhibited high mitigation efficiency during the first year after implementation. The biocover system was revisited in 2016/2017, and a series of field and laboratory tests were carried out to evaluate functionality about six years after establishment. Three field campaigns were executed in three different barometric pressure conditions, namely increasing, stable and decreasing. Local surface flux measurements and gas concentration profiles in the methane oxidation layer showed that barometric pressure changes had a significant effect on gas emission and methane oxidation. Elevated concentrations of oxygen were observed in the gas distribution layer, and field data showed that significant methane oxidation took place in this location. This finding was verified in laboratory-based methane oxidation incubation tests. Temperatures higher than ambient temperature were observed throughout the methane oxidation layer, with average temperatures ranging between 13 and 27 °C, even in the coldest month of the year. Field measurements showed that total methane emissions from the whole landfill cell were at the same level or lower than measurements performed in 2009/2010 after implementation of the biocover system, and laboratory tests showed methane oxidation potential approximately equal to former tests. In spite of an inhomogeneous distribution of landfill gas load to the methane oxidation layer, the performance of the biocover system had not declined over the 6-7 years since its establishment, even though no maintenance had been carried out in the intervening years.
Collapse
Affiliation(s)
- C Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kgs. Lyngby, Denmark
| | - A O U Olesen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kgs. Lyngby, Denmark
| | - A M Fredenslund
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kgs. Lyngby, Denmark
| | - P Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
13
|
Berenjkar P, Sparling R, Lozecznik S, Yuan Q. Methane oxidation in a landfill biowindow under wide seasonally fluctuating climatic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24623-24638. [PMID: 34825333 DOI: 10.1007/s11356-021-17566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
In the current study, a pilot biowindow was constructed in a closed cell of a Canadian Landfill, undergoing high seasonal fluctuations in the temperature from -30 in winter to 35 in summer. The biowindow was filled with biosolids compost amended with yard waste and leaf compost with the ratio of 4:1 as the substrate layer. Two years of monitoring of methane (CH4) oxidation in the biowindow led to remarkable expected observations including a thick, solid winter frost cover affecting gas exchange in winter and temperatures above 45 ℃ in the biowindow in late summer. A high influx compared to the reported values was observed into the biowindow with an average value of 1137 g.m-2.d-1, consisting of 64% of CH4 and 36% of carbon dioxide (CO2) in the landfill gas. The variations in the temperature and moisture content (MC) of the compost layer in addition to the influx fluctuations affected CH4 oxidation efficiency; however, a high average CH4 oxidation rate of 237 g.m-2.d-1 was obtained, with CH4 being mostly oxidized at top layers. The laboratory batch experiments verified that thermophilic methane-oxidizing bacteria (MOB) were active throughout the study period and oxidized CH4 with a higher rate than mesophilic MOB. The methanotrophic potential of the compost mixture showed an average value of 282 µmol.g-1.d-1 in the entire period of the study which is in the range of the highest reported maximum CH4 oxidation rates. The adopted compost mixture was suitable for CH4 oxidation if the MC was above 30%. The significance of MC variations on CH4 oxidation rate depended on the temperature range within the biowindow. At temperatures below 2 ℃, between 29 and 31℃, and above 45 ℃, MC was not a controlling factor for mesophilic CH4 oxidation.
Collapse
Affiliation(s)
- Parvin Berenjkar
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.
| |
Collapse
|
14
|
Scheutz C, Kjeld A, Fredenslund AM. Methane emissions from Icelandic landfills - A comparison between measured and modelled emissions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:136-145. [PMID: 34968899 DOI: 10.1016/j.wasman.2021.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
This study compares methane (CH4) emissions from five Icelandic landfills, quantified using tracer gas dispersion to modelled emission rates using the IPCC FOD model. The average CH4 emission rates measured from the investigated landfills were 475.4 kg CH4 h-1 (Álfsnes landfill), 32.5 kg CH4 h-1 (Fíflholt), 40.8 kg CH4 h-1 (Gufunes), 9.8 kg CH4 h-1 (Kirkjuferjuhjáleiga) and 78.4 kg CH4 h-1 (Stekkjarvík). At three of the landfills (Álfsnes, Fíflholt and Kirkjuferjuhjáleiga), the modelled emission was higher than the measured emission by factors ranging from 1.1 to 4.8, neglecting any CH4 oxidation in the cover soils. Even though CH4 oxidation might play a role at some of the investigated landfills, and thus reduce the gap between modelled and measured emissions, it is likely that the model overestimated CH4 generation due to uncertainties in input model parameters. Assuming that the measured emissions at the five landfills are representative of all the waste disposed in Iceland from 2007 to 2016, the measured emission should be extrapolated to 817 kg CH4 h-1, which is relatively close to the modelled national emission of 936 kg CH4 h-1 in 2017. This study showed that the application of the IPCC FOD model at national level is appropriate for estimating landfill CH4 emissions in Iceland. CH4 emissions from landfills in Iceland can be reduced by expanding or implementing gas collection or biocover systems for optimised microbial oxidation.
Collapse
Affiliation(s)
- C Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kongens Lyngby, Denmark.
| | - A Kjeld
- Efla Consulting Engineers, Iceland
| | - A M Fredenslund
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Kissas K, Ibrom A, Kjeldsen P, Scheutz C. Methane emission dynamics from a Danish landfill: The effect of changes in barometric pressure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 138:234-242. [PMID: 34902685 DOI: 10.1016/j.wasman.2021.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
This study investigates temporal variability on landfill methane (CH4) emissions from an old abandoned Danish landfill, caused by the rate of changes in barometric pressure. Two different emission quantification techniques, namely the dynamic tracer dispersion method (TDM) and the eddy covariance method (EC), were applied simultaneously and their results compared. The results showed a large spatial and temporal CH4 emission variation ranging from 0 to 100 kg h-1 and 0 to 12 μmol m-2 s-1, respectively. Landfill CH4 emissions dynamics were influenced by two environmental factors: the rate of change in barometric pressure (a strong negative correlation) and wind speed (a weak positive correlation). The relationship between CH4 emissions and the rate of change in barometric pressure was more complicated than a linear one, thereby making it difficult to estimate accurately annual CH4 emissions from a landfill based on discrete measurements. Furthermore, the results did not show any clear relationship between CH4 emissions and ambient temperature. Large seasonal variations were identified by the two methods, whereas no diurnal variability was observed throughout the investigated period. CH4 fluxes measured with the EC method were strongly correlated with emissions from the TDM method, even though no direct relationship could be established, due to the different sampling ranges of the two methods and the spatial heterogeneity of CH4 emissions.
Collapse
Affiliation(s)
- K Kissas
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - A Ibrom
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - P Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - C Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Natali C, Bianchini G, Cremonini S, Salani GM, Vianello G, Brombin V, Ferrari M, Vittori Antisari L. Peat Soil Burning in the Mezzano Lowland (Po Plain, Italy): Triggering Mechanisms and Environmental Consequences. GEOHEALTH 2021; 5:e2021GH000444. [PMID: 34355110 PMCID: PMC8319814 DOI: 10.1029/2021gh000444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The effects of peat burning on organic-rich agricultural soils of the Mezzano Lowland (NE Italy) were evaluated on soil profiles variously affected by smoldering. Profiles were investigated for pH, electrical conductivity, bulk density, elemental and isotopic composition of distinct carbon (and nitrogen) fractions. The results suggest that the horizons affected by carbon loss lie at depths 10-70 cm, where the highest temperatures are developed. We suggest that the exothermal oxidation of methane (mediated by biological activity) plays a significant role in the triggering mechanism. In the interested soils we estimated a potential loss of Soil Organic Carbon of approximately 110 kg m -2 within the first meter, corresponding to 580 kg CO2 m -3. The released greenhouse gas is coupled with a loss of soil structure and nutrients. Moreover, the process plausibly triggers mobility of metals bound in organometallic complexes. All these consequences negatively affect the environment, the agricultural activities and possibly also health of the local people.
