1
|
Kim AY, Velazquez A, Saavedra B, Smarr B, Nieh JC. Exposure to constant artificial light alters honey bee sleep rhythms and disrupts sleep. Sci Rep 2024; 14:25865. [PMID: 39532897 PMCID: PMC11557972 DOI: 10.1038/s41598-024-73378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/17/2024] [Indexed: 11/16/2024] Open
Abstract
Artificial light at night (ALAN) changes animal behavior in multiple invertebrates and vertebrates and can result in decreased fitness. However, ALAN effects have not been studied in European honey bees (Apis mellifera), an important pollinator in which foragers show strong circadian rhythmicity. Colonies can be exposed to ALAN in swarm clusters, when bees cluster outside the nest on hot days and evenings, and, in limited cases, when they build nests in the open. We captured and maintained foragers in incubated cages and subjected them to constant light (LL), constant dark (DD), or 12 h light:12 h dark (LD) cycle, and observed them with infrared cameras. After 79 h, there was a significant interaction of treatment and time because LL bees slept less. In detail, the bees maintained a regular sleep pattern for three days but LL bees showed a shift on the fourth day. LL bees had the largest sleep differences from LD controls, with trends of lengthened periods and increased phase misalignment from both LD and DD bees. LL bees also experienced significantly more disturbances from their nestmates and preferred to sleep in the lower portion of the cages, which had significantly lower light intensity. These findings suggest that ALAN can disrupt the sleep of honey bee foragers, which has implications for their behavior and overall colony health.
Collapse
Affiliation(s)
- Ashley Y Kim
- School of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Aura Velazquez
- Facultad de Ciencias Químicas, Universidad La Salle México, Benjamín Franklin 45, Ciudad de México, 06140, México
| | - Belen Saavedra
- Computer and Information Science, Berea College, 101 Chestnut Street, Berea, KY, 40403, USA
| | - Benjamin Smarr
- Shu Chien - Gene Lay Department of Bioengineering & Halicioğlu Data Science Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - James C Nieh
- School of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Li X. Based proteomics analyses reveal response mechanisms of Apis mellifera (Hymenoptera: Apidae) against the heat stress. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:6. [PMID: 39600210 PMCID: PMC11599371 DOI: 10.1093/jisesa/iead074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2024]
Abstract
Heat stress can significantly affect the survival, metabolism, and reproduction of honeybees. It is important to understand the proteomic changes of honeybees under heat stress to understand the molecular mechanism behind heat resistance. However, the proteomic changes of honeybees under heat stress are poorly understood. We analyzed the proteomic changes of Apis mellifera Ligustica (Hymenoptera: Apidae) under heat stress using mass spectrometry-based proteomics with TMT (Tandem mass tags) stable isotope labeling. A total of 3,799 proteins were identified, 85 of which differentially abundance between experimental groups. The most significant categories affected by heat stress were associated with transcription and translation processes, metabolism, and stress-resistant pathways. We found that heat stress altered the protein profiles in A. mellifera, with momentous resist proteins being upregulated in heat groups. These results show a proof of molecular details that A. mellifera can respond to heat stress by increasing resist proteins. Our findings add research basis for studying the molecular mechanisms of honeybees' resistance to heat stress. The differentially expressed proteins identified in this study can be used as biomarkers of heat stress in bees, and provide a foundation for future research on honeybees under heat stress. Our in-depth proteomic analysis provides new insights into how bees cope with heat stress.
Collapse
Affiliation(s)
- Xinyu Li
- Shandong Vocational College of Light Industry, Zibo, Shandong Province, China
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong Province, China
- Qingdao Bright Moon Seaweed Group Co., Ltd, Qingdao, Shandong Province, China
| |
Collapse
|
3
|
Helander ME, Formica MK, Bergen-Cico DK. The Daily Patterns of Emergency Medical Events. J Biol Rhythms 2024; 39:79-99. [PMID: 37786272 DOI: 10.1177/07487304231193876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
This study examines population-level daily patterns of time-stamped emergency medical service (EMS) dispatches to establish their situational predictability. Using visualization, sinusoidal regression, and statistical tests to compare empirical cumulative distributions, we analyzed 311,848,450 emergency medical call records from the US National Emergency Medical Services Information System (NEMSIS) for years 2010 through 2022. The analysis revealed a robust daily pattern in the hourly distribution of distress calls across 33 major categories of medical emergency dispatch types. Sinusoidal regression coefficients for all types were statistically significant, mostly at the p < 0.0001 level. The coefficient of determination ( R 2 ) ranged from 0.84 and 0.99 for all models, with most falling in the 0.94 to 0.99 range. The common sinusoidal pattern, peaking in mid-afternoon, demonstrates that all major categories of medical emergency dispatch types appear to be influenced by an underlying daily rhythm that is aligned with daylight hours and common sleep/wake cycles. A comparison of results with previous landmark studies revealed new and contrasting EMS patterns for several long-established peak occurrence hours-specifically for chest pain, heart problems, stroke, convulsions and seizures, and sudden cardiac arrest/death. Upon closer examination, we also found that heart attacks, diagnosed by paramedics in the field via 12-lead cardiac monitoring, followed the identified common daily pattern of a mid-afternoon peak, departing from prior generally accepted morning tendencies. Extended analysis revealed that the normative pattern prevailed across the NEMSIS data when reorganized to consider monthly, seasonal, daylight-savings versus civil time, and pre-/post-COVID-19 periods. The predictable daily EMS patterns provide impetus for more research that links daily variation with causal risk and protective factors. Our methods are straightforward and presented with detail to provide accessible and replicable implementation for researchers and practitioners.
