1
|
Rittenhouse JL, Robart AR, Watts HE. Variation in chronotype is associated with migratory timing in a songbird. Biol Lett 2019; 15:20190453. [PMID: 31455169 DOI: 10.1098/rsbl.2019.0453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Like many organisms, birds exhibit daily (circadian) and seasonal biological rhythms, and within populations both daily and seasonal timing often vary among individuals. Because photoperiod interacts with the circadian rhythms of many organisms to induce seasonal changes in behaviour and physiology, it is hypothesized that differences in daily timing, called chronotypes, underpin differences among individuals in the timing of seasonal events. For seasonal events stimulated by increasing daylength, this hypothesis predicts a positive relationship between the timing of daily and seasonal activities of individuals, with advanced chronotypes expressing events earlier in the year. The few previous tests of this hypothesis have focused on seasonal reproductive timing in birds. However, the hypothesis predicts that this relationship should extend to other photoinduced seasonal events. Therefore, we tested whether variation in chronotype was associated with variation in spring migratory timing in a captive songbird model, the pine siskin (Spinus pinus). We found that pine siskins expressing migratory restlessness exhibited repeatable chronotypes in their timing of nocturnal activity. Further, chronotype was significantly associated with the onset date of migratory behaviour, consistent with the hypothesized relationship between chronotype and seasonal timing.
Collapse
Affiliation(s)
| | - Ashley R Robart
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Heather E Watts
- School of Biological Sciences, Washington State University, Pullman, WA, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
2
|
McDonnell SP, Kaseloo PA, Wran VE, Heideman PD. Testosterone does not mediate variation in basal metabolic rate and activity in relation to reproductive condition and photoperiod in white-footed mice (Peromyscus leucopus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:456-462. [PMID: 31380609 DOI: 10.1002/jez.2312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 11/09/2022]
Abstract
The photoperiodic response of many temperate zone rodents, including white-footed mice (Peromyscus leucopus), is a heritable life-history trait with underlying physiological variation. Previous studies of intact male P. leucopus utilized two wild-derived bidirectional selection lines, a short photoperiod responsive (R) line selected for reproductive suppression in short-day conditions (SD) and a nonresponsive (NR) line selected for reproductive maturity in SD. NR mice in SD had greater food intake, but also higher levels of locomotor activity, and basal metabolic rate (BMR) than R mice. We hypothesized that testosterone may be a key mediator of this metabolic difference, as it is likely to be significantly reduced in R SD mice. Male P. leucopus from either line in SD were castrated and given either an implant containing testosterone (T) or a sham control (C). They were then tested for variation in metabolic rate and activity in SD, thermoneutral conditions. T mice had significantly higher levels of food intake, testosterone, and seminal vesicle dry weight than C mice. Seminal vesicle dry weight was significantly and positively correlated with average testosterone level, indicating an effect of the T implants. There was no statistically significant difference among treatment groups in BMR and average daily metabolic rate, suggesting that differences in testosterone alone are not the cause of differences in metabolic rate between selection lines.
