1
|
da Silva AP, Poquioma Hernández HV, Comelli CL, Guillén Portugal MA, Moreira Delavy F, de Souza TL, de Oliveira EC, de Oliveira-Ribeiro CA, Silva de Assis HC, de Castilhos Ghisi N. Meta-analytical review of antioxidant mechanisms responses in animals exposed to herbicide 2,4-D herbicide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171680. [PMID: 38479529 DOI: 10.1016/j.scitotenv.2024.171680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
The 2,4-Dichlorophenoxyacetic acid (2,4-D) is a low-cost herbicide to eradicate broadleaf weeds. Since the development of 2,4-D resistant transgenic crops, it has been described as one of the most widely distributed pollutants in the world, increasing concern about its environmental impacts. This study aimed to elucidate the antioxidant system response in animals exposed to 2,4-D by different routes of exposure. It focused on determining if tissue, phylogenetic group, and herbicide formulation would influence the antioxidant mechanisms. A careful literature search of Scopus, WoS, and Science Direct retrieved 6983, 24,098, and 20,616 articles, respectively. The dataset comprised 390 control-treatment comparisons and included three routes of exposure: transgenerational, oral, and topical. The data set for transgenerational and oral exposure revealed oxidative stress through a decrease in enzymatic activities and the level of molecules of the antioxidant system. In contrast, topical exposure increased the oxidative stress. Tissue-specific analyses revealed that the transgenerational effects reduced hepatic catalase (CAT) activity. Oral exposure caused a variety of effects, including increased CAT activity in the prostate and decreased activity in various tissues. Mammals predominate in the transgenerational and oral groups, showing a significantly reduced activity of the antioxidant system. In contrast, in the topical exposure, an increased activity of oxidative stress biomarkers was observed in fish, earthworms, and mollusks. The effects of the 2,4-D formulation on oxidative stress responses showed significant differences between pure and commercial formulations, with oral exposure resulting in decreased activity and topical exposure increasing responses. In summary, orally exposed animals exhibited a clear decrease in enzyme activities, transgenerational exposure elicited tissue-specific prompted biochemical reductions, and topical exposure induced increased responses, emphasizing the need for unbiased exploration of the effects of 2,4-D on biomarkers of oxidative stress while addressing publication bias in oral and topical datasets.
Collapse
Affiliation(s)
- Ana Paula da Silva
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil; Programa de Pós-Graduação em Agroecossistemas (PPGSIS), Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (UTFPR-DV), Brazil.
| | - Hilda Vanessa Poquioma Hernández
- Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (UTFPR-DV), Brazil
| | - Camila Luiza Comelli
- Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (UTFPR-DV), Brazil
| | - Miguel Angel Guillén Portugal
- Programa de Pós-Graduação em Zootecnia (PPGZOO), Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (UTFPR-DV), Brazil
| | - Fernanda Moreira Delavy
- Programa de Pós-Graduação em Zootecnia (PPGZOO), Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (UTFPR-DV), Brazil
| | - Tugstênio Lima de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Elton Celton de Oliveira
- Programa de Pós-Graduação em Agroecossistemas (PPGSIS), Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (UTFPR-DV), Brazil
| | - Ciro Alberto de Oliveira-Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Nédia de Castilhos Ghisi
- Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (UTFPR-DV), Brazil.
