1
|
Abidin AU, Maziya FB, Susetyo SH, Sulistiyani AT, Yoneda M, Nagaya T, Matsui Y. Environmental pollution and health risks to informal workers: Exposure to heavy metals in human hair at Indonesian landfills. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104685. [PMID: 40169069 DOI: 10.1016/j.etap.2025.104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/11/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
The concentration of heavy metals (HMs) in human hair is a bioindicator of environmental pollution over a long period from worker, including the informal worker at landfills. A landfill is where final-stage refuse is deposited, transported, and disposed of solid waste from urban areas. No study has been conducted on heavy metals in landfills and their health impact on informal workers. This study aims to investigate the accumulation of heavy metals over a long period, the effect of toxic metal exposure on the human body, and the health risks informal workers perceive as bioindicators of pollution in landfills. Human hair samples collected from informal workers and urban were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to measure HMs and human hair certified reference material (CRM) from the national institute for environmental studies, Japan. The sample consisted of individuals who were interviewed and had their hair cut. The total number of respondents in this study was 51 people. The average concentrations of the element heavy metals (µg/g) in informal workers are shown: Pb 4.70, As 0.30, Cd 1.07, Mn 14.58, Co 0.14, Cu 19.31, Fe 73.05, Zn 646.2, and Se 0.65. The results of our study the concentrations of heavy metals were higher than those found for urban residents. In the education level variable, 17.4 % of respondents did not attend school, 50 % attended primary school, and 32.6 % attended junior high school. Gender of respondents, 71.7 % are female, and in the working period, 69.6 % are more than ten years old. An epidemiological study and statistical analysis show the respondents' symptoms & health complaints such as cough, breathlessness, headache, nose irritation, variable mask, duration using a mask, and characteristics of the respondent's significant correlations p-value < 0.05 with a concentration of all metals. These findings show that the HMs have contaminated the environment and entered the human bodies, posing health risks to informal workers in the landfill working area.
Collapse
Affiliation(s)
- Azham Umar Abidin
- Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia.
| | - Fina Binazir Maziya
- Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
| | - Septian Hadi Susetyo
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan; Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | | | - Minoru Yoneda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Taiki Nagaya
- Laboratory Safety and Occupational Health Engineering, Energy management Engineering, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuto Matsui
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan; Laboratory Safety and Occupational Health Engineering, Energy management Engineering, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Moravcová M, Lomozová Z, Kučera R, Mladěnka P. 3-Hydroxyflavone is a mildly active and safe cobalt chelator while cobalt markedly enhances baicalein toxicity toward erythrocytes. RSC Adv 2023; 13:29242-29251. [PMID: 37809024 PMCID: PMC10551802 DOI: 10.1039/d3ra02735j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Cobalt intoxication can occur after its release from metal-based prostheses, which is generally clinically severe. Therefore, there is a need for the development of a cobalt chelator since there are currently no approved drugs for cobalt intoxication. As flavonoids are known for their metal chelating properties and safety, the screening of cobalt chelating properties was performed in a total of 23 flavonoids by our recently developed new spectrophotometric assay. Further assessment of positive or negative consequences of cobalt chelation was performed both in vitro and ex vivo. Six and thirteen flavonoids significantly chelated cobalt ions at pH 7.5 and 6.8, respectively. Baicalein demonstrated a significant activity even at pH 5.5; however, none of the flavonoids showed chelation at pH 4.5. In general, baicalein and 3-hydroxyflavone were the most active. They also mildly decreased the cobalt-triggered Fenton reaction, but baicalein toxicity toward red blood cells was strongly increased by the addition of cobalt. Quercetin, tested as an example of flavonoid unable to chelate cobalt ions significantly, stimulated both the cobalt-based Fenton reaction and the lysis of erythrocytes in the presence of cobalt. Therefore, 3-hydroxyflavone can serve as a potential template for the development of novel cobalt chelators.
Collapse
Affiliation(s)
- Monika Moravcová
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University Akademika Heyrovského 1203 50005 Hradec Králové Czech Republic +420-495-067-295
| | - Zuzana Lomozová
- The Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University Akademika Heyrovského 1203 50005 Hradec Králové Czech Republic
| | - Radim Kučera
- The Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University Akademika Heyrovského 1203 50005 Hradec Králové Czech Republic
| | - Přemysl Mladěnka
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University Akademika Heyrovského 1203 50005 Hradec Králové Czech Republic +420-495-067-295
| |
Collapse
|
3
|
Yao J, Zhou P, Zhang X, Yuan B, Pan Y, Jiang J. The Cytotoxicity of Tungsten Ions Derived from Nanoparticles Correlates with Pulmonary Toxicity. TOXICS 2023; 11:528. [PMID: 37368628 DOI: 10.3390/toxics11060528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Tungsten carbide nanoparticles (nano-WC) are prevalent in composite materials, and are attributed to their physical and chemical properties. Due to their small size, nano-WC particles can readily infiltrate biological organisms via the respiratory tract, thereby posing potential health hazards. Despite this, the studies addressing the cytotoxicity of nano-WC remain notably limited. To this purpose, the BEAS-2B and U937 cells were cultured in the presence of nano-WC. The significant cytotoxicity of nano-WC suspension was evaluated using a cellular LDH assay. To investigate the cytotoxic impact of tungsten ions (W6+) on cells, the ion chelator (EDTA-2Na) was used to adsorb W6+ from nano-WC suspension. Subsequent to this treatment, the modified nano-WC suspension was subjected to flow cytometry analysis to evaluate the rates of cellular apoptosis. According to the results, a decrease in W6+ could mitigate the cellular damage and enhance cell viability, which indicated that W6+ indeed exerted a significant cytotoxic influence on the cells. Overall, the present study provides valuable insight into the toxicological mechanisms underlying the exposure of lung cells to nano-WC, thereby reducing the environmental toxicant risk to human health.