Collapse
Affiliation(s)
| | - Paul A Kaseloo
- Department of Biology, Virginia State University, Petersburg, Virginia
| | - Victoria E Wran
- Department of Biology, Virginia State University, Petersburg, Virginia
| | - Paul D Heideman
- Department of Biology, College of William and Mary, Williamsburg, Virginia
| |
Collapse
|
3
|
Hau M, Dominoni D, Casagrande S, Buck CL, Wagner G, Hazlerigg D, Greives T, Hut RA. Timing as a sexually selected trait: the right mate at the right moment. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0249. [PMID: 28993493 DOI: 10.1098/rstb.2016.0249] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 12/20/2022] Open
Abstract
Sexual selection favours the expression of traits in one sex that attract members of the opposite sex for mating. The nature of sexually selected traits such as vocalization, colour and ornamentation, their fitness benefits as well as their costs have received ample attention in field and laboratory studies. However, sexually selected traits may not always be expressed: coloration and ornaments often follow a seasonal pattern and behaviours may be displayed only at specific times of the day. Despite the widely recognized differences in the daily and seasonal timing of traits and their consequences for reproductive success, the actions of sexual selection on the temporal organization of traits has received only scant attention. Drawing on selected examples from bird and mammal studies, here we summarize the current evidence for the daily and seasonal timing of traits. We highlight that molecular advances in chronobiology have opened exciting new opportunities for identifying the genetic targets that sexual selection may act on to shape the timing of trait expression. Furthermore, known genetic links between daily and seasonal timing mechanisms lead to the hypothesis that selection on one timescale may simultaneously also affect the other. We emphasize that studies on the timing of sexual displays of both males and females from wild populations will be invaluable for understanding the nature of sexual selection and its potential to act on differences within and between the sexes in timing. Molecular approaches will be important for pinpointing genetic components of biological rhythms that are targeted by sexual selection, and to clarify whether these represent core or peripheral components of endogenous clocks. Finally, we call for a renewed integration of the fields of evolution, behavioural ecology and chronobiology to tackle the exciting question of how sexual selection contributes to the evolution of biological clocks.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany .,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Davide Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - C Loren Buck
- Department of Biological Sciences and Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ, USA
| | - Gabriela Wagner
- Department of Arctic and Marine Biology, UiT: the Arctic University of Norway, Tromsø, Norway
| | - David Hazlerigg
- Department of Arctic and Marine Biology, UiT: the Arctic University of Norway, Tromsø, Norway
| | - Timothy Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Roelof A Hut
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| |
Collapse
|
4
|
Heritable variation in reaction norms of metabolism and activity across temperatures in a wild-derived population of white-footed mice (Peromyscus leucopus). J Comp Physiol B 2014; 184:525-34. [PMID: 24549715 DOI: 10.1007/s00360-014-0811-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/22/2014] [Accepted: 01/31/2014] [Indexed: 01/15/2023]
Abstract
Heritable variation in metabolic traits is likely to affect fitness. In this study, white-footed mice from wild-derived photoresponsive [R, infertile in short day length (SD)] and non-photoresponsive (NR, fertile in SD) selection lines were maintained under short-day (SD 8Light:16Dark), sub-thermoneutral conditions (22 or 12 °C). Mice had significantly higher levels of food intake and resting metabolic rates (RMR) at low temperature. RMR differed significantly between lines (greater in NR mice). In contrast to previous work under thermoneutral conditions, there was no significant difference in overall activity or average daily metabolic rates (ADMR) of mice from the two lines. Reduced activity may reflect behavioral changes under cooler conditions (e.g., nest building) reducing the overall energetic cost of fertility (for NR mice). There was no significant difference in maximal rate of oxygen consumption ([Formula: see text]) between lines. R mice had significantly greater brown adipose tissue and white abdominal fat mass due to both line and temperature. Reaction norms for intake, resting metabolism (RMR/BMR) and level of activity from current (12 and 22 °C) and previously published data (28 °C) demonstrate independent effects of genetics (line) and environment (temperature) for resting metabolism, but a clear interaction between these for activity. The results suggest that fertility under winter conditions imposes metabolic costs that are related to the level of reproductive development. Under the coldest conditions tested, however, mice that remained fertile in SD reduced activity, ADMR and food requirements, decreasing the differential between selection lines. Heritable variation in reaction norms suggests a genetic by environment effect that could be subject to selection.
Collapse
|
5
|
Kaseloo P, Crowell M, Jones J, Heideman P. Variation in basal metabolic rate and activity in relation to reproductive condition and photoperiod in white-footed mice (Peromyscus leucopus). CAN J ZOOL 2012. [DOI: 10.1139/z2012-026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A naturally variable life-history trait with underlying physiological variation is the photoperiodic response of many temperate-zone rodents, including white-footed mice (Peromyscus leucopus (Rafinesque, 1818)). Male P. leucopus were obtained from a short photoperiod responsive (R) line, artificially selected for reproductive suppression in short-day conditions (SD) and a nonresponsive (NR) line selected for reproductive maturity in SD. We tested for variation in metabolic rate between lines in SD and long-day conditions (LD). NR mice consumed 34% more food than R mice, without concomitant increase in body mass in SD. Basal metabolic rate (BMR) was found to be significantly greater in NR than R mice, and NR mice were found to engage in significantly more spontaneous (daily) locomotor activity. Energy-use estimates based on 24 h respirometry matched closely the level of intake reported for individual mice. The increased BMR and average daily metabolic rate in NR mice was correlated with testis size, but not with major central organs or digestibility. No significant difference in BMR or activity was found in mice from the same lines held in LD. Elevated intake in SD mice appears to be associated with differences in fertility and not other aspects of physiology in the respective lines.