| |
Collapse
|
2
|
Martins RX, Carvalho M, Maia ME, Flor B, Souza T, Rocha TL, Félix LM, Farias D. 2,4-D Herbicide-Induced Hepatotoxicity: Unveiling Disrupted Liver Functions and Associated Biomarkers. TOXICS 2024; 12:35. [PMID: 38250991 PMCID: PMC10818579 DOI: 10.3390/toxics12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide worldwide and is frequently found in water samples. This knowledge has prompted studies on its effects on non-target organisms, revealing significant alterations to liver structure and function. In this review, we evaluated the literature on the hepatotoxicity of 2,4-D, focusing on morphological damages, toxicity biomarkers and affected liver functions. Searches were conducted on PubMed, Web of Science and Scopus and 83 articles were selected after curation. Among these studies, 72% used in vivo models and 30% used in vitro models. Additionally, 48% used the active ingredient, and 35% used commercial formulations in exposure experiments. The most affected biomarkers were related to a decrease in antioxidant capacity through alterations in the activities of catalase, superoxide dismutase and the levels of malondialdehyde. Changes in energy metabolism, lipids, liver function, and xenobiotic metabolism were also identified. Furthermore, studies about the effects of 2,4-D in mixtures with other pesticides were found, as well as hepatoprotection trials. The reviewed data indicate the essential role of reduction in antioxidant capacity and oxidative stress in 2,4-D-induced hepatotoxicity. However, the mechanism of action of the herbicide is still not fully understood and further research in this area is necessary.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Matheus Carvalho
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Maria Eduarda Maia
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Bruno Flor
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74055-110, Brazil;
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| |
Collapse
|
3
|
Wang X, Hao W. Reproductive and developmental toxicity of plant growth regulators in humans and animals. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105640. [PMID: 37945238 DOI: 10.1016/j.pestbp.2023.105640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
Plant growth regulators (PGRs) are currently one of the widely used pesticides, as being considered to have relatively low toxicity compared with other pesticides. However, widespread use may lead to overexposure from multiple sources. Exposure to PGRs is associated with different toxicity that affects many organs in our body, such as the toxicity to testis, ovaries, liver, kidneys and brain. In addition, some PGRs are considered potential endocrine disrupting chemicals. Evidence exists for development and reproductive toxicity associated with prenatal and postnatal exposure in both animals and humans. PGRs can affect the synthesis and secretion of sex hormones, destroy the structure and function of the reproductive system, and harm the growth and development of offspring, which may be related to germ cell cycle disorders, apoptosis and oxidative stress. This review summaries the reproductive and developmental toxicity data available about PGRs in mammals. In the future, conducting comprehensive epidemiological studies will be crucial for assessing the reproductive and developmental toxicity resulting from a mixture of various PGRs, with a particular emphasis on understanding the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China.
| |
Collapse
|
4
|
Nanni W, Porto GDS, Pereira JNB, Gonçalves ARN, Marinsek GP, Stabille SR, Favetta PM, Germano RDM, Mari RDB. Evaluation of myenteric neurons in the colon of rats exposed to 2,4 dichlorophenoxyacetic acid herbicide. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:421-429. [PMID: 35440284 DOI: 10.1080/03601234.2022.2064674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The assessment of the enteric nervous system provides a better understanding of the effects that contaminants can have on the health and well-being of organisms. It has been reported that 2,4-dichlorophenoxyacetic acid (2,4-D) is a highly persistent herbicide in the environment that is responsible for neurotoxic changes in different myenteric neuronal subpopulations. The current study aimed to evaluate the effects of 2,4-D on myenteric neurons in the colon of Rattus norvegicus for the first time. A dose of 2,4-D (5 mg/kg/day) was administered to the experimental group (2,4-D) for 15 days. Then, the proximal colon was collected and submitted to Giemsa and NADPH-d histochemical techniques for the disclosure of total and nitrergic neurons. The 2,4-D group presented a higher density of total neurons (p = 0.05, t-test), which together with the maintenance of nitrergic neuronal density, may be related to the increase in the expression of the neurotransmitter acetylcholine by colocalization, responsible for stimulating the intestinal smooth muscle and increasing the chances of the expulsion of the harmful content present in the lumen. Over 15 days, the neurotoxic effects of 2,4-D in the myenteric plexus influenced an increase in the general population of myenteric neurons in the colon.
