1
|
Zhang X, Kang H, Peng L, Song D, Jiang X, Li Y, Chen H, Zeng X. Pentachlorophenol inhibits CatSper function to compromise progesterone's action on human sperm. CHEMOSPHERE 2020; 259:127493. [PMID: 32622245 DOI: 10.1016/j.chemosphere.2020.127493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Pentachlorophenol (PCP), a highly toxic contaminant of chlorophenols, is common in a variety of environments and presents serious risks to animal and human health. However, the reproductive toxicity and potential actions of PCP have not been investigated thoroughly, especially in humans. Here, human spermatozoa were used to evaluate the effect of PCP on cell function and to explore the underlying mechanisms. PCP had no substantive effects on sperm viability or motility, nor on the ability to penetrate viscous medium, sperm hyperactivation or spontaneous acrosome reactions. However, PCP significantly inhibited these properties induced by progesterone (P4). Consistent with the functional observations, although PCP itself did not affect the basal intracellular Ca2+ concentrations and CatSper current, PCP dose-dependently inhibited increases of intracellular Ca2+ concentrations caused by P4. In addition, the activation of CatSper induced by P4 was largely suppressed by PCP. This is the first report showing that PCP may serves as an antagonist of the P4 membrane receptor to interfere with Ca2+ signaling by compromising the action of P4 on regulating sperm function. These findings suggest that the reproductive toxicity of PCP should also be a matter of concern as a mammalian health risk.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226019, PR China; Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Hang Kang
- Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Lizhong Peng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226019, PR China
| | - Dandan Song
- Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Xin Jiang
- Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Yanting Li
- Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, PR China
| | - Xuhui Zeng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226019, PR China; Institute of Life Science, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
2
|
Degradation of pentachlorophenol by high temperature hydrolysis. ACTA INNOVATIONS 2019. [DOI: 10.32933/actainnovations.31.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The long-term use of plant protection products in agriculture, including pentachlorophenol (PCP), has contributed to their widespread distribution in the natural environment. So far, no cheap and effective techniques for removing chlorophenols by physicochemical or biological methods have been developed. Therefore, alternative methods of neutralizing them are currently being sought. The aim of the study was to investigate the possibility of pentachlorophenol decomposition by high temperature thermohydrolysis. The decomposition process was carried out at a constant pressure of 25 MPa, in the temperature range of 20°C to 500°C and at various volumetric flows of PCP through the reactor. Detailed analysis of the results showed that the process and degree of pentachlorophenol reduction depended on residence time in the reactor and the process temperature. The obtained results indicate that thermohydrolysis in supercritical water is not an effective method to neutralize pentachlorophenol. The high costs of conducting this process together with an average degree of PCP conversion (the conversion of pentachlorophenol at the lowest volumetric flow rate through the reactor reached about 45%) cause that thermohydrolysis at high temperature is not a costeffective method of neutralizing pentachlorophenol.
Collapse
|
3
|
Verbrugge LA, Kahn L, Morton JM. Pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans in surface soil surrounding pentachlorophenol-treated utility poles on the Kenai National Wildlife Refuge, Alaska USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19187-19195. [PMID: 29858999 PMCID: PMC6061508 DOI: 10.1007/s11356-018-2269-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/07/2018] [Indexed: 06/04/2023]
Abstract
Composite surface soil samples were collected at 0, 25, and 50 cm from the base of 12 utility poles on the Kenai National Wildlife Refuge in Alaska, to assess the extent to which pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans may have leached from pentachlorophenol-treated poles. Six pairs of utility poles were included, consisting of an "old" pole manufactured in 1959 or 1963, a "new" pole manufactured within the past 20 years, and a suitable background soil sample from the same vicinity. Old poles had greater concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TEQs) near the pole base and at 25 cm than "new" poles did. For all 12 poles combined, the mean pentachlorophenol levels in soil were 1810, 157, and 17.8 ppm dry weight (d.w.) near the pole bases, at 25 and 50 cm from the poles, respectively, while the mean total TEQ levels in soil were 15,200, 5170, and 1510 parts per trillion d.w. at those distances. Surface soil levels of pentachlorophenol and TCDD-TEQs exceeded both human health and ecological risk-based screening levels. The design and results of this study were similar to another project in Montreal, Quebec in Canada. Together the results are cause for concern, indicating that millions of similarly treated utility poles in North America may be point sources of pentachlorophenol and dioxins/furans to soil.