Collapse
Affiliation(s)
- P.A. Kaseloo
- Department of Biology, Virginia State University, P.O. Box 9064, Virginia State University, VA 23806, USA
| | - M.G. Crowell
- Department of Biology, Virginia State University, P.O. Box 9064, Virginia State University, VA 23806, USA
| | - J.J. Jones
- Department of Biology, Virginia State University, P.O. Box 9064, Virginia State University, VA 23806, USA
| | - P.D. Heideman
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
6
|
Heideman PD, Pittman JT, Schubert KA, Dubois CMR, Bowles J, Lowe SM, Price MR. Variation in levels of luteinizing hormone and reproductive photoresponsiveness in a population of white-footed mice (Peromyscus leucopus). Am J Physiol Regul Integr Comp Physiol 2010; 298:R1543-8. [PMID: 20357020 DOI: 10.1152/ajpregu.00686.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural genetic variation in reproduction and life history strategies is a manifestation of variation in underlying regulatory neuronal and endocrine systems. A test of the hypothesis that genetic variation in luteinizing hormone (LH) level could be related to a life history trait, seasonal reproduction, was conducted on artificial selection lines from a wild-source population of white-footed mice (Peromyscus leucopus). Variation exists in the degree of suppression of reproduction by winter short-day photoperiods (SD) in wild-source individuals and in the laboratory population. In this population, most individuals from a photoperiod-responsive (R) artificial selection line are strongly suppressed reproductively in SD, while most individuals from a photoperiod-nonresponsive (NR) artificial selection line are only weakly reproductively suppressed in SD. We assayed levels of LH to test for genetic variation between lines that could contribute to variation in reproductive status in SD. Females from both lines were raised in long-day photoperiods (LD) or SD, ovariectomized under isoflurane anesthesia, and given estradiol implants. Levels of LH were significantly higher in the NR line than in the R line, indicating genetic variation for levels of LH. Levels of LH were higher in LD than in SD, indicating that levels of LH were sensitive to photoperiod treatment even with a controlled level of estradiol negative feedback. The results indicate that there is genetic variation in levels of LH that could be functionally important both in the laboratory in SD and in the wild population in winter. Thus genetic variation in levels of LH is a plausible causal factor determining winter reproductive phenotype in the wild population.
Collapse
Affiliation(s)
- Paul D Heideman
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Heideman PD, Pittman JT. Microevolution of neuroendocrine mechanisms regulating reproductive timing in Peromyscus leucopus. Integr Comp Biol 2009; 49:550-62. [PMID: 21665840 DOI: 10.1093/icb/icp014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A key question in the evolution of life history and in evolutionary physiology asks how reproductive and other life-history traits evolve. Genetic variation in reproductive control systems may exist in many elements of the complex inputs that can affect the hypothalamic-pituitary-gonadal (HPG) or reproductive axis. Such variation could include numbers and other traits of secretory cells, the amount and pattern of chemical message released, transport and clearance mechanisms, and the number and other traits of receptor cells. Selection lines created from a natural population of white-footed mice (Peromyscus leucopus) that contains substantial genetic variation in reproductive inhibition in response to short winter daylength (SD) have been used to examine neuroendocrine variation in reproductive timing. We hypothesized that natural genetic variation would be most likely to occur in the inputs to GnRH neurons and/or in GnRH neurons themselves, but not in elements of the photoperiodic pathway that would have pleiotropic effects on nonreproductive functions as well as on reproductive functions. Significant genetic variation has been found in the GnRH neuronal system. The number of GnRH neurons immunoreactive to an antibody to mature GnRH peptide under conditions maximizing detection of stained neurons was significantly heritable in an unselected control (C) line. Furthermore, a selection line that suppresses reproduction in SD (photoperiod responsive, R) had fewer IR-GnRH neurons than a selection line that maintains reproduction in SD (photoperiod nonresponsive, NR). This supports the hypothesis that genetic variation in characteristics of GnRH neurons themselves may be responsible for the observed phenotypic variation in reproduction in SD. The R and NR lines differ genetically in food intake and iodo-melatonin receptor binding, as well as in other characteristics. The latter findings are consistent with the hypothesis that genetic variation occurs in the nutritional and hormonal inputs to GnRH neurons. Genetic variation also exists in the phenotypic plasticity of responses to two combinations of treatments, (1) food and photoperiod, and (2) photoperiod and age, indicating genetic variation in individual norms of reaction within this population. Overall, the apparent multiple sources of genetic variation within this population suggest that there may be multiple alternative combinations of alleles for both the R and NR phenotypes. If that interpretation is correct, we suggest that this offers some support for the evolutionary "potential" hypothesis and is inconsistent with the evolutionary "constraint" and "symmorphosis" hypotheses for the evolution of complex neuroendocrine pathways.