Collapse
Affiliation(s)
- Wagner Nanni
- Post-graduate Programme in Animal Science, Universidade Paranaense, Umuarama, Paraná, Brazil
| | - Gisele da Silva Porto
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | | | | | - Sandra Regina Stabille
- Post-graduate Programme in Animal Science, Universidade Paranaense, Umuarama, Paraná, Brazil
| | | | - Ricardo de Melo Germano
- Post-graduate Programme in Animal Science, Universidade Paranaense, Umuarama, Paraná, Brazil
| | - Renata de Britto Mari
- Department of Biological and Environmental Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
5
|
Erdemli Z, Erdemli ME, Turkoz Y, Yigitcan B, Aladag MA, Cigremis Y, Cırık RH, Altinoz E, Bag HG. Vitamin E effects on developmental disorders in fetuses and cognitive dysfunction in adults following acrylamide treatment during pregnancy. Biotech Histochem 2021; 96:11-19. [PMID: 32347129 DOI: 10.1080/10520295.2020.1751880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We investigated the effects of acrylamide (AA) and vitamin E treatment during pregnancy on brain tissues of fetuses and on adult rats. Pregnant rats were divided into five groups: control, corn oil, vitamin E, AA, vitamin E +AA. The rats administered AA received10 mg/kg/day and those administered vitamin E received 100 mg/kg/day both by via oral gavage for 20 days. On day 20 of pregnancy, half of the pregnant rats were removed by cesarean section in each group. Morphological development parameters were measured in each fetus and histopathological, biochemical and genetic analyses were conducted on the fetuses. The remaining pregnant rats in each group gave birth to the fetuses vaginally and biochemical, histopathological, genetic and cognitive function tests were conducted when the pups were 8 weeks old. AA administration caused adverse effects on fetus number, fetal weight, crown-rump length, placenta and brain weight. AA negatively affected malondialdehyde, reduced glutathione, total oxidant and antioxidant status, brain derived neurotrophic factor (BDNF) levels, brain tissue morphology, histopathology error score and gene expression (BDNF/β-actin mRNA ratio) in fetuses. AA administration caused disruption of biochemical, histopathological and cognitive functions in adult rats. Vitamin E provided protection against neurotoxicity in both fetuses and adult rats. We conclude that exposure to AA during pregnancy should be avoided and adequate amounts of antioxidants, such as vitamin E, should be consumed.
Collapse
Affiliation(s)
- Zeynep Erdemli
- Department of Medical Biochemistry, Medical Faculty, Inonu University , Malatya, Turkey
| | - Mehmet Erman Erdemli
- Department of Medical Biochemistry, Medical Faculty, Inonu University , Malatya, Turkey
| | - Yusuf Turkoz
- Department of Medical Biochemistry, Medical Faculty, Inonu University , Malatya, Turkey
| | - Birgul Yigitcan
- Department of Histology and Embryology, Medical Faculty, Inonu University , Malatya, Turkey
| | - Mehmet Arif Aladag
- Department of Neurosurgery, Medical Faculty, Inonu University , Malatya, Turkey
| | - Yilmaz Cigremis
- Department of Medical Biology and Genetics, Medical Faculty, Inonu University , Malatya, Turkey
| | - Rumeyza Hilal Cırık
- Department of Histology and Embryology, Medical Faculty, Inonu University , Malatya, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Medical Faculty, Karabuk University , Karabuk, Turkey
| | - Harika Gozukara Bag
- Department of Biostatistics, Medical Faculty, Inonu University , Malatya, Turkey
| |
Collapse
|
6
|
Rocha DR, Nery JF, Furini LN, Constantino CJL, Eller LKW, Nai GA, Nakagaki WR. Effects of consumption of contaminated feed with 2,4-dichlorophenoxyacetic acid (2,4-D) on the rat tibia: analysis by Raman spectroscopy and mechanical properties. Lasers Med Sci 2020; 35:1703-1709. [DOI: 10.1007/s10103-020-02961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/10/2020] [Indexed: 11/29/2022]
|
7
|
Erdemli Z, Erdemli ME, Turkoz Y, Gul M, Yigitcan B, Gozukara Bag H. The effects of acrylamide and Vitamin E administration during pregnancy on adult rats testis. Andrologia 2019; 51:e13292. [DOI: 10.1111/and.13292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Zeynep Erdemli
- Faculty of Medicine, Department of Medical Biochemistry Inonu University Malatya Turkey
| | - Mehmet Erman Erdemli
- Faculty of Medicine, Department of Medical Biochemistry Inonu University Malatya Turkey
| | - Yusuf Turkoz
- Faculty of Medicine, Department of Medical Biochemistry Inonu University Malatya Turkey
| | - Mehmet Gul
- Faculty of Medicine, Department of Histology and Embryology Inonu University Malatya Turkey
| | - Birgul Yigitcan