Collapse
Affiliation(s)
- Lori A Verbrugge
- U.S. Fish and Wildlife Service, Alaska Regional Office, 1011 E. Tudor Rd, Anchorage, AK, USA.
| | - Lynnda Kahn
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, P.O. Box 2139, Soldotna, AK, USA
| | - John M Morton
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, P.O. Box 2139, Soldotna, AK, USA
| |
Collapse
|
4
|
Xu Y, Xue L, Ye Q, Franks AE, Zhu M, Feng X, Xu J, He Y. Inhibitory Effects of Sulfate and Nitrate Reduction on Reductive Dechlorination of PCP in a Flooded Paddy Soil. Front Microbiol 2018; 9:567. [PMID: 29643842 PMCID: PMC5882776 DOI: 10.3389/fmicb.2018.00567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/13/2018] [Indexed: 01/12/2023] Open
Abstract
Pentachlorophenol (PCP) is highly toxic and persistent in soils. Bioreduction of PCP often co-occurs with varying concentrations of sulfate and nitrate in flooded paddy soils where each can act as an electron acceptor. Anaerobic soil microcosms were constructed to evaluate the influence of sulfate and nitrate amendments and their redox processes. Microcosms with varying sulfate and nitrate concentrations demonstrated an inhibitory effect on reductive dechlorination of PCP compared to an untreated control. Compared to nitrate, sulfate exhibited a more significant impact on PCP dechlorination, as evidenced by a lower maximum reaction rate and a longer time to reach the maximum reaction rate. Dechlorination of PCP was initiated at the ortho-position, and then at the para- and meta-positions to form 3-CP as the final product in all microcosms. Deep sequencing of microbial communities in the microcosms revealed a strong variation in bacterial taxon among treatments. Specialized microbial groups, such as the genus of Desulfovibrio responding to the addition of sulfate, had a potential to mediate the competitive microbial dechlorination of PCP. Our results provide an insight into the competitive microbial-mediated reductive dechlorination of PCP in natural flooded soil or sediment environments.
Collapse
Affiliation(s)
- Yan Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Lili Xue
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Qi Ye
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia.,Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia
| | - Min Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Xi Feng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| |
Collapse
|
5
|
Xue L, Feng X, Xu Y, Li X, Zhu M, Xu J, He Y. The dechlorination of pentachlorophenol under a sulfate and iron reduction co-occurring anaerobic environment. CHEMOSPHERE 2017; 182:166-173. [PMID: 28499177 DOI: 10.1016/j.chemosphere.2017.04.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
An anaerobic soil slurry incubation experiment was conducted by controlling different Fe/S mole ratios (1/3, 1/2, 1/1, 2/1, 3/1, 8/1 and the control without sulfate) through the addition of sodium sulfate, to investigate the effect of sulfate and iron reduction on the reductive dechlorination of pentachlorophenol (PCP). Two sequential incubation periods were carried out with the stage I incubation conducted under a low electron donor concentration (0.5 mM lactate) and stage II incubation conducted under increased electron donor supply with lactate at 20 mM. During stage I, the production of Fe(II) occurred markedly while sulfate reduction and PCP dechlorination rate were low, with the highest dechlorination rates of PCP only 11.0% among all treatments at the end of stage I incubation. During stage II, both PCP dechlorination and sulfate reduction were greatly enhanced in all treatments, while the concentration of Fe(II) changed slightly. The rate of PCP dechlorination decreased (from 87.7% to 34.2%) with the increase of sulfate concentration (from Fe/S mole ratio of 8/1 to 1/3). Our study suggested that the presence of a certain amount of sulfate might facilitate PCP dechlorination in the range of Fe/S mole ratios greater than 1 when compared with the control without SO42-. With the investigation of the dechlorination of PCP under the Fe-S-PCP coexisting condition with different Fe/S mole ratios, our study may provide improved strategy for optimizing the remediation of flooded soils and sediments polluted by PCP.