Collapse
Affiliation(s)
- Paul D Heideman
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | | |
Collapse
|
8
|
Heideman PD, Broussard DR, Tate JA, Avigdor M. Number of immunoreactive GnRH-containing neurons is heritable in a wild-derived population of white-footed mice (Peromyscus leucopus). Physiol Biochem Zool 2007; 80:534-41. [PMID: 17717816 DOI: 10.1086/519960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2007] [Indexed: 11/03/2022]
Abstract
The evolution of mammalian brain function depends in part on levels of natural, heritable variation in numbers, location, and function of neurons. However, the nature and amount of natural genetic variation in neural traits and their physiological link to variation in function or evolutionary change are unknown. We estimated the level of within-population heritable variation in the number of gonadotropin-releasing hormone (GnRH) neurons, which play a major role in reproductive regulation, in an unselected outbred population recently derived (<10 generations) from a single natural population of white-footed mice (Peromyscus leucopus, Rafinesque). Young adult male mice exhibited an approximately threefold variation in the number of neurons immunoreactive for GnRH in the brain areas surveyed, as detected using SMI-41 antibody with a single-label avidin-biotin complex method. Consistent with earlier findings of selectable variation in GnRH neurons in this population, the level of genetic variation in this neuronal trait within this single population was high, with broadsense heritability using full-sib analysis estimated at 0.72 (P<0.05). Either weak selection on this trait or environmental variation that results in inconsistent selection on this trait might allow a high level of variation in this population.
Collapse
Affiliation(s)
- Paul D Heideman
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187, USA.
| | | | | | | |
Collapse
|
9
|
Smale L, Heideman PD, French JA. Behavioral neuroendocrinology in nontraditional species of mammals: things the 'knockout' mouse CAN'T tell us. Horm Behav 2005; 48:474-83. [PMID: 15990097 PMCID: PMC2981860 DOI: 10.1016/j.yhbeh.2005.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/01/2005] [Accepted: 05/03/2005] [Indexed: 11/25/2022]
Abstract
The exploration of many of the fundamental features of mammalian behavioral neuroendocrinology has benefited greatly throughout the short history of the discipline from the study of highly inbred, genetically characterized rodents and several other "traditional" exemplars. More recently, the impact of genomic variation in the determination of complex neuroendocrine and behavioral systems has advanced through the use of single and multiple gene knockouts or knockins. In our essay, we argue that the study of nontraditional mammals is an essential approach that complements these methodologies by taking advantage of allelic variation produced by natural selection. Current and future research will continue to exploit these systems to great advantage and will bring new techniques developed in more traditional laboratory animals to bear on problems that can only be addressed with nontraditional species. We highlight our points by discussing advances in our understanding of neuroendocrine and behavioral systems in phenomena of widely differing time scales. These examples include neuroendocrine variation in the regulation of reproduction across seasons in Peromyscus, variation in parental care by biparental male rodents and primates within a single infant rearing attempt, and circadian variation in the regulation of the substrates underlying mating in diurnal vs. nocturnal rodents. Our essay reveals both important divergences in neuroendocrine systems in our nontraditional model species, and important commonalities in these systems.