Collapse
Affiliation(s)
- Claudio Natali
- Department of Earth SciencesUniversity of FlorenceFlorenceItaly
- Institute of Environmental Geology and Geoengineering of the Italian National Research Council (CNR‐IGAG)MontelibrettiItaly
| | - Gianluca Bianchini
- Institute of Environmental Geology and Geoengineering of the Italian National Research Council (CNR‐IGAG)MontelibrettiItaly
- Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
| | - Stefano Cremonini
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Gian Marco Salani
- Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
| | - Gilmo Vianello
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Valentina Brombin
- Institute of Environmental Geology and Geoengineering of the Italian National Research Council (CNR‐IGAG)MontelibrettiItaly
- Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
| | - Mattia Ferrari
- Department of Earth SciencesUniversity of FlorenceFlorenceItaly
- Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
| | | |
Collapse
|
17
|
Manheim DC, Yeşiller N, Hanson JL. Gas Emissions from Municipal Solid Waste Landfills: A Comprehensive Review and Analysis of Global Data. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00234-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Huang D, Yang L, Xu W, Chen Q, Ko JH, Xu Q. Enhancement of the methane removal efficiency via aeration for biochar-amended landfill soil cover. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114413. [PMID: 32220690 DOI: 10.1016/j.envpol.2020.114413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Methane (CH4) mitigation of biocovers or biofilters for landfills is influenced by the bed material and oxygen availability. The improvement of active aeration for the CH4 oxidation efficiency of biochar-amended landfill soil cover was investigated over a period of 101 days. There were column 1 as the control group, column 2 with biochar amending the soil cover, and column 3 with daily active aeration besides the same biochar amendment. All groups were inoculated with enriched methane oxidation bacteria (MOB). The average CH4 removal efficiency was up to 78.6%, 85.2% and 90.6% for column 1, 2, and 3, respectively. The depth profiles of CH4 oxidation efficiencies over the whole period also showed that the stimulation of CH4 oxidation by biochar amendment was apparent in the top 35 cm but became very faint after two months. This probably was due to the rapid depletion of nitrogen nutrition caused by enhanced methanotrophic activities. While through aeration, CH4 oxidation efficiency was further improved for column 3 than column 2. This enhancement also lasted for the whole period with a reduced decline of CH4 oxidation. Finally, the major MOB Methylocystis, commonly found in the three columns, were most abundant in the top 35 cm for column 3. A more balanced ratio of MOB and more homogeneous microbial community structures across different soil depths were also the results of active aeration.
Collapse
Affiliation(s)
- Dandan Huang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Luning Yang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Wenjun Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Jae Hac Ko
- Department of Environmental Engineering, College of Ocean Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
19
|
Zhan LT, Wu T, Feng S, Li GY, He HJ, Lan JW, Chen YM. Full-scale experimental study of methane emission in a loess-gravel capillary barrier cover under different seasons. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 107:54-65. [PMID: 32276126 DOI: 10.1016/j.wasman.2020.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 02/01/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
The methane emission in a loess-gravel capillary barrier cover (CBC) in winter and summer was investigated by constructing a full-scale testing facility (20 m × 30 m) with a slope angle of 14.5° at a landfill in Xi'an, China. Weather conditions, methane emission, gas concentration, temperature, and volumetric water content (VWC) in the CBC were measured. The temperature and moisture in the CBC showed a typical seasonal pattern of warm and dry in summer and cold and wet in winter. Accordingly, the maximum methane oxidation rate and methane emission were higher in summer. The mean methane influx and methane emission decreased significantly as the VWC increased beyond 40% (i.e., a degree of saturation 0.85) at a depth of 0.85 m, which was near the loess/gravel interface. At this depth, more water was presented in the loess layer in the downslope direction due to capillary barrier effects, which increased the upslope methane emission. More dominant methane emission in the middle- and upper-section of the CBC occurred in summer than in winter as there was less soil moisture to facilitate methane transfer. The LFG balance showed that a significant fraction of the loaded LFG was not accounted in the flux chamber measurements due to the preferential flow along the edges of the CBC. The maximum methane oxidation rate was 93.3 g CH4 m-2 d-1, indicating the loess-gravel CBC could mitigate methane emissions after landfill closure.
Collapse
Affiliation(s)
- Liang-Tong Zhan
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tao Wu
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Song Feng
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; College of Civil Engineering, Fuzhou University, China.
| | - Guang-Yao Li
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hai-Jie He
- College of Civil and Architectural Engineering, Taizhou University, Taizhou 318000, China
| | - Ji-Wu Lan
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yun-Min Chen
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Fjelsted L, Christensen AG, Larsen JE, Kjeldsen P, Scheutz C. Closing the methane mass balance for an old closed Danish landfill. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:179-189. [PMID: 31678804 DOI: 10.1016/j.wasman.2019.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
In this study, a methane (CH4) mass balance was established for Hedeland landfill. CH4 generation rates were modelled using a multiphase first-order decay model (The Afvalzorg model) and determined at between 57 and 79 kg h-1. The CH4 emission rate was quantified at between 2 and 14 kg h-1, using the tracer gas dispersion method and the CH4 gas recovery efficiency was between 8 and 21%. At three places along the perimeter of the landfill, gas remediation systems have been installed to protect the residential houses from any risk of migrating landfill gas. About 0.76 kg h-1 of CH4 was extracted from these three remediation systems. Using a carbon mass balance for the lateral migrating landfill gas showed a fractional oxidation of about 78%, which corresponded to a CH4 flux of 3.5 kg h-1 from the three remediation systems, including the oxidised CH4. The total lateral CH4 flux (un-oxidised) from the total landfill perimeter was estimated at between 6.9 and 10.4 kg h-1. CH4 oxidation efficiency in the landfill cover soil, determined from stable carbon isotope analyses, was found to be between 12% and 92%. This resulted in an average CH4 oxidation rate of 32 kg h-1, using an average CH4 emission rate of 8 kg h-1. CH4 surface screenings and surface flux measurements supported the hypothesis that oxidation efficiency was in the higher range and that oxidation could close the CH4 mass balance.
Collapse
Affiliation(s)
- L Fjelsted
- Niras A/S, Sortemosevej 19, DK-3450 Allerød, Denmark; Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | | | - J E Larsen
- Niras A/S, Sortemosevej 19, DK-3450 Allerød, Denmark
| | - P Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - C Scheutz
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Pan J, Wang X, Cao A, Zhao G, Zhou C. Screening methane-oxidizing bacteria from municipal solid waste landfills and simulating their effects on methane and ammonia reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:37082-37091. [PMID: 31745784 DOI: 10.1007/s11356-019-06545-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Municipal solid waste landfills are not only a crucial source of global greenhouse gas emissions; they also produce large amounts of ammonia (NH3), hydrogen sulfide, and other odorous gases that negatively affect the regional environment. Several types of methane-oxidizing bacteria (MOB) were proved to be effective in mitigating methane emission from landfills. Nevertheless, more MOB species and their technical parameters for best mitigating methane still need to be explored. In landfills, methane is simultaneously generated with ammonia, which may impede the CH4 bio-oxidizing process of MOB. However, very limited studies examined the enhancement of methane reduction by introducing ammonia-oxidizing bacteria (AOB) in landfills. In this study, two enriched MOB cultures were gained from a typical municipal solid waste landfill, and then were cultured with three strains of ammonia-oxidizing bacteria (AOB). The MOB enrichment culture used in this work includes Methylocaldum, Methylocystaceae, and Methyloversatilis, with a methane oxidation capacity of 43.6-65.0%, and the AOB includes Candida ethanolica, Bacillus cereus, and Alcaligenes faecalis. The effects on the emission reduction of both NH3 and CH4 were measured using self-made landfill-simulating equipment, as MOB, AOB, and a MOB-AOB mixture were added to the soil cover of the simulation equipment. The concentrations of CH4 and NH3 in the MOB-AOB mixture group decreased sharply, and the CH4 and NH3 concentration was 76.4% and 83.7% of the control group level. We also found that addition of AOB can help MOB oxidize CH4 and improve the emission reduction effect.