Collapse
Affiliation(s)
- Lili Xue
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xi Feng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xinfeng Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Min Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
6
|
Cui Y, Liang L, Zhong Q, He Q, Shan X, Chen K, Huang F. The association of cancer risks with pentachlorophenol exposure: Focusing on community population in the areas along certain section of Yangtze River in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:729-738. [PMID: 28094052 DOI: 10.1016/j.envpol.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Pentachlorophenol (PCP) was used in large quantities, and mainly for killing the intermediate host snails of schistosome in China, thereby resulting in ubiquitous PCP residue in the environment. However, studies considering the carcinogenicity of PCP for humans mainly focused on occupational workers, and the actual carcinogenicity of PCP for general population is uncertain. To investigate the association between cancer risks and PCP exposure in a community population, an ecological study was conducted in three contaminated areas along the Yangtze River. Standardized rate ratio (SRR) was calculated to represent the risk of cancer incidence, by using incidence in the low PCP exposure category as the reference group. A total of 15,962 cancer records were collected, and 76 water samples and 213 urine samples in three areas were examined. Our findings suggested that compared with the low PCP group, the high PCP group had significantly excessive incidences of various cancers related to different organs including lymph (SRR = 19.44, 95% CI = 15.00-25.19), blood (SRR = 17.24, 95% CI = 12.92-23.01), nasopharynx (SRR = 3.97, 95% CI = 3.75-4.21), gallbladder (SRR = 3.46, 95% CI = 3.09-3.87), pancreas (SRR = 3.41, 95% CI = 3.07-3.79), respiratory system (SRR = 3.41, 95% CI = 3.27-3.57) and liver (SRR = 3.31, 95% CI = 3.09-3.56). Taken together, our present study provides evidence that general community population exposed to high level of PCP exhibits a broader spectrum of increased cancer risks as compared to occupational groups.
Collapse
Affiliation(s)
- Yanjie Cui
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Ling Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Qi Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Qian He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Xiaomei Shan
- Physical and Chemical Laboratory of Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui 230601, China
| | - Keyang Chen
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Fen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China.
| |
Collapse
|
7
|
Zuehlke A, Zhang H. Elevated 5-hydroxymethycytosine and cell apoptosis induced by tetrachloro-1,4-benzoquinone in mouse embryonic stem cells. J Environ Sci (China) 2017; 51:1-4. [PMID: 28115119 DOI: 10.1016/j.jes.2016.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Albert Zuehlke
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
8
|
Chen HM, Lee YH, Wang YJ. ROS-triggered signaling pathways involved in the cytotoxicity and tumor promotion effects of pentachlorophenol and tetrachlorohydroquinone. Chem Res Toxicol 2015; 28:339-50. [PMID: 25608107 DOI: 10.1021/tx500487w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Free radical-triggered tissue damage is believed to play an essential role in a variety of human diseases. Pentachlorophenol (PCP) is applied as a pesticide worldwide in both industries and homes. It is used extensively as a biocide and wood preservative. Tetrachlorohydroquinone (TCHQ) was proved as a major toxic metabolite of PCP, contributing the release of free radicals during PCP metabolism. PCP has been proposed as a tumor promoter; however, only limited knowledge is available regarding the mechanisms of tumor promotion induced by PCP and its metabolite, TCHQ. A growing amount of literature suggests that a link between reactive oxygen species (ROS) and tumor promotion could exist. Herein, we summarize the findings regarding the ROS-triggered signaling pathways involved in the cytotoxicity and tumor promotion effects of PCP and TCHQ. Some of the notable findings demonstrated that TCHQ can induce DNA lesions and glutathione depletion in mammalian cells; meanwhile, oxidative stress and apoptosis/necrosis can be found both in vivo and in vitro. Interestingly, PCP and TCHQ were proved as mild tumor promoters in two-stage tumorigenesis models, in which the possible mechanism could be through ROS generation and changed Bcl-2 gene expression. We also found significant effects of antioxidants in attenuating the oxidative stress, cyto- and genotoxicity, and apoptosis/necrosis induced by PCP and/or TCHQ. In addition, mitogen-activated protein kinase (MAPK) activation is involved in PCP/TCHQ-triggered cytotoxicity, as evidenced by the finding that higher doses of TCHQ could lead to necrosis of freshly isolated splenocytes through the production of a large amount of ROS and sustained ERK activation. These results could explain partly the underlying molecular mechanisms contributing to the tumorigenesis induced by PCP. However, the detailed mechanisms of free radicals in triggering PCP/TCHQ-mediated tumor promotion and toxicity are still not completely resolved and need to be investigated further.
