1
|
Han S, Song Y, Ju T, Meng Y, Meng F, Song M, Lin L, Liu M, Li J, Jiang J. Recycling municipal solid waste incineration fly ash in super-lightweight aggregates by sintering with clay and using SiC as bloating agent. CHEMOSPHERE 2022; 307:135895. [PMID: 35932915 DOI: 10.1016/j.chemosphere.2022.135895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Municipal solid waste incineration (MSWI) fly ash is classified as hazardous waste and requires proper treatments. Sintering of MSWI fly ash for the production of lightweight aggregate (LWA) is a promising treatment technology, while the dependence on natural bloating clay to produce high quality LWA has limited its wide application. In this study, by using SiC as a bloating agent, normal clay could be used to produce super-lightweight aggregate (bulk density <500 kg/m3) with MSWI fly ash. Effects of SiC addition amount, sintering temperature and duration on LWA performance were studied. The results showed that LWA with SiC addition of 0.1-0.5 wt% had significant expansion at sintering temperature of 1120 °C-1160 °C. The optimal conditions were 0.3 wt% SiC addition and sintering at 1120 °C for 30 min, and the bulk density could reach 212 kg/m3 with other properties meeting the LWA standard (GB/T 17431.1-2010). Further, the heavy metal leaching toxicity was significantly decreased after sintering and met the MSWI fly ash utilization standard (HJ 1134-2020). The X-ray diffraction results revealed the formation of a complex diopside-based phase after sintering. This study provides a new approach for recycling MSWI fly ash in LWA without dependence on specific clay resources, and makes this technology wider applicability.
Collapse
Affiliation(s)
- Siyu Han
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yingchun Song
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tongyao Ju
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fanzhi Meng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengzhu Song
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Li Lin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengdan Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinglin Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Municipal Solid Waste Incineration Ash-Incorporated Concrete: One Step towards Environmental Justice. BUILDINGS 2021. [DOI: 10.3390/buildings11110495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Municipal solid waste and cement manufacture are two sources of environmental justice issues in urban and suburban areas. Waste utilization is an attractive alternative to disposal for eliminating environmental injustice, reducing potential hazards, and improving urban sustainability. The re-use and recycling of municipal solid waste incineration (MSWI) ash in the construction industry has drawn significant attention. Incorporating MSWI ash in cement and concrete production is a potential path that mitigates the environmental justice issues in waste management and the construction industry. This paper presents a critical overview of the pretreatment methods that optimize MSWI ash utilization in cement/concrete and the influences of MSWI ash on the performance of cement/concrete. This review aims to elucidate the potential advantages and limitations associated with the use of MSWI ash for producing cement clinker, alternative binder (e.g., alkali-activated material), cement substitutes, and aggregates. A brief overview of the generation and characteristics of MSWI ash is reported, accompanied by identifying opportunities for the use of MSWI ash-incorporated products in industrial-scale applications and recognizing associated environmental justice implications.