Collapse
Affiliation(s)
- Jingran Pan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaolin Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Aixin Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guozhu Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Chuanbin Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
22
|
Kuwayama T, Charrier-Klobas JG, Chen Y, Vizenor NM, Blake DR, Pongetti T, Conley SA, Sander SP, Croes B, Herner JD. Source Apportionment of Ambient Methane Enhancements in Los Angeles, California, To Evaluate Emission Inventory Estimates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2961-2970. [PMID: 30821440 DOI: 10.1021/acs.est.8b02307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rapid increase in atmospheric methane (CH4) mixing ratios over the past century is attributable to the intensification of human activities. Information on spatially explicit source contributions is needed to develop efficient and cost-effective CH4 emission reduction and mitigation strategies to addresses near-term climate change. This study collected long-term ambient CH4 measurements at Mount Wilson Observatory (MWO) in Los Angeles, California, to estimate the annual CH4 emissions from the portion of Los Angeles County that is within the South Coast Air Basin (SCLA). The measurement-based CH4 emission estimates for SCLA ranged from 3.95 to 4.89 million metric tons (MMT) carbon dioxide equivalent (CO2e) per year between 2012 and 2016. Source apportionment of CH4, CO, CO2, and volatile organic compounds (VOCs) measurements were used to evaluate source categories that contributed to ambient CH4 mixing ratio enhancements (ΔCH4) at SCLA between 2014 and 2016. Results suggested ΔCH4 contributions of 56-79% from natural gas sources, 7-31% from landfills, and 4-15% from transportation sources. The SCLA-specific CH4 emission estimate made using a research grade gridded CH4 emission inventory suggested contributions of 47% from natural gas sources and 50% from landfills. Subsequent airborne measurements determined that CH4 emissions from two major CH4 sources in SCLA were significantly smaller in magnitude than previously thought. This study highlights the importance of studying the variabilities of CH4 emissions across California for policy makers and stakeholders alike.
Collapse
Affiliation(s)
- Toshihiro Kuwayama
- California Air Resources Board , 1001 I Street , Sacramento , California 95812 , United States
| | | | - Yanju Chen
- California Air Resources Board , 1001 I Street , Sacramento , California 95812 , United States
| | - Nicholas M Vizenor
- University of California at Irvine , 570 Rowland Hall , Irvine , California 92697 , United States
| | - Donald R Blake
- University of California at Irvine , 570 Rowland Hall , Irvine , California 92697 , United States
| | - Thomas Pongetti
- NASA Jet Propulsion Laboratory , 4800 Oak Grove Drive , Pasadena , California 91109 , United States
| | - Stephen A Conley
- Scientific Aviation , 3335 Airport Road Suite B , Boulder , Colorado 80301 , United States
| | - Stanley P Sander
- NASA Jet Propulsion Laboratory , 4800 Oak Grove Drive , Pasadena , California 91109 , United States
| | - Bart Croes
- California Air Resources Board , 1001 I Street , Sacramento , California 95812 , United States
| | - Jorn D Herner
- California Air Resources Board , 1001 I Street , Sacramento , California 95812 , United States
| |
Collapse
|
23
|
Mønster J, Kjeldsen P, Scheutz C. Methodologies for measuring fugitive methane emissions from landfills - A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:835-859. [PMID: 30660403 DOI: 10.1016/j.wasman.2018.12.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/22/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Fugitive methane (CH4) emissions from landfills are significant global sources of greenhouse gases emitted into the atmosphere; thus, reducing them would be a beneficial way of overall greenhouse gas emissions mitigation. In Europe, landfill owners have to report their annual CH4 emissions, so direct measurements are therefore important for (1) evaluating and improving currently applied CH4 emission models, (2) reporting annual CH4 emissions and (3) quantifying CH4 mitigation initiatives. This paper aims at providing an overview of currently available methodologies used to measure fugitive CH4 emissions escaping from landfills. The measurement methodologies are described briefly, and the advantages and limitations of the different techniques are discussed with reference to published literature on the subject. Examples are given of individual published studies using different methodologies and studies comparing three or more methodologies. This review suggests that accurate, whole-site CH4 emission quantifications are best done using methods measuring downwind of the landfill, such as tracer gas dispersion and differential absorption LiDAR (DIAL). Combining aerial CH4 concentration measurements from aircraft or unmanned aerial vehicles with wind field measurements offers a great future potential for improved and cost-efficient integrated landfill CH4 emission quantification. However, these methods are difficult to apply for longer time periods, so in order to measure temporal CH4 emission changes, e.g. due to the effect of changes in atmospheric conditions (pressure, wind and precipitation), a measurement method that is able to measure continuously is required. Such a method could be eddy covariance or static mass balance, although these procedures are challenged by topography and inhomogeneous spatial emission patterns, and as such they can underestimate emissions significantly. Surface flux chambers have been used widely, but they are likely to underestimate emission rates, due to the heterogeneous nature of most landfill covers resulting in sporadic and localised CH4 emission hotspots being the dominant emission routes. Furthermore, emissions from wells, vents, etc. are not captured by surface flux chambers. The significance of any underestimation depends highly on the configuration of individual landfills, their size and emission patterns.
Collapse
Affiliation(s)
- Jacob Mønster
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Peter Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Charlotte Scheutz
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
24
|
Fredenslund AM, Mønster J, Kjeldsen P, Scheutz C. Development and implementation of a screening method to categorise the greenhouse gas mitigation potential of 91 landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:915-923. [PMID: 29563053 DOI: 10.1016/j.wasman.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 02/26/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
A cost-effective screening method for assessing methane emissions was developed and employed to categorise 91 older Danish landfills into three categories defined by the magnitude of their emissions. The overall aim was to assess whether these landfills were relevant or irrelevant with respect to methane emission mitigation through the construction of biocovers. The method was based on downwind methane concentration measurements, using a van-mounted cavity ring-down spectrometer combined with inverse dispersion modelling to estimate whole-site methane emission rates. This method was found to be less accurate than the more labour-intensive tracer gas dispersion method, and therefore cannot be recommended if a high degree of accuracy is required. However, it is useful if a less accurate examination is sufficient. A sensitivity analysis showed the dispersion model used to be highly sensitive to variations in input parameters. Of the 91 landfills in the survey, 25 were found to be relevant for biocover construction when the methane emission threshold was set at 2 kg CH4 h-1.
Collapse
Affiliation(s)
- Anders M Fredenslund
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kongens Lyngby, Denmark.
| | - Jacob Mønster
- FORCE Technology, Park Allé 345, 2605 Brøndby, Denmark.
| | - Peter Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kongens Lyngby, Denmark.
| | - Charlotte Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
25
|
Rees-White TC, Mønster J, Beaven RP, Scheutz C. Measuring methane emissions from a UK landfill using the tracer dispersion method and the influence of operational and environmental factors. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:870-882. [PMID: 29605306 DOI: 10.1016/j.wasman.2018.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/30/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
The methane emissions from a landfill in south-east, UK were successfully quantified during a six-day measurement campaign using the tracer dispersion method. The fair weather conditions made it necessary to perform measurements in the late afternoon and in the evening when the lower solar flux resulted in a more stable troposphere with a lower inversion layer. This caused a slower mixing of the gasses, but allowed plume measurements up to 6700 m downwind from the landfill. The average methane emission varied between 217 ± 14 and 410 ± 18 kg h-1 within the individual measurement days, but the measured emission rates were higher on the first three days (333 ± 27, 371 ± 42 and 410 ± 18 kg h-1) compared to the last three days (217 ± 14, 249 ± 20 and 263 ± 22 kg h-1). It was not possible to completely isolate the extent to which these variations were a consequence of measuring artefacts, such as wind/measurement direction and measurement distance, or from an actual change in the fugitive emission. Such emission change is known to occur with changes in the atmospheric pressure. The higher emissions measured during the first three days of the campaign were measured during a period with an overall decrease in atmospheric pressure (from approximately 1014 mbar on day 1 to 987 mbar on day 6). The lower emissions measured during the last three days of the campaign were carried out during a period with an initial pressure increase followed by a period of slowly reducing pressure. The average daily methane recovery flow varied between 633 and 679 kg h-1 at STP (1 atm, 0 °C). The methane emitted to the atmosphere accounted for approximately 31% of the total methane generated, assuming that the methane generated is the sum of the methane recovered and the methane emitted to the atmosphere, thus not including a potential methane oxidation in the landfill cover soil.