Collapse
Affiliation(s)
- Hsiu-Min Chen
- Department of Environmental and Occupational Health, National Cheng Kung University , Tainan, Taiwan
| | | | | |
Collapse
|
9
|
Sun H, Ruan Y, Zhu H, Zhang Z, Zhang Y, Yu L. Enhanced bioaccumulation of pentachlorophenol in carp in the presence of multi-walled carbon nanotubes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2865-2875. [PMID: 24151027 DOI: 10.1007/s11356-013-2234-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
The impact of suspended particles on the bioavailability of pollutants has long been a controversial topic. In this study, adsorption of pentachlorophenol (PCP) onto a natural suspended particulate matter (SPM) and multi-walled carbon nanotubes (MWCNTs) was studied. Facilitated transports of PCP into carp by SPM and MWCNTs were evaluated by bioaccumulation tests exposing carp (Carassius auratus red var.) to PCP-contaminated water in the presence of SPM and MWCNTs, respectively. Desorption of PCP on SPM and MWCNTs in simulated digested fluids was also investigated. The results demonstrate that MWCNTs (K F = 7.99 × 10(4)) had a significantly stronger adsorption capacity for PCP than the SPM (K F = 19.0). The presence of SPM and MWCNTs both improved PCP accumulation in the carp during the 21 days of exposure, and the 21 days PCP concentration in the carp was enhanced by 25.9 and 12.8 % than that without particles, respectively. The enhancement in bioaccumulation by MWCNTs was less than that by the SPM. Considerably more PCP was accumulated in the viscera of the fish (BCF = 519495 for SPM and 148955 for MWCNTs), and the difference in PCP concentrations between different tissues became greater with particles. PCP desorption in the simulated digestive fluids was faster than that in the background solution. Compared to MWCNTs-bound PCP, more SPM-bound PCP was desorbed, and K F of desorption for SPM was at least 4 orders of magnitude higher than that for MWCNTs, which can explain the greater enhancement in bioaccumulation in the presence of SPM. Particle-bound pollutants might pose more risk than pollutants alone.
Collapse
Affiliation(s)
- Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China,
| | | | | | | | | | | |
Collapse
|
10
|
Yu HY, Wang YK, Chen PC, Li FB, Chen MJ, Hu M, Ouyang X. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron(III) reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 132:42-48. [PMID: 24286925 DOI: 10.1016/j.jenvman.2013.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/16/2013] [Accepted: 10/28/2013] [Indexed: 06/02/2023]
Abstract
Reductive dechlorination is a crucial pathway for anaerobic biodegradation of highly chlorinated organic contaminants. Under an anoxic environment, reductive dechlorination of organic contaminants can be affected by many redox processes such as nitrate reduction and iron reduction. In the present study, batch incubation experiments were conducted to investigate the effect of nitrate addition on reductive dechlorination of PCP in paddy soil with consideration of iron transformation. Study results demonstrate that low concentrations (0, 0.5 and 1 mM) of nitrate addition can enhance the reductive dechlorination of PCP and Fe(III) reduction, while high concentrations (5, 10, 20 and 30 mM) of nitrate addition caused the contrary. Significant positive correlations between PCP degradation rates and the formation rates of dissolved Fe(II) (pearson correlation coefficients r = 0.965) and HCl-extractable Fe(II) (r = 0.921) suggested that Fe(III) reduction may enhance PCP dechlorination. Furthermore, consistent variation trends of PCP degradation and the abundances of the genus Comamonas, capable of Fe(III) reduction coupled to reductive dechlorination, and of the genus Dehalobacter indicated the occurrence of microbial community variation induced by nitrate addition as a response to PCP dechlorination.
Collapse
Affiliation(s)
- Huan-Yun Yu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China
| | - Yong-kui Wang
- Environmental Science and Engineering College, Hubei Polytechic University, Huangshi, Hubei 435003, China
| | - Peng-cheng Chen
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China
| | - Fang-bai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China.