Collapse
|
3
|
Zhang Y, Wang L, Chen L, Ma B, Zhang Y, Ni W, Tsang DCW. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125132. [PMID: 33858099 DOI: 10.1016/j.jhazmat.2021.125132] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Municipal solid waste incineration (MSWI) fly ash is considered as a hazardous waste that requires specific treatment before disposal. The principal treatments encompass thermal treatment, stabilization/solidification, and resource recovery. To maximize environmental, social, and economic benefits, the development of low-carbon and sustainable treatment technologies for MSWI fly ash has attracted extensive interests in recent years. This paper critically reviewed the state-of-the-art treatment technologies and novel resource utilization approaches for the MSWI fly ash. Innovative technologies and future perspectives of MSWI fly ash management were highlighted. Moreover, the latest understanding of immobilization mechanisms and the use of advanced characterization technologies were elaborated to foster future design of treatment technologies and the actualization of sustainable management for MSWI fly ash.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Liang Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Bin Ma
- Laboratory for Concrete & Construction Chemistry, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Yike Zhang
- State Key Laboratory of Energy Clean Utilization, Zhejiang University, Hangzhou 310027, China
| | - Wen Ni
- School of Civil and Resource Engineering, University of Science and Technology Beijing, 100083, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
4
|
Liu J, Hu L, Tang L, Ren J. Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123451. [PMID: 32688190 DOI: 10.1016/j.jhazmat.2020.123451] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
The proper treatment on hazardous municipal solid waste incineration fly ash (MSWIFA) is important. The application of alkali-activation technology to prepare alkali-activated MSWIFA (AAFA) material provides a potential not only to immobilise the heavy metals, but also to trigger its pozzolanic property in manufacturing building material. In this study, in addition to investigate the feasibility of alkaline activation technology in preparing AAFA with sodium silicate activator, the effect of metakaolin in AAFA (AAFM) was also explored to enhance its performance. The results showed that, compared to the AAFA, blending 10 % metakaolin in AAFA significantly improved both 28-day and 90-days compressive strengths, which was almost 200 % higher than that of AAFA. The compressive strength was increased with increasing the dosage of sodium silicate. The C-S-H gel was observed as the main hydration product of AAFA and AAFM. Moreover, the ettringite was observed in AAFM due to the reaction between the CaSO4 in MSWIFA and aluminate phase from metakaolin. Finally, the 28 and 210-day leaching behaviours of AAFM on Zn, Cu, Pb, Cd, Cr and Ni were successfully suppressed to less than 1 % of that originally from MSWIFA, which can meet the requirement from Chinese standards.
Collapse
Affiliation(s)
- Jun Liu
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lu Hu
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Luping Tang
- Department of Architecture and Civil Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | - Jun Ren
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China.
| |
Collapse
|
5
|
Zhu J, Chen Y, Zhang L, Yang K, Guan X, Zhao R. Insights on Substitution Preference of Pb Ions in Sulfoaluminate Cement Clinker Phases. MATERIALS 2020; 14:ma14010044. [PMID: 33374311 PMCID: PMC7796364 DOI: 10.3390/ma14010044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
The doping behaviors of Pb in sulfoaluminate cement (SAC) clinker phases were systematically studied combined with density functional theoretical simulations and experiments. The results present that, in the three composed minerals of C4A3S, C2S, and C4AF, Pb ions prefer to incorporate into C4A3S by substituting Ca ions. Further analyses from partial density of states, electron density difference, and local distortions show that such doping preference can be attributed to the small distortions as Pb introduced at Ca sites of C4A3S. The results and clear understandings on the doping behaviors of Pb ions may provide valuable information in guiding the synthesis of Pb-bearing SAC clinker, thus should draw broad interests in fields from sustainable production of cement and environmental protection.
Collapse
|
6
|
Yue Y, Liu Z, Liu Z, Zhang J, Lu M, Zhou J, Qian G. Rapid evaluation of leaching potential of heavy metals from municipal solid waste incineration fly ash. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 238:144-152. [PMID: 30851552 DOI: 10.1016/j.jenvman.2019.02.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Municipal solid waste incineration fly ash is directly landfilled after solidification in the industry. The rapid evaluation of contaminant leaching is required before the landfill of fly ash. In order to reduce the time to evaluate the effect of solidification, a set of rapid evaluation method was developed through the determination of characteristic index, heavy metal leaching analysis, principal component analysis, and mathematical model construction. It was found that f-CaO, acid neutralizing capacity, pH and soluble calcium were negatively correlated with heavy metal leaching. The soluble chlorine was positively correlated with heavy metal leaching. The effect of each feature indicators on heavy metal leaching was evaluated using principal component analysis and mathematical analysis software R.3.4.4. Furthermore, R.3.4.4 was used to detect the optimal model and the excess probability formula by stepwise linear regression and logistic regression analysis method. By introducing the measured value of feature indicator into the excess probability formula, the rate of excess-standard of heavy metals leaching can be preliminarily determined. Based on the above ideas, a rapid detection and evaluation system could be developed according to the local leaching standards and the components of fly ash selected locally.