- Faculty of Medicine, Department of Histology and Embryology Inonu University Malatya Turkey
| | - Harika Gozukara Bag
- Faculty of Medicine, Department of Biostatistics Inonu University Malatya Turkey
| |
Collapse
|
8
|
Erdemli ME, Aksungur Z, Gul M, Yigitcan B, Bag HG, Altinoz E, Turkoz Y. The effects of acrylamide and vitamin E on kidneys in pregnancy: an experimental study. J Matern Fetal Neonatal Med 2018; 32:3747-3756. [PMID: 29764249 DOI: 10.1080/14767058.2018.1471675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Objectives: The objective of this study is to investigate possible damages to kidney tissues of pregnant rats and their fetuses exposed to acrylamide during pregnancy and possible protective effects of vitamin E against these damages. Material and methods: Rats were randomly assigned to five groups of control, corn oil, vitamin E, acrylamide, vitamin E + acrylamide, six pregnant rats in each. Mother and fetal kidney tissues were examined for malondialdehyde (MDA), reductase glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), total antioxidant status (TAS), total oxidant status (TOS), urea, creatine, trace elements such as Zn and Cu in the serum and histopathological analyses were conducted. Results: It was determined that acrylamide, administered during pregnancy, statistically significantly increased MDA and TOS levels, maternal serum urea, creatinine, and Zn levels, while it decreased GSH, TAS, SOD, and CAT levels (p ≤ .05) when compared with all other groups in the kidney tissues of pregnant rats and their fetuses and caused tubular degeneration, hemorrhage, narrowing, and closure in Bowman's space, and, in the E vitamin group, it statistically significantly increased GSH, TAS, SOD, CAT, urea, creatinine, and Zn levels when compared with other groups and lowered TOS and MDA levels to those of the control group (p < .05) and there were no differences between the groups histologically. Conclusion: It was observed that acrylamide administered during pregnancy caused oxidative stress in kidney tissues of mother rats and their fetuses, resulting in tissue damage, and vitamin E application, which is considered to be a powerful antioxidant, inhibited oxidative stress.
Collapse
Affiliation(s)
- Mehmet Erman Erdemli
- a Department of Medical Biochemistry, Medical Faculty , Nigde Omer Halisdemir University , Nigde , Turkey
| | - Zeynep Aksungur
- b Department of Medical Biochemistry, Medical Faculty , Inonu University , Malatya , Turkey
| | - Mehmet Gul
- c Department of Histology and Embryology, Medical Faculty , Inonu University , Malatya , Turkey
| | - Birgul Yigitcan
- c Department of Histology and Embryology, Medical Faculty , Inonu University , Malatya , Turkey
| | - Harika Gozukara Bag
- d Department of Biostatistics, Medical Faculty , Inonu University , Malatya , Turkey
| | - Eyup Altinoz
- e Department of Medical Biochemistry, Medical Faculty , Karabuk University , Karabuk , Turkey
| | - Yusuf Turkoz
- b Department of Medical Biochemistry, Medical Faculty , Inonu University , Malatya , Turkey
| |
Collapse
|
9
|
Li K, Wu JQ, Jiang LL, Shen LZ, Li JY, He ZH, Wei P, Lv Z, He MF. Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos. CHEMOSPHERE 2017; 171:40-48. [PMID: 28002765 DOI: 10.1016/j.chemosphere.2016.12.032] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 05/03/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is widely used in agriculture as herbicide/pesticide, plant growth regulator and fruit preservative agent. It progressively accumulates in the environment including surface water, air and soil. It could be detected in human food and urine, which poses great risk to the living organisms. In the present study, we investigated the developmental toxicity of 2,4-D on zebrafish (Danio rerio) embryo. 2,4-D exposure significantly decreased both the survival rate (LC50 = 46.71 mg/L) and hatching rate (IC50 = 46.26 mg/L) of zebrafish embryos. The most common developmental defect in 2,4-D treated embryos was pericardial edema. 2,4-D (25 mg/L) upregulated marker genes of cardiac development (vmhc, amhc, hand2, vegf, and gata1) and downregulated marker genes of oxidative stress (cat and gpx1a). Whole mount in situ hybridization confirmed the vmhc and amhc upregulation by 2,4-D treatment. LC/MS/MS showed that the bioaccumulation of 2,4-D in zebrafish embryos were increased in a time-dependent manner after 25 mg/L of 2,4-D treatment. Taken together, our study investigated the toxic effects of 2,4-D on zebrafish embryonic development and its potential molecular mechanisms, gave evidence for the full understanding of 2,4-D toxicity on living organisms and shed light on its environmental impact.