| | - Man-jia Chen
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China
| | - Min Hu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China
| | - Xiaoguang Ouyang
- Beijing Zhongqi Anxin Environmental Science & Technology Co., Ltd., China
| |
Collapse
|
11
|
Ruder AM, Yiin JH. Mortality of US pentachlorophenol production workers through 2005. CHEMOSPHERE 2011; 83:851-861. [PMID: 21440286 DOI: 10.1016/j.chemosphere.2011.02.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/27/2011] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
A cohort of 2122 US pentachlorophenol (PCP) production workers from four plants in the National Institute for Occupational Safety and Health Dioxin Registry was exposed to PCP and to polychlorinated dibenzo-p-dioxin and dibenzofuran contaminants of PCP production. A subcohort of 720 was also exposed to 2,3,7,8-tetrachlorodibenzodioxin, a contaminant of trichlorophenol (TCP) while using TCP or a TCP derivative. PCP and several production contaminants have been implicated as animal carcinogens. A priori hypotheses were that the cohort would have elevated standardized mortality ratios (SMRs) for aplastic anemia, soft-tissue sarcoma, and non-Hodgkin lymphoma, as suggested by human studies, and for leukemia and liver, adrenal, thyroid, and parathyroid cancer, as suggested by animal studies. From 1940 to 2005 1165 deaths occurred with an overall SMR of 1.01 [95% confidence limits (CI), 0.95-1.07]. Overall cancer mortality (326 deaths, SMR 1.17, CI 1.05-1.31) was in statistically significant excess. There were excess deaths for trachea, bronchus and lung cancers (126 deaths, SMR 1.36, CI 1.13-1.62), non-Hodgkin lymphoma (17 deaths, SMR 1.77, CI 1.03-2.84), chronic obstructive pulmonary disease (63 deaths, SMR 1.38, CI 1.06-1.77), and medical complications (5 deaths, SMR 3.52, CI 1.14-8.22). In race- and sex-specific analyses, white males had increased non-Hodgkin lymphoma mortality (17 deaths, SMR 1.98, CI 1.15-3.17) and males of other races had increased leukemia mortality (four deaths, SMR 4.57, CI 1.25-11.7). The excess of cancers of a priori interest, non-Hodgkin lymphoma and leukemia, provide some support for the carcinogenicity of PCP, however, further studies with more detailed exposure assessment are needed.
Collapse
Affiliation(s)
- Avima M Ruder
- National Institute for Occupational Safety and Health, CDC, Cincinnati, OH 45226, USA.
| | | |
Collapse
|
12
|
Yang S, Han X, Wei C, Chen J, Yin D. The toxic effects of pentachlorophenol on rat Sertoli cells in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 20:182-187. [PMID: 21783587 DOI: 10.1016/j.etap.2004.12.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 12/13/2004] [Indexed: 05/31/2023]
Abstract
Pentachlorophenol (PCP) is the most toxic contaminant of chlorophenols (CPs). Due to improper disposal, PCP has become an environmental pollutant and is now considered to be ubiquitous. Previous studies about the influences of PCP on reproductive function were mostly focused on experiments in vivo. The aim of our present study was to estimate the toxic effects of PCP on cultured Sertoli cells from Sprague-Dawley rats. The viability of Sertoli cells was detected and morphological examination was performed followed by flow cytometric assay to evaluate its toxic effects. The 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) assay showed that the toxic effects of PCP on cultured Sertoli cells were dose- and time-dependent. By flow cytometric assay, it was found that the number of dead Sertoli cells increased with the increase of exposed PCP levels. The results indicated that PCP had direct and dose-dependent cytotoxic effects on Sertoli cells in vitro.
Collapse
Affiliation(s)
- Shuzhen Yang
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | | | | | | | | |
Collapse
|
13
|
Stoffmonographie Pentachlorphenol-Referenz- und Human-Biomonitoring-Werte (HBM). ACTA ACUST UNITED AC 1997. [DOI: 10.1007/bf03042913] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Mehmood Z, Williamson MP, Kelly DE, Kelly SL. Metabolism of organochlorine pesticides: the role of human cytochrome P450 3A4. CHEMOSPHERE 1996; 33:759-769. [PMID: 8759309 DOI: 10.1016/0045-6535(96)00212-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Organochlorine compounds are widely used as pesticides and are substantial environmental pollutants and carcinogens due to their extensive environmental release. In the present study biotransformation of these pesticides was observed in the microsomal fractions and whole cells of Saccharomyces cerevisiae expressing human cytochrome P450 3A4. In both in vitro and in vivo studies, hexachlorobenzene and pentachlorobenzene were metabolised into pentachlorophenol which was further transformed into tetrachlorohydroquinone. Metabolites were identified by thin layer chromatography and 13C-NMR spectroscopy. The formation of products was observed only in the presence NADPH in microsomal fractions and no activity was observed in control microsomal fractions, or in whole cells.