Collapse
Affiliation(s)
- T C Rees-White
- Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
| | - J Mønster
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - R P Beaven
- Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
| | - C Scheutz
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
26
|
Aghdam EF, Scheutz C, Kjeldsen P. Impact of meteorological parameters on extracted landfill gas composition and flow. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:905-914. [PMID: 29449110 DOI: 10.1016/j.wasman.2018.01.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to investigate the impact of four pre-selected meteorological parameters (barometric pressure, wind speed, ambient temperature and solar radiation) on recovered landfill gas (LFG) flow, methane (CH4) content of the LFG and the recovered CH4 flow by performing statistical correlation tests and a visual check on correlations in scatterplots. Meteorological parameters were recorded at an on-site weather station, while LFG data were recorded when entering the gas engine. LFG CH4 concentration, LFG flow and CH4 flow correlated highly with both barometric pressure and changes in barometric pressure, and the correlations were statistically significant. A higher correlation was observed when studying changes in barometric pressure in comparison to the absolute value of barometric pressure. LFG recovery data correlated highly and significantly with wind speed during winter, but not during summer. Ambient temperature and solar radiation were not major meteorological parameters affecting LFG recovery, as low correlation coefficients were observed between these two parameters and the LFG recovery data.
Collapse
Affiliation(s)
- Ehsan Fathi Aghdam
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Charlotte Scheutz
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Peter Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Scheutz C, Kjeldsen P. Guidelines for landfill gas emission monitoring using the tracer gas dispersion method. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 85:351-360. [PMID: 30803590 DOI: 10.1016/j.wasman.2018.12.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Landfill gas often containing 50-60% methane, is generated on waste disposal sites receiving organic waste. Regulation requires that this gas is managed in order to reduce emissions, but very few suggestions exist as to how management activities are monitored, what should be set up to ensure this management and how criteria should be developed for when monitoring activities are terminated. Methane emission monitoring procedures are suggested, based on a robust method for measuring total leakage from the site; additionally, quantitative measures, to determine the efficiency of the performed emission mitigation, are defined. The tracer gas dispersion measuring technique is suggested as the core emission measurement methodology in monitoring plans for methane emissions from landfills and a guideline for best practice measurement performance is presented. A minimum methane mitigation efficiency of 80% is suggested. Finally, several principles are presented on how criteria can be developed for when a monitoring program can be terminated. Three of the suggested principles result in comparable completion criteria of about 1-3 kg CH4/h for a small landfill (an area of 4 ha).
Collapse
Affiliation(s)
- Charlotte Scheutz
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Peter Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
28
|
Fredenslund AM, Rees-White TC, Beaven RP, Delre A, Finlayson A, Helmore J, Allen G, Scheutz C. Validation and error assessment of the mobile tracer gas dispersion method for measurement of fugitive emissions from area sources. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 83:68-78. [PMID: 30514473 DOI: 10.1016/j.wasman.2018.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
A controlled release test was carried out to assess the accuracy of the tracer gas dispersion method, which is used to measure whole-site landfill methane (CH4) emissions as well as fugitive emissions from other area sources. Two teams performed measurements using analytical instruments installed in two vehicles, to measure downwind concentrations of target (CH4) and tracer gases at distances of 1.2-3.5 km from the release locations. The controlled target gas release rates were either 5.3 or 10.9 kg CH4 h-1, and target and tracer gases were released at distances between 12 m and 140 m from each other. Five measurement campaigns were performed, where the plume was traversed between 2 and 31 times. The measured target gas emissions agreed well with the controlled releases, with rate differences no greater than 1.1 kg CH4 h-1 for Team A and 1.0 kg CH4 h-1 for Team B when quantifying a controlled release of 10.9 kg CH4 h-1. This corresponds to a maximum error of ±10%. A larger error of up to 18% was seen in the campaign with a lower target gas release rate (5.3 kg CH4 h-1). Using a cross plume integration method to calculate tracer gas to target gas ratios provided the most accurate results (lowest error), whereas larger errors (up to 49%) were observed when using other calculation methods. By establishment of an error budget and comparison with the measured error based on the release test, it could be concluded that following best practice when performing measurements, the overall error of a tracer gas dispersion measurement is very likely to be less than 20%.
Collapse
Affiliation(s)
- A M Fredenslund
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kongens Lyngby, Denmark
| | - T C Rees-White
- Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - R P Beaven
- Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - A Delre
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kongens Lyngby, Denmark
| | - A Finlayson
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - J Helmore
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - G Allen
- Centre for Atmospheric Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - C Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
29
|
Obersky L, Rafiee R, Cabral AR, Golding SD, Clarke WP. Methodology to determine the extent of anaerobic digestion, composting and CH 4 oxidation in a landfill environment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 76:364-373. [PMID: 29798807 DOI: 10.1016/j.wasman.2018.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
An examination of the processes contributing to the production of landfill greenhouse gas (GHG) emissions is required, as the actual level to which waste degrades anaerobically and aerobically beneath covers has not been differentiated. This paper presents a methodology to distinguish between the rate of anaerobic digestion (rAD), composting (rCOM) and CH4 oxidation (rOX) in a landfill environment, by means of a system of mass balances developed for molecular species (CH4, CO2) and stable carbon isotopes (δ13C-CO2 and δ13C-CH4). The technique was applied at two sampling locations on a sloped area of landfill. Four sampling rounds were performed over an 18 month period after a 1.0 m layer of fresh waste and 30-50 cm of silty clay loam had been placed over the area. Static chambers were used to measure the flux of the molecular and isotope species at the surface and soil gas probes were used to collect gas samples at depths of approximately 0.5, 1.0 and 1.5 m. Mass balances were based on the surface flux and the concentration of the molecular and isotopic species at the deepest sampling depth. The sensitivity of calculated rates was considered by randomly varying stoichiometric and isotopic parameters by ±5% to generate at least 500 calculations of rOX, rAD and rCOM for each location in each sampling round. The resulting average value of rAD and rCOM indicated anaerobic digestion and composting were equally dominant at both locations. Average values of rCOM: ranged from 9.8 to 44.5 g CO2 m-2 d-1 over the four sampling rounds, declining monotonically at one site and rising then falling at the other. Average values of rAD: ranged from 10.6 to 45.3 g CO2 m-2 d-1. Although the highest average rAD value occurred in the initial sampling round, all subsequent rAD values fell between 10 and 20 g CO2 m-2 d-1. rOX had the smallest activity contribution at both sites, with averages ranging from 1.6 to 8.6 g CO2 m-2 d-1. This study has demonstrated that for an interim cover, composting and anaerobic digestion of shallow landfill waste can occur simultaneously.
Collapse
Affiliation(s)
- Lizanne Obersky
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Reza Rafiee
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, 31536, Iran
| | - Alexandre R Cabral
- Geoenvironmental Group, Dept. of Civil Engineering, University of Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Suzanne D Golding
- Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - William P Clarke
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
30
|
Aghdam EF, Fredenslund AM, Chanton J, Kjeldsen P, Scheutz C. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 73:220-229. [PMID: 29249311 DOI: 10.1016/j.wasman.2017.11.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/20/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
In this study, the total methane (CH4) generation rate and gas recovery efficiency at two Danish landfills were determined by field measurements. The landfills are located close to each other and are connected to the same gas collection system. The tracer gas dispersion method was used for quantification of CH4 emissions from the landfills, while the CH4 oxidation efficiency in the landfill cover layers was determined by stable carbon isotopic technique. The total CH4 generation rate was estimated by a first-order decay model (Afvalzorg) and was compared with the total CH4 generation rate determined by field measurements. CH4 emissions from the two landfills combined ranged from 29.1 to 49.6 kg CH4/h. The CH4 oxidation efficiency was 6-37%, with an average of 18% corresponding to an average CH4 oxidation rate of 8.1 kg CH4/h. The calculated gas recovery efficiency was 59-76%, indicating a high potential for optimization of the gas collection system. Higher gas recovery efficiencies (73-76%) were observed after the commencement of gas extraction from a new section of one of the landfills. A good agreement was observed between the average total CH4 generation rates determined by field measurements (147 kg CH4/h) and those estimated by the Afvalzorg model (154 kg CH4/h).