Collapse
Affiliation(s)
- Laura Smale
- Departments of Zoology, Michigan State University, East Lansing, MI 48843, USA.
| | | | | |
Collapse
|
10
|
Avigdor M, Sullivan SD, Heideman PD. Response to selection for photoperiod responsiveness on the density and location of mature GnRH-releasing neurons. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1226-36. [PMID: 15650126 DOI: 10.1152/ajpregu.00562.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural variation in neuroendocrine traits is poorly understood, despite the importance of variation in brain function and evolution. Most rodents in the temperate zones inhibit reproduction and other nonessential functions in short winter photoperiods, but some have little or no reproductive response. We tested whether genetic variability in reproductive seasonality is related to individual differences in the neuronal function of the gonadotropin-releasing hormone network, as assessed by the number and location of mature gonadotropin-releasing hormone-secreting neurons under inhibitory and excitatory photoperiods. The experiments used lines of Peromyscus leucopus previously developed by selection from a wild population. One line contained individuals reproductively inhibited by short photoperiod, and the other line contained individuals nonresponsive to short photoperiod. Expression of mature gonadotropin-releasing hormone (GnRH) immunoreactivity in the brain was detected using SMI-41 antibody in the single-labeled avidin-biotin-peroxidase-complex method. Nonresponsive mice had 50% more immunoreactive GnRH neurons than reproductively inhibited mice in both short- and long-day photoperiods. The greatest differences were in the anterior hypothalamus and preoptic areas. In contrast, we detected no significant within-lines differences in the number or location of immunoreactive GnRH neurons between photoperiod treatments. Our data indicate that high levels of genetic variation in a single wild population for a specific neuronal trait are related to phenotypic variation in a life history trait, i.e., winter reproduction. Variation in GnRH neuronal activity may underlie some of the natural reproductive and life history variation observed in wild populations of P. leucopus. Similar genetic variation in neuronal traits may be present in humans and other species.
Collapse
Affiliation(s)
- Mauricio Avigdor
- Dept. of Biology, The College of William and Mary, Williamsburg, VA 23187, USA
| | | | | |
Collapse
|
11
|
HEIDEMAN PD, RIGHTLER M, SHARP K. A potential microevolutionary life-history trade-off in White-Footed Mice (Peromyscus leucopus). Funct Ecol 2005. [DOI: 10.1111/j.1365-2435.2005.00985.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Heideman PD. Top-down Approaches to the Study of Natural Variation in Complex Physiological Pathways Using the White-footed Mouse (Peromyscus leucopus) as a Model. ILAR J 2004; 45:4-13. [PMID: 14752203 DOI: 10.1093/ilar.45.1.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Variation in complex physiological pathways has important effects on human function and medical treatment. Complex pathways involve cells at multiple locations, which serve different functions regulated by many genes and include complex neuroendocrine pathways that regulate physiological function. One of two competing hypotheses regarding the effects of selection on complex pathways predicts that variability should be common within complex pathways. If this hypothesis is correct, then we should expect wide variation in neuroendocrine function to be typical within natural populations. To test this hypothesis, a complex neuroendocrine pathway that regulates photoperiod-dependent changes in fertility in a natural population of white-footed mice (Peromyscus leucopus) was used to test for natural genetic variability in multiple components of the pathway. After testing only six elements in the photoperiod pathway in P. leucopus, genetic variation in the following four of these elements was evident: the circadian clock, melatonin receptor abundance or affinity, sensitivity of the reproductive axis to steroid negative feedback, and gonadotropin-releasing hormone neuronal activity. If this result can be extended to humans, the prediction would be that significant variation at multiple loci in complex neuroendocrine pathways is common among humans, and that variation would exist even in human populations from a common genetic background. This finding could only be drawn from an "exotic" animal model derived from a natural source population, confirming the continuing importance of nontraditional models alongside the standard laboratory species.
Collapse
|