Collapse
Affiliation(s)
- Jun Yao
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Pengfei Zhou
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Zhang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Beilei Yuan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing Tech University, Nanjing 211816, China
| | - Yong Pan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing Tech University, Nanjing 211816, China
| | - Juncheng Jiang
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing Tech University, Nanjing 211816, China
- School of Environment and Safety Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Sirinara P, Patarapongsant Y, Nilyai S, Sooklert K, Dissayabutra T, Rojanathanes R, Sereemaspun A. "Assessing exposure of printing factory workers in thailand to selected heavy metals using urine and hair as non-invasive matrices". BMC Public Health 2023; 23:31. [PMID: 36604667 PMCID: PMC9817298 DOI: 10.1186/s12889-022-14807-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There are few thorough studies on the extent and inter-element relationships of heavy metal contamination in printing factory workers, especially in developing countries. The objective of this study was to determine the levels of eight heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), cobalt (Co), lead (Pb), mercury (Hg), and manganese (Mn), in urine and scalp hair of printing industry workers, and assess inter-element correlations. METHODS We examined a total of 85 urine samples and 85 scalp hair samples (3 cm hair segments taken from near the scalp) in 85 printing workers from a printing house in Bangkok, Thailand. We used an interviewer-administered questionnaire about participants' printing techniques, work characteristics, and work environment. Urine and scalp hair samples were analyzed for levels of each element using the inductively coupled plasma optical emission spectrometry (ICP-OES) technique. RESULTS As, Cd, Cr, Ni, Pb were detected in urine with the geometric mean concentration range of 0.0028-0.0209 mg/L, and Hg, Pb, Ni, Cd, Co, Mn, Cr were detected in hair samples (0.4453-7.165 mg/kg dry weight) of printing workers. The geometric mean Ni level was significantly higher in the urine of production line workers than back-office personnel (0.0218 mg/L vs. 0.0132 mg/L; p = 0.0124). The other elements did not differ significantly between production line and back-office workers in either urine or hair. There was also a strong, statistically significant positive correlation between Ni and Co levels in hair samples of workers (r = 0.944, p < 0.0001). CONCLUSIONS Average concentrations of most of the metals in urine and hair of printing workers were found to be above the upper reference values. The significantly higher concentrations of Ni in production line workers might be due to more exposure to printed materials. A strong inter-element correlation between Ni and Co in hair samples can increase stronger health effects and should be further investigated. This study reveals possible dependencies and impact interactions of heavy metal exposure in printing factory workers.
Collapse
Affiliation(s)
- Patthrarawalai Sirinara
- grid.411628.80000 0000 9758 8584Department of Preventive and Social Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yupin Patarapongsant
- grid.7922.e0000 0001 0244 7875Behavioral Research and Informatics in Social Sciences Research Unit (RU-BRI), SASIN School of Management, Chulalongkorn University, Bangkok, Thailand
| | - Siwaporn Nilyai
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanidta Sooklert
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thasinas Dissayabutra
- grid.7922.e0000 0001 0244 7875Department of Biochemistry Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rojrit Rojanathanes
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Amornpun Sereemaspun
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Yan W, Ma D, Liu Y, Sun W, Cheng D, Li G, Zhou S, Wang Y, Wang H, Ni C. PTX3 alleviates hard metal-induced acute lung injury through potentiating efferocytosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113139. [PMID: 34995911 DOI: 10.1016/j.ecoenv.2021.113139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Prolonged exposure to hard metal dust results in hard metal lung disease (HMLD) characterized by respiratory symptoms. Understanding the pathogenesis and pathological process of HMLD would be helpful for its early diagnosis and treatment. In this study, we established a mouse model of hard metal-induced acute lung injury through one-time intratracheal instillation of WC-Co dust suspension. We found that WC-Co treatment damaged the lungs of mice, leading to increased production of IL-1β, TNF-α, IL-6 and IL-18, inflammatory cells infiltration and apoptosis. In vitro, WC-Co induced cytotoxicity, inflammatory response and apoptosis in macrophages (PMA-treated THP-1) and epithelial cells (A549) in a dose-dependent manner. Moreover, RNA-sequence and validation experiments verified that Pentraxin 3 (PTX3), an important mediator in the regulation of inflammation, was elevated both in vivo and in vitro induced by WC-Co. Functional experiments confirmed the PTX3, which was located on the membrane of apoptotic cells, promoted macrophage efferocytosis efficiently. This progress could help block the lung inflammation and contribute to the rapid recovery of WC-Co-induced acute lung injury. These observations provide a further understanding of the molecular mechanism of WC-Co-induced pulmonary injury and disclose PTX3 as a new potential therapeutic approach to relieve WC-Co-induced acute lung injury via efferocytosis.
Collapse
Affiliation(s)
- Weiwen Yan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongyu Ma
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Demin Cheng
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guanru Li
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siyun Zhou
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Wang
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huanqiang Wang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Chunhui Ni
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|