Collapse
Affiliation(s)
- Mary E Helander
- Maxwell School of Citizenship and Public Affairs, Department of Social Science, Syracuse University, Syracuse, New York
- Falk College, Department of Public Health, Syracuse University, Syracuse, New York
| | - Margaret K Formica
- Department of Public Health and Preventive Medicine, Department of Urology, Upstate Medical University, Syracuse, New York
| | - Dessa K Bergen-Cico
- Falk College, Department of Public Health, Syracuse University, Syracuse, New York
| |
Collapse
|
4
|
Patir A, Raper A, Fleming R, Henderson BEP, Murphy L, Henderson NC, Clark EL, Freeman TC, Barnett MW. Cellular heterogeneity of the developing worker honey bee (Apis mellifera) pupa: a single cell transcriptomics analysis. G3 (BETHESDA, MD.) 2023; 13:jkad178. [PMID: 37548242 PMCID: PMC10542211 DOI: 10.1093/g3journal/jkad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
It is estimated that animals pollinate 87.5% of flowering plants worldwide and that managed honey bees (Apis mellifera) account for 30-50% of this ecosystem service to agriculture. In addition to their important role as pollinators, honey bees are well-established insect models for studying learning and memory, behavior, caste differentiation, epigenetic mechanisms, olfactory biology, sex determination, and eusociality. Despite their importance to agriculture, knowledge of honey bee biology lags behind many other livestock species. In this study, we have used scRNA-Seq to map cell types to different developmental stages of the worker honey bee (prepupa at day 11 and pupa at day 15) and sought to determine their gene expression signatures. To identify cell-type populations, we examined the cell-to-cell network based on the similarity of the single-cells transcriptomic profiles. Grouping similar cells together we identified 63 different cell clusters of which 17 clusters were identifiable at both stages. To determine genes associated with specific cell populations or with a particular biological process involved in honey bee development, we used gene coexpression analysis. We combined this analysis with literature mining, the honey bee protein atlas, and gene ontology analysis to determine cell cluster identity. Of the cell clusters identified, 17 were related to the nervous system and sensory organs, 7 to the fat body, 19 to the cuticle, 5 to muscle, 4 to compound eye, 2 to midgut, 2 to hemocytes, and 1 to malpighian tubule/pericardial nephrocyte. To our knowledge, this is the first whole single-cell atlas of honey bees at any stage of development and demonstrates the potential for further work to investigate their biology at the cellular level.
Collapse
Affiliation(s)
- Anirudh Patir
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Anna Raper
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Robert Fleming
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Beth E P Henderson
- The Queen's Medical Research Institute, Centre for Inflammation Research, University of Edinburgh,Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Neil C Henderson
- The Queen's Medical Research Institute, Centre for Inflammation Research, University of Edinburgh,Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
- Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh,Edinburgh EH4 2XU, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Mark W Barnett
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Beebytes Analytics CIC, The Roslin Innovation Centre, University of Edinburgh, The Charnock Bradley Building, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
5
|
Iino S, Oya S, Kakutani T, Kohno H, Kubo T. Identification of ecdysone receptor target genes in the worker honey bee brains during foraging behavior. Sci Rep 2023; 13:10491. [PMID: 37380789 DOI: 10.1038/s41598-023-37001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Ecdysone signaling plays central roles in morphogenesis and female ovarian development in holometabolous insects. In the European honey bee (Apis mellifera L.), however, ecdysone receptor (EcR) is expressed in the brains of adult workers, which have already undergone metamorphosis and are sterile with shrunken ovaries, during foraging behavior. Aiming at unveiling the significance of EcR signaling in the worker brain, we performed chromatin-immunoprecipitation sequencing of EcR to search for its target genes using the brains of nurse bees and foragers. The majority of the EcR targets were common between the nurse bee and forager brains and some of them were known ecdysone signaling-related genes. RNA-sequencing analysis revealed that some EcR target genes were upregulated in forager brains during foraging behavior and some were implicated in the repression of metabolic processes. Single-cell RNA-sequencing analysis revealed that EcR and its target genes were expressed mostly in neurons and partly in glial cells in the optic lobes of the forager brain. These findings suggest that in addition to its role during development, EcR transcriptionally represses metabolic processes during foraging behavior in the adult worker honey bee brain.
Collapse
Affiliation(s)
- Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
Das B, Gordon DM. Biological rhythms and task allocation in ant colonies. CURRENT OPINION IN INSECT SCIENCE 2023:101062. [PMID: 37247773 DOI: 10.1016/j.cois.2023.101062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
Task allocation in ant colonies, mediated by social interactions, regulates which individuals perform each task, and when they are active, in response to the current situation. Many tasks are performed in a daily temporal pattern. An ant's biological clock depends on patterns of gene expression that are regulated using a negative feedback loop which is synchronized to earth's rotation by external cues. An individual's biological clock