Collapse
Affiliation(s)
- Ehsan F Aghdam
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Anders M Fredenslund
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jeffrey Chanton
- Department of Earth, Ocean and Atmospheric Science, 117 N. Woodward Avenue, Florida State University, Tallahassee, FL 32306-4320, USA
| | - Peter Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Charlotte Scheutz
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
31
|
Lee YY, Jung H, Ryu HW, Oh KC, Jeon JM, Cho KS. Seasonal characteristics of odor and methane mitigation and the bacterial community dynamics in an on-site biocover at a sanitary landfill. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:277-286. [PMID: 29089227 DOI: 10.1016/j.wasman.2017.10.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Landfills are key anthropogenic emission sources for odors and methane. For simultaneous mitigation of odors and methane emitted from landfills, a pilot-scale biocover (soil:perlite:earthworm cast:compost, 6:2:1:1, v/v) was constructed at a sanitary landfill in South Korea, and the biocover performance and its bacterial community dynamics were monitored for 240 days. The removal efficiencies of odor and methane were evaluated to compare the odor dilution ratios or methane concentrations at the biocover surface and landfill soil cover surface where the biocover was not installed. The odor removal efficiency was maintained above 85% in all seasons. The odor dilution ratios ranged from 300 to 3000 at the biocover surface, but they were 6694-20,801 at the landfill soil cover surface. Additionally, the methane removal efficiency was influenced by the ambient temperature; the methane removal efficiency in winter was 35-43%, while the methane removability was enhanced to 85%, 86%, and 96% in spring, early summer, and late summer, respectively. The ratio of methanotrophs to total bacterial community increased with increasing ambient temperature from 5.4% (in winter) to 12.8-14.8% (in summer). In winter, non-methanotrophs, such as Acinetobacter (8.8%), Rhodanobacter (7.5%), Pedobacter (7.5%), and Arthrobacter (5.7%), were abundant. However, in late summer, Methylobacter (8.8%), Methylocaldum (3.4%), Mycobacterium (1.1%), and Desulviicoccus (0.9%) were the dominant bacteria. Methylobacter was the dominant methanotroph in all seasons. These seasonal characteristics of the on-site biocover performance and its bacterial community are useful for designing a full-scale biocover for the simultaneous mitigation of odors and methane at landfills.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyekyeng Jung
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hee-Wook Ryu
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Kyung-Cheol Oh
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Jun-Min Jeon
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
32
|
Schulte M, Jochmann MA, Gehrke T, Thom A, Ricken T, Denecke M, Schmidt TC. Characterization of methane oxidation in a simulated landfill cover system by comparing molecular and stable isotope mass balances. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 69:281-288. [PMID: 28811145 DOI: 10.1016/j.wasman.2017.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Biological methane oxidation may be regarded as a method of aftercare treatment for landfills to reduce climate relevant methane emissions. It is of social and economic interest to estimate the behavior of bacterial methane oxidation in aged landfill covers due to an adequate long-term treatment of the gas emissions. Different approaches assessing methane oxidation in laboratory column studies have been investigated by other authors recently. However, this work represents the first study in which three independent approaches, ((i) mass balance, (ii) stable isotope analysis, and (iii) stoichiometric balance of product (CO2) and reactant (CH4) by CO2/CH4-ratio) have been compared for the estimation of the biodegradation by a robust statistical validation on a rectangular, wide soil column. Additionally, an evaluation by thermal imaging as a potential technique for the localization of the active zone of bacterial methane oxidation has been addressed in connection with stable isotope analysis and CO2/CH4-ratios. Although landfills can be considered as open systems the results for stable isotope analysis based on a closed system correlated better with the mass balance than calculations based on an open system. CO2/CH4-ratios were also in good agreement with mass balance. In general, highest values for biodegradation were determined from mass balance, followed by CO2/CH4-ratio, and stable isotope analysis. The investigated topsoil proved to be very suitable as a potential cover layer by removing up to 99% of methane for CH4 loads of 35-65gm-2d-1 that are typical in the aftercare phase of landfills. Finally, data from stable isotope analysis and the CO2/CH4-ratios were used to trace microbial activity within the reactor system. It was shown that methane consumption and temperature increase, as a cause of high microbial activity, correlated very well.
Collapse
Affiliation(s)
- Marcel Schulte
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany.
| | - Tobias Gehrke
- Department of Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
| | - Andrea Thom
- Chair of Mechanics, Structural Analysis, Dynamics, Dortmund Technical University, August-Schmidt-Str. 6, 44227 Dortmund, Germany
| | - Tim Ricken
- Chair of Mechanics, Structural Analysis, Dynamics, Dortmund Technical University, August-Schmidt-Str. 6, 44227 Dortmund, Germany
| | - Martin Denecke
- Department of Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
33
|
Rafiee R, Obersky L, Xie S, Clarke WP. A mass balance model to estimate the rate of composting, methane oxidation and anaerobic digestion in soil covers and shallow waste layers. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 63:196-202. [PMID: 28089399 DOI: 10.1016/j.wasman.2016.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/02/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Although CH4 oxidation in landfill soil covers is widely studied, the extent of composting and CH4 oxidation in underlying waste layers has been speculated but not measured. The objective of this study was to develop and validate a mass balance model to estimate the simultaneous rates of anaerobic digestion (rAD), CH4 oxidation (rOX) and composting (rCOM) in environments where O2 penetration is variable and zones of aerobic and anaerobic activity are intermingled. The modelled domain could include, as an example, a soil cover and the underlying shallow waste to a nominated depth. The proposed model was demonstrated on a blend of biogas from three separate known sources of gas representing the three reaction processes: (i) a bottle of laboratory grade 50:50% CH4:CO2 gas representing anaerobic digestion biogas; (ii) an aerated 250mL bottle containing food waste that represented composting activity; and (iii) an aerated 250mL bottle containing non-degradable graphite granules inoculated with methanotrophs and incubated with CH4 and O2 to represent methanotrophic activity. CO2, CH4, O2 and the stable isotope 13C-CO2 were chosen as the components for the mass balance model. The three reaction rates, r (=rAD, rOX, rCOM) were calculated as fitting parameters to the overdetermined set of 4mass balance equations with the net flux of these components from the bottles q (= [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] ) as inputs to the model. The coefficient of determination (r2) for observed versus modelled values of r were 1.00, 0.97, 0.98 when the stoichiometry of each reaction was based on gas yields measured in the individual bottles and q was calculated by summing yields from the three bottles. r2 deteriorated to 0.95, 0.96, 0.87 when using an average stoichiometry from 11 incubations of each of the composting and methane oxidation processes. The significant deterioration in the estimation of rCOM showed that this output is highly sensitive to the evaluated stoichiometry coefficients for the reactions. r2 deteriorated further to 0.86, 0.77, 0.74 when using the average stoichiometry and experimental measurement of the composition and volume of the blended biogas to determine q. This was primarily attributed to average errors of 8%, 7%, 11% and 14% in the measurement of [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] relative to the measurement of the same quantities from the individual bottles.