Collapse
Affiliation(s)
- Kang Li
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Jia-Qi Wu
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Ling-Ling Jiang
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Li-Zhen Shen
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Jian-Ying Li
- Nanjing Emory Biotechnology Company, Nanjing, 210042, PR China
| | - Zhi-Heng He
- School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Ping Wei
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Zhuo Lv
- Shanxi Institute for Food and Drug Control, Xi'an, 710065, PR China
| | - Ming-Fang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| |
Collapse
|
10
|
Erdemli ME, Altinoz E, Aksungur Z, Turkoz Y, Dogan Z, Gozukara Bag H. Biochemical investigation of the toxic effects of acrylamide administration during pregnancy on the liver of mother and fetus and the protective role of vitamin E. J Matern Fetal Neonatal Med 2016; 30:844-848. [PMID: 27161006 DOI: 10.1080/14767058.2016.1188381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To investigate the toxic effects occurring in the liver tissues of the pregnant rats and the fetuses, which are administered acrylamide and vitamin E as a protector during pregnancy. MATERIALS AND METHODS This research was conducted with the permission of Laboratory Animals Ethical Board of Inonu University Faculty of Medicine. Forty rats, of which their pregnancy is validated via vaginal smear, were distributed into five different groups. On the 20th day of pregnancy, pregnant rats and fetuses are decapitated. Malondialdehyde (MDA), reduced glutathione (GSH), total antioxidant status (TAS), total oxidant status (TOS) and xanthine oxidase (XO) levels were measured in the liver samples taken from mother and fetuses. RESULTS It was detected that acrylamide administered during pregnancy increased MDA, TOS, XO levels statistically significantly and decreased the GSH level (p ≤ 0.05) in the pregnant rat liver tissue when compared to all other groups. In the vitamin E administered group; GSH, TAS levels significantly increased statistically and TOS and XO levels dropped to levels of the control group (p ≤ 0.05), in comparison to all other groups. Among all groups, no biochemical changes were observed in the fetus liver tissue (p > 0.05). CONCLUSION The liver of pregnant rats functions as a protective pre-filter by detoxifying acrylamide effectively and the acrylamide that reaches fetus liver is detoxified by the cytochrome P-450 system of the fetus liver. To be able to figure out the biochemical mechanism, more advanced studies are needed.
Collapse
Affiliation(s)
- Mehmet Erman Erdemli
- a Department of Medical Biochemistry , Medical Faculty, Inonu University , Malatya , Turkey
| | - Eyup Altinoz
- b Department of Medical Biochemistry , Medical Faculty, Karabuk University , Karabuk , Turkey
| | - Zeynep Aksungur
- a Department of Medical Biochemistry , Medical Faculty, Inonu University , Malatya , Turkey
| | - Yusuf Turkoz
- a Department of Medical Biochemistry , Medical Faculty, Inonu University , Malatya , Turkey
| | - Zumrut Dogan
- c Department of Anatomy , Medical Faculty, Adıyaman University , Adıyaman , Turkey , and
| | - Harika Gozukara Bag
- d Department of Biostatistics , Medical Faculty, Inonu University , Malatya , Turkey
| |
Collapse
|