Collapse
Affiliation(s)
- Z Mehmood
- Department of Molecular Biology and Biotechnology, Sheffield University, UK
| | | | | | | |
Collapse
|
15
|
|
16
|
Tanjore S, Viraraghavan T. Pentachlorophenol—water pollution impacts and removal technologies. ACTA ACUST UNITED AC 1994. [DOI: 10.1080/00207239408710889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Abstract
Pentachlorophenol (PCP) was, and still is, one of the most frequently used fungicides and pesticides. Its toxicity is due to interference with oxidative phosphorylation. Acute and chronic poisoning may occur by dermal absorption, inhalation or ingestion. Chronic poisoning occurs mainly in sawmill workers or people living in log homes treated with PCP-containing wood protecting formulations. Quantitative determination of PCP in urine and serum is useful to detect occupational or subclinical exposure. The clinical features of acute and chronic PCP poisoning can be classified systematically into effects on the skin, metabolism (fever), the haematopoietic tissue, the respiratory system, the central and peripheral nervous system, the kidney and the gastrointestinal tract. Although PCP is not classified as a human carcinogen, some epidemiological observations suggest that exposure to chlorophenols in general and PCP solutions in particular may result in an increased risk for certain malignant disorders such as nasal carcinoma and soft tissue sarcoma. There is concern that contamination of PCP-solutions with products such as chlorodibenzo-p-dioxins is the real cause of this suspected carcinogenicity. No specific antidote exists for the treatment of (acute) PCP poisoning. The basis of the treatment of acute poisoning is intensive supportive care with prevention of dangerous rise in temperature. Use of PCP-based products as indoor wood preservatives poses an unacceptable risk to human health.
Collapse
Affiliation(s)
- P G Jorens
- Department of Medicine, University of Antwerp, Belgium
| | | |
Collapse
|
18
|
Kaphalia BS. Fatty acid conjugates of chlorinated phenols and their high-performance liquid chromatographic analysis. J Chromatogr A 1991. [DOI: 10.1016/s0021-9673(01)88888-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Abstract
Pentachlorophenol (PCP) is a substance whose widespread use, mainly in wood protection and pulp and paper mills, has led to a substantial environmental contamination. This in turn accounts for a significant exposure of the general human population, with rather high exposure levels being attained in occupational settings. Investigations on the genotoxic activity of PCP have given rise to divergent results which would seem to make an evaluation difficult. By grouping them into 3 categories a somewhat clearer picture, allowing finally an (admittedly tentative) assessment, can be obtained. PCP does seem to be at most a weak inducer of DNA damage: it produces neither DNA-strand breaks nor clear differential toxicity to bacteria in rec-assays in the absence of metabolic activation. Also in SCE induction no increase can be observed in vivo, while PCP is found marginally active in a single in vitro experiment. Metabolic activation, however, leads to prophage induction and to DNA strand breaks in human lymphocytes, presumably through the formation of oxygen radicals. A possible further exception in this area might be the positive results in the yeast recombination tests, although their inadequate reporting makes a full evaluation difficult. PCP does not seem to induce gene (point) mutations, as most bacterial assays, the Drosophila sex-linked recessive lethal test and in vitro assays with mammalian cells did not demonstrate any effects. Marginally positive results were obtained in the mammalian spot test in vivo and in one bacterial test; the positive result in the yeast assay for cycloheximide resistance is fraught somewhat with its questionable genetic basis. PCP does, however, induce chromosomal aberrations in mammalian cells in vitro and in lymphocytes of exposed persons in vivo. Those in vivo results that were unable to provide evidence of chromosomal damage are hampered either by methodological inadequacies or by too low exposure levels. The (rodent) metabolite tetrachlorohydroquinone might be a real genotoxic agent, capable of binding to DNA and producing DNA strand breaks; this activity is probably due to semiquinone radical formation and partly mediated through active oxygen species. Since this compound has not been tested in the common bacterial and mammalian mutagenicity assays, the few ancillary results on this substance cannot be used in a meaningful human risk assessment of PCP. Furthermore, this metabolite has only been produced by human liver microsomes in vitro, but has not been detected in exposed humans in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J P Seiler
- Intercantonal Office for the Control of Medicines, Berne, Switzerland
| |
Collapse
|