Collapse
Affiliation(s)
- Reza Rafiee
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| | - Lizanne Obersky
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| | - Sihuang Xie
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| | - William P Clarke
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
34
|
Scheutz C, Cassini F, De Schoenmaeker J, Kjeldsen P. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 63:203-212. [PMID: 28161333 DOI: 10.1016/j.wasman.2017.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Greenhouse gas mitigation at landfills by methane (CH4) oxidation in engineered biocover systems is believed to be a cost effective technology but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the often observed uneven gas distribution to the active CH4 oxidation layer resulting in overloaded areas causing CH4 emission hot spot areas in the biocover surface. The whole biocover CH4 oxidation efficiency was determined by measuring the CH4 inlet load and CH4 surface fluxes. In addition, CH4 oxidation was determined for single points in the biocover using two different methods; the carbon mass balance method (based on CH4 and carbon dioxide (CO2) concentrations in the deeper part of the cover and CH4 and CO2 surface flux measurements) and a new-developed tracer gas mass balance method (based on CH4 and tracer inlet fluxes and CH4 and tracer surface flux measurements). Overall, the CH4 oxidation efficiency of the whole biocover varied between 81 and 100% and showed that the pilot plant biocover system installed at AV Miljø landfill was very efficient in oxidizing the landfill CH4. The average CH4 oxidation rate measured at nine campaigns was approximately 13gm-2d-1. Extrapolating laboratory measured CH4 oxidation rates to the field showed that the biocover system had a much larger CH4 oxidation potential in comparison to the tested CH4 load. The carbon mass balance approach compared reasonably well with the tracer gas mass balance approach when applied for quantification of CH4 oxidation in single points at the biofilter giving CH4 oxidation efficiencies in the range of 84 to a 100%. CH4 oxidation rates where however much higher using the tracer gas balance method giving CH4 oxidation rates between 7 and 124gm2d-1 compared to the carbon mass balance, which gave CH4 oxidation rates -0.06 and 40gm2d-1. The study also revealed that the compost respiration contributed significantly to the measured CO2 surface emission, and that the contribution of the compost respiration decreased significantly with time probably due to further maturation of the compost material.
Collapse
Affiliation(s)
- Charlotte Scheutz
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Filippo Cassini
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jan De Schoenmaeker
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
35
|
Geck C, Scharff H, Pfeiffer EM, Gebert J. Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 56:280-289. [PMID: 27426022 DOI: 10.1016/j.wasman.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/20/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
On a large scale test field (1060m(2)) methane emissions were monitored over a period of 30months. During this period, the test field was loaded at rates between 14 and 46gCH4m(-2)d(-1). The total area was subdivided into 60 monitoring grid fields at 17.7m(2) each, which were individually surveyed for methane emissions and methane oxidation efficiency. The latter was calculated both from the direct methane mass balance and from the shift of the carbon dioxide - methane ratio between the base of the methane oxidation layer and the emitted gas. The base flux to each grid field was back-calculated from the data on methane oxidation efficiency and emission. Resolution to grid field scale allowed the analysis of the spatial heterogeneity of all considered fluxes. Higher emissions were measured in the upslope area of the test field. This was attributed to the capillary barrier integrated into the test field resulting in a higher diffusivity and gas permeability in the upslope area. Predictions of the methane oxidation potential were estimated with the simple model Methane Oxidation Tool (MOT) using soil temperature, air filled porosity and water tension as input parameters. It was found that the test field could oxidize 84% of the injected methane. The MOT predictions seemed to be realistic albeit the higher range of the predicted oxidations potentials could not be challenged because the load to the field was too low. Spatial and temporal emission patterns were found indicating heterogeneity of fluxes and efficiencies in the test field. No constant share of direct emissions was found as proposed by the MOT albeit the mean share of emissions throughout the monitoring period was in the range of the expected emissions.
Collapse
Affiliation(s)
- Christoph Geck
- Universität Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg, Germany.
| | - Heijo Scharff
- NV Afvalzorg Holding, Nauerna 1, 1566 PB Assendelft, The Netherlands.
| | - Eva-Maria Pfeiffer
- Universität Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg, Germany.
| | - Julia Gebert
- Universität Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg, Germany.
| |
Collapse
|
36
|
Moreira JML, Candiani G. Assessment of methane generation, oxidation, and emission in a subtropical landfill test cell. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:464. [PMID: 27406209 DOI: 10.1007/s10661-016-5460-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
This paper presents results of a methane balance assessment in a test cell built in a region with a subtropical climate near São Paulo, Brazil. Measurements and calculations were carried out to obtain the total methane emission to the atmosphere, the methane oxidation rate in the cover, and the total methane generation rate in the test cell. The oxidation rate was obtained through a calculation scheme based on a vertical one-dimensional methane transport in the cover region. The measured maximum and mean methane fluxes to the atmosphere were 124.4 and 15.87 g m(-2) d(-1), respectively. The total methane generation rate obtained for the test cell was 0.0380 ± 0.0075 mol s(-1). The results yielded that 69 % of the emitted methane occurred through the central well and 31 % through the cover interface with the atmosphere. The evaluations of the methane oxidation fraction for localized conditions in the lateral embankment of the test cell yielded 0.36 ± 0.11, while for the whole test cell yielded 0.15 ± 0.10. These results conciliate localized and overall evaluations reported in the literature. The specific methane generation rate obtained for the municipal solid waste with an age of 410 days was 317 ± 62 mol year(-1) ton(-1). This result from the subtropical São Paulo region is lower than reported figures for tropical climates and higher than reported figures for temperate climates.
Collapse
Affiliation(s)
- João M L Moreira
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil.
| | - Giovano Candiani
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Rua Antônio Doll de Moraes, 105, Diadema, SP, 09920-540, Brazil
| |
Collapse
|
37
|
Abushammala MF, Qazi WA, Azam MH, Mehmood UA, Al-Mufragi GA, Alrawahi NA. Economic and environmental benefits of landfill gas utilisation in Oman. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2016; 34:717-723. [PMID: 26922087 DOI: 10.1177/0734242x16628983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Municipal solid waste disposed in landfill sites decomposes under anaerobic conditions and produces so-called landfill-gas, which contains 30%-40% of carbon dioxide (CO2) and 50%-60% of methane (CH4). Methane has the potential of causing global warming 25 times more than CO2 Therefore, migration of landfill-gas from landfills to the surrounding environment can potentially affect human life and environment. Thus, this research aims to determine municipal solid waste generation in Oman over the years 1971-2030, to quantify annual CH4 emissions inventory that resulted from this waste over the same period of time, and to determine the economic and environmental benefits of capturing the CH4 gas for energy production. It is found that cumulative municipal solid waste landfilled in Oman reaches 3089 Giga gram (Gg) in the year 2030, of which approximately 85 Gg of CH4 emissions are produced in the year 2030. The study also found that capturing CH4 emissions between the years 2016 and 2030 could attract revenues of up to US$333 million and US$291 million from the carbon reduction and electricity generation, simultaneously. It is concluded that CH4 emissions from solid waste in Oman increases enormously with time, and capture of this gas for energy production could provide a sustainable waste management solution in Oman.
Collapse
Affiliation(s)
| | - Wajeeha A Qazi
- Department of Civil Engineering, Middle East College, Al Rusayl, Sultanate of Oman
| | - Mohammed-Hasham Azam
- Department of Civil Engineering, Middle East College, Al Rusayl, Sultanate of Oman
| | - Umais A Mehmood
- Department of Civil Engineering, Middle East College, Al Rusayl, Sultanate of Oman
| | - Ghithaa A Al-Mufragi
- Department of Civil Engineering, Middle East College, Al Rusayl, Sultanate of Oman
| | - Noor-Alhuda Alrawahi
- Department of Civil Engineering, Middle East College, Al Rusayl, Sultanate of Oman
| |
Collapse
|
38
|
Mønster J, Samuelsson J, Kjeldsen P, Scheutz C. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 35:177-186. [PMID: 25442105 DOI: 10.1016/j.wasman.2014.09.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h(-1), corresponding to 0.7-13.2 g m(-2)d(-1), with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41-81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y(-1). This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y(-1), which is significantly lower than the 33,300 tons y(-1) estimated for the national greenhouse gas inventory for 2011.