Collapse
Affiliation(s)
- Yang Yue
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai, 200444, PR China
| | - Zeyuan Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai, 200444, PR China
| | - Zhongzhe Liu
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI, 53233, United States
| | - Jia Zhang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai, 200444, PR China
| | - Min Lu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai, 200444, PR China
| | - Jizhi Zhou
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai, 200444, PR China.
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai, 200444, PR China
| |
Collapse
|
7
|
Quina MJ, Bontempi E, Bogush A, Schlumberger S, Weibel G, Braga R, Funari V, Hyks J, Rasmussen E, Lederer J. Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:526-542. [PMID: 29679825 DOI: 10.1016/j.scitotenv.2018.04.150] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 05/03/2023]
Abstract
Environmental policies in the European Union focus on the prevention of hazardous waste and aim to mitigate its impact on human health and ecosystems. However, progress is promoting a shift in perspective from environmental impacts to resource recovery. Municipal solid waste incineration (MSWI) has been increasing in developed countries, thus the amount of air pollution control residues (APCr) and fly ashes (FA) have followed the same upward trend. APCr from MSWI is classified as hazardous waste in the List of Waste (LoW) and as an absolute entry (19 01 07*), but FA may be classified as a mirror entry (19 0 13*/19 01 14). These properties arise mainly from their content in soluble salts, potentially toxic metals, trace organic pollutants and high pH in contact with water. Since these residues have been mostly disposed of in underground and landfills, other possibilities must be investigated to recover secondary raw materials and products. According to the literature, four additional routes of recovery have been found: detoxification (e.g. washing), product manufacturing (e.g. ceramic products and cement), practical applications (e.g. CO2 sequestration) and recovery of materials (e.g. Zn and salts). This work aims to identify the best available technologies for material recovery in order to avoid landfill solutions. Within this scope, six case studies are presented and discussed: recycling in lightweight aggregates, glass-ceramics, cement, recovery of zinc, rare metals and salts. Finally, future perspectives are provided to advance understanding of this anthropogenic waste as a source of resources, yet tied to safeguards for the environment.
Collapse
Affiliation(s)
- Margarida J Quina
- CIEPQPF - Research Centre on Chemical Processes Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, Rua Silvio Lima, Polo II, 3030-790 Coimbra, Portugal.
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, 25123 Brescia, Italy.
| | - Anna Bogush
- Centre for Resource Efficiency & the Environment (CREE), Department of Civil, Environmental & Geomatic Engineering (CEGE), University College London (UCL), Chadwick Building, Gower Street, London WC1E 6BT, UK.
| | - Stefan Schlumberger
- Development Center for Sustainable Management of Recyclable Waste and Resources (ZAR), Wildbachstrasse 2, 8340 Hinwil, Switzerland.
| | - Gisela Weibel
- Development Center for Sustainable Management of Recyclable Waste and Resources (ZAR), Wildbachstrasse 2, 8340 Hinwil, Switzerland.
| | - Roberto Braga
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Piazza di Porta San Donato 1, 40126 Bologna, Italy.
| | - Valerio Funari
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Piazza di Porta San Donato 1, 40126 Bologna, Italy.
| | - Jiri Hyks
- Danish Waste Solutions ApS, Agern Allé 3, DK-2970 Hørsholm, Denmark.
| | - Erik Rasmussen
- Stena Recycling AS, Banemarksvej 40, DK-2605 Brøndby, Denmark.
| | - Jakob Lederer
- TU Wien, Christian-Doppler-Laboratory for Anthropogenic Resources, Karlsplatz 13/226, 1040 Vienna, Austria.
| |
Collapse
|