Collapse
Affiliation(s)
- Jacob Mønster
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej - Building 113, DK-2800 Lyngby, Denmark
| | - Jerker Samuelsson
- Chalmers University of Technology/FluxSense AB, SE-41296 Göteborg, Sweden.
| | - Peter Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej - Building 113, DK-2800 Lyngby, Denmark
| | - Charlotte Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej - Building 113, DK-2800 Lyngby, Denmark.
| |
Collapse
|
39
|
Su Y, Zhang X, Xia FF, Zhang QQ, Kong JY, Wang J, He R. Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems. Syst Appl Microbiol 2014; 37:200-7. [DOI: 10.1016/j.syapm.2013.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/15/2022]
|
40
|
Abushammala MFM, Basri NEA, Elfithri R. Assessment of methane emission and oxidation at Air Hitam Landfill site cover soil in wet tropical climate. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:9967-9978. [PMID: 23797636 DOI: 10.1007/s10661-013-3305-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.
Collapse
|
41
|
Zhu H, Letzel MO, Reiser M, Kranert M, Bächlin W, Flassak T. A new approach to estimation of methane emission rates from landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2013; 33:2713-2719. [PMID: 24084101 DOI: 10.1016/j.wasman.2013.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 08/02/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
Methane emission monitoring has become increasingly essential for diffusive area sources, especially for landfills, which contribute to a significant fraction of the total anthropogenic methane emission globally. Statutorily, methane emission rate from landfills in Germany shall be examined on a semiannual basis; however, an appropriate approach has yet to be developed and adopted for general use. In this study, a new method is proposed based on experimental results, which utilizes a TDLAS (Tunable Diode Laser Absorption Spectroscopy) instrument - GasFinder2.0 system and a dispersion model LASAT (Lagrangian Simulation of Aerosol Transport) as the measurement device and calculation model, respectively. Between April 2010 and December 2011, a research project was conducted at a pilot scale landfill in the south of Germany. Drawing on the extensive research into this pilot project, an effective strategy of measurement setup was determined. Methane concentration was measured with GasFinder2.0 system in the upstream and downstream sections of the project site, while wind and turbulence data were measured simultaneously by an ultrasonic anemometer. The average methane emission rate from the source can be calculated by using the results as input data in the dispersion model. With this method, site-specific measurement approaches can be designed for not only landfills, but also different diffusive area sources with less workload and lower cost compared to conventional FID (Flame Ionization Detector) method.
Collapse
Affiliation(s)
- Han Zhu
- University of Stuttgart, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, Bandtaele 2, 70569 Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Aguilar-Virgen Q, Taboada-González P, Ojeda-Benítez S. Seasonal analysis of the generation and composition of solid waste: potential use--a case study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:4633-4645. [PMID: 23010895 DOI: 10.1007/s10661-012-2893-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/12/2012] [Indexed: 06/01/2023]
Abstract
Ensenada health officials lack pertinent information on the sustainable management of solid waste, as do health officials from other developing countries. The aims of this research are: (a) to quantify and analyze the household solid wastes generated in the city of Ensenada, Mexico, and (b) to project biogas production and estimate generation of electrical energy. The characterization study was conducted by socioeconomic stratification in two seasonal periods, and the biogas and electrical energy projections were performed using the version 2.0 Mexico Biogas Model. Per capita solid waste generation was 0.779 ± 0.019 kg per person per day within a 98 % confidence interval. Waste composition is composed mainly of food scraps at 36.25 %, followed by paper and cardboard at 21.85 %, plastic at 12.30 %, disposable diapers at 6.26 %, and textiles at 6.28 %. The maximum capacity for power generation is projected to be 1.90 MW in 2019. Waste generated could be used as an intermediate in different processes such as recycling (41.04 %) and energy recovery (46.63 %). The electrical energy that could be obtained using the biogas generated at the Ensenada sanitary landfill would provide roughly 60 % of the energy needed for street lighting.
Collapse
Affiliation(s)
- Quetzalli Aguilar-Virgen
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Calzada Universitaria S/N Delegación Mesa de Otay, CP 22390 Tijuana, BC, Mexico.
| | | | | |
Collapse
|
43
|
Abushammala MFM, Basri NEA, Basri H, Kadhum AAH, El-Shafie AH. Empirical gas emission and oxidation measurement at cover soil of dumping site: example from Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:4919-4932. [PMID: 23054277 DOI: 10.1007/s10661-012-2913-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/24/2012] [Indexed: 06/01/2023]
Abstract
Methane (CH₄) is one of the most relevant greenhouse gases and it has a global warming potential 25 times greater than that of carbon dioxide (CO₂), risking human health and the environment. Microbial CH₄ oxidation in landfill cover soils may constitute a means of controlling CH₄ emissions. The study was intended to quantify CH₄ and CO₂ emissions rates at the Sungai Sedu open dumping landfill during the dry season, characterize their spatial and temporal variations, and measure the CH₄ oxidation associated with the landfill cover soil using a homemade static flux chamber. Concentrations of the gases were analyzed by a Micro-GC CP-4900. Two methods, kriging values and inverse distance weighting (IDW), were found almost identical. The findings of the proposed method show that the ratio of CH₄ to CO₂ emissions was 25.4 %, indicating higher CO₂ emissions than CH₄ emissions. Also, the average CH₄ oxidation in the landfill cover soil was 52.5 %. The CH₄ and CO₂ emissions did not show fixed-pattern temporal variation based on daytime measurements. Statistically, a negative relationship was found between CH₄ emissions and oxidation (R(2) = 0.46). It can be concluded that the variation in the CH₄ oxidation was mainly attributed to the properties of the landfill cover soil.
Collapse
Affiliation(s)
- Mohammed F M Abushammala
- Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | | | | | | | | |
Collapse
|
44
|
Lizik W, Im J, Semrau JD, Barcelona MJ. A field trial of nutrient stimulation of methanotrophs to reduce greenhouse gas emissions from landfill cover soils. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2013; 63:300-309. [PMID: 23556240 DOI: 10.1080/10962247.2012.755137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED Landfills are among the major sources of anthropogenic methane (CH4) estimated to reach 40 x 10(9) kg per year worldwide by 2015 (IPCC, 2007). A 2 1/2-year field experiment was conducted at a closed landfill in western Michigan where methanotrophs, methane-consuming bacteria, were stimulated by nutrient addition to the soil without significantly increasing biogenic nitrous oxide (N2O) production. The effects of the nitrogen amendments (KNO3 and NH4Cl), phenylacetylene (a selective inhibitor of nitrifying bacteria that contribute to N2O production), and a canopy (to reduce direct water infiltration) on the vertical soil gas profiles of CH4, CO2, and O2 were measured in the top meter of the soil. Methane and nitrous oxide fluxes were calculated from the corresponding soil gas concentration gradients with respect to depth and a Millington-Quirk diffusivity coefficient in soil derived empirically from soil porosity, water content, and diffusivity coefficients in air from the literature. Methane flux estimates were as high as 218.4 g m(-2) day(-1) in the fall and 12.8 g/m(-2) day(-1) in the summer. During the spring and summer CH4 fluxes were reduced by more than half by adding KNO3 and NH4Cl into the soil as compared to control plots, while N2O fluxes increased substantially. The concurrent addition of phenylacetylene to the amendment decreased peak N2O production by half and the rate of peak methane oxidation by about one-third. The seasonal average methane and N2O flux data were extrapolated to estimate the reduction of CH4 and N2O fluxes into the atmosphere by nitrogen and inhibitor addition to the cover soils. The results suggest that such additions coupled with soil moisture management may provide a potential strategy to significantly reduce greenhouse gas emissions from landfills. IMPLICATIONS The results of a 2 1/2-year study of effects of nutrient stimulation on methane oxidation in landfill cover soils demonstrates that nutrient addition does decrease methane emissions. The work further underscores the control which soil moisture exerts on methane oxidation. Water management is critical to the success of methane oxidation strategies.
Collapse
Affiliation(s)
- William Lizik
- US. Defense Logistics Agency, Richmond, Virginia, USA
| | | | | | | |
Collapse
|
45
|
Stanisavljevic N, Ubavin D, Batinic B, Fellner J, Vujic G. Methane emissions from landfills in Serbia and potential mitigation strategies: a case study. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2012; 30:1095-1103. [PMID: 22751946 DOI: 10.1177/0734242x12451867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Open dumping and landfilling have represented the predominant method of waste management in Serbia during the past decades. This practice resulted in over 3600 waste disposal sites distributed all over the country. The locations of the sites and their characteristics have been determined in the framework of the presented study. The vast majority of disposal sites (up to 3300) are characterized by small deposition depth of waste and total waste volumes of less than 10,000 m(3). Only about 50 landfills in Serbia contain more than 100,000 m(3) of waste. These large landfills are responsible for more than 95% of the total CH(4) emissions from waste disposal, which was assessed as 60,000 tons of CH(4) in 2010. The evaluation of different measures [soil cover, compost cover and landfill gas (LFG) systems] for mitigating greenhouse gas emissions from Serbian landfills indicated that enhanced microbial CH(4) oxidation (using a compost cover), as well as the installation of LFG systems, could generate net revenues as saved CH(4) emissions are creditable for the European Greenhouse Gas Emissions Trading Scheme. In total between 4 and 7 million tons of CO(2) equivalent emissions could be avoided within the next 20 years by mitigating CH(4) emissions from Serbian landfills.
Collapse
Affiliation(s)
- Nemanja Stanisavljevic
- Department of Environmental Engineering and Occupational Safety and Health, University of Novi Sad, Novi Sad, Serbia
| | | | | | | | | |
Collapse
|
46
|
Abushammala MFM, Basri H, Kadhum AAH. Regional landfills methane emission inventory in Malaysia. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2011; 29:863-873. [PMID: 20858637 DOI: 10.1177/0734242x10382064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.
Collapse
Affiliation(s)
- Mohammed F M Abushammala
- Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Selangor, Malaysia.
| | | | | |
Collapse
|
47
|
Scheutz C, Fredenslund AM, Chanton J, Pedersen GB, Kjeldsen P. Mitigation of methane emission from Fakse landfill using a biowindow system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:1018-1028. [PMID: 21345663 DOI: 10.1016/j.wasman.2011.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 01/18/2011] [Accepted: 01/22/2011] [Indexed: 05/30/2023]
Abstract
Landfills are significant sources of atmospheric methane (CH(4)) that contributes to climate change, and therefore there is a need to reduce CH(4) emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called "biocovers") to enhance biological oxidation of CH(4). A full scale biocover system to reduce CH(4) emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH(4) oxidation. Ten biowindows with a total area of 5000 m(2) were integrated into the existing cover at the 12 ha site. To increase CH(4) load to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH(4) was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH(4) emissions showed that a significant portion of the emission quantified in the baseline study continued unabated from the site. Total emission measurements suggested a reduction in CH(4) emission of approximately 28% at the end of the one year monitoring period. This was supported by analysis of stable carbon isotopes which showed an increase in oxidation efficiency from 16% to 41%. The project documented that integrating approaches such a whole landfill emission measurements using tracer techniques or stable carbon isotope measurements of ambient air samples are needed to document CH(4) mitigation efficiencies of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.
Collapse
Affiliation(s)
- Charlotte Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej - Building 113, 2800 Kongens Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
48
|
Scheutz C, Pedicone A, Pedersen GB, Kjeldsen P. Evaluation of respiration in compost landfill biocovers intended for methane oxidation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:895-902. [PMID: 21292472 DOI: 10.1016/j.wasman.2010.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/20/2010] [Indexed: 05/30/2023]
Abstract
A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH(4)). A laboratory and field investigation was performed to quantify respiration in an experimental compost biocover in terms of oxygen (O(2)) consumption and carbon dioxide (CO(2)) production and emission rates. O(2) consumption and CO(2) production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO(2) production and O(2) consumption rates of 107 ± 14 gm(-2)d(-1) and 63 ± 12 gm(-2)d(-1), respectively. Gas profiles from the columns showed elevated CO(2) concentrations throughout the compost layer, and CO(2) concentrations exceeded 20% at a depth of 40 cm below the surface of the biowindow. Overall, the results showed that respiration of compost material placed in biowindows might generate significant CO(2) emissions. In landfill compost covers, methanotrophs carrying out CH(4) oxidation will compete for O(2) with other aerobic microorganisms. If the compost is not mature, a significant portion of the O(2) diffusing into the compost layer will be consumed by non-methanotrophs, thereby limiting CH(4) oxidation. The results of this study however also suggest that the consumption of O(2) in the compost due to aerobic respiration might increase over time as a result of the accumulation of biomass in the compost after prolonged exposure to CH(4).
Collapse
Affiliation(s)
- Charlotte Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | |
Collapse
|
49
|
Gebert J, Röwer IU, Scharff H, Roncato CDL, Cabral AR. Can soil gas profiles be used to assess microbial CH4 oxidation in landfill covers? WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:987-994. [PMID: 21074981 DOI: 10.1016/j.wasman.2010.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/01/2010] [Accepted: 10/02/2010] [Indexed: 05/30/2023]
Abstract
A method is proposed to estimate CH(4) oxidation efficiency in landfill covers, biowindows or biofilters from soil gas profile data. The approach assumes that the shift in the ratio of CO(2) to CH(4) in the gas profile, compared to the ratio in the raw landfill gas, is a result of the oxidation process and thus allows the calculation of the cumulative share of CH(4) oxidized up to a particular depth. The approach was validated using mass balance data from two independent laboratory column experiments. Values corresponded well over a wide range of oxidation efficiencies from less than 10% to nearly total oxidation. An incubation experiment on 40 samples from the cover soil of an old landfill showed that the share of CO(2) from respiration falls below 10% of the total CO(2) production when the methane oxidation capacity is 3.8 μg CH(4)g(dw)(-1)h(-1) or higher, a rate that is often exceeded in landfill covers and biofilters. The method is mainly suitable in settings where the CO(2) concentrations are not significantly influenced by processes such as respiration or where CH(4) loadings and oxidation rates are high enough so that CO(2) generated from CH(4) oxidation outweighs other sources of CO(2). The latter can be expected for most biofilters, biowindows and biocovers on landfills. This simple method constitutes an inexpensive complementary tool for studies that require an estimation of the CH(4) oxidation efficiency values in methane oxidation systems, such as landfill biocovers and biowindows.
Collapse
Affiliation(s)
- Julia Gebert
- University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
50
|
Gebert J, Rachor I, Gröngröft A, Pfeiffer EM. Temporal variability of soil gas composition in landfill covers. WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:935-945. [PMID: 21074982 DOI: 10.1016/j.wasman.2010.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/07/2010] [Accepted: 10/07/2010] [Indexed: 05/30/2023]
Abstract
In order to assess the temporal variability of the conditions for the microbial oxidation of methane in landfill cover soils and their driving variables, gas composition at non-emissive and strongly emissive locations (hotspots) was monitored on a seasonal, daily and hourly time scale on an old, unlined landfill in northern Germany. Our study showed that the impact of the various environmental factors varied with the mode of gas transport and with the time scale considered. At non-emissive sites, governed by diffusive gas transport, soil gas composition was subject to a pronounced seasonal variation. A high extent of aeration, low methane concentrations and a high ratio of CO(2) to CH(4) were found across the entire depth of the soil cover during the warm and dry period, whereas in the cool and moist period aeration was less and landfill gas migrated further upward. Statistically, variation in soil gas composition was best explained by the variation in soil temperature. At locations dominated by advective gas transport and showing considerable emissions of methane, this pattern was far less pronounced with only little increase in the extent of aeration during drier periods. Here, the change of barometric pressure was found to impact soil gas composition. On a daily scale under constant conditions of temperature, gas transport at both types of locations was strongly impacted by the change in soil moisture. On an hourly scale, under constant conditions of temperature and moisture, gas migration was impacted most by the change in barometric pressure. It was shown that at diffusion-dominated sites complete methane oxidation was achieved even under adverse wintry conditions, whereas at hotspots, even under favorable dry and warm conditions, aerobic biological activity can be limited to the upper crust of the soil.
Collapse
Affiliation(s)
- Julia Gebert
- Institute of Soil Science, University of Hamburg, Allende-Platz 2, D 20146 Hamburg, Germany.
| | | | | | | |
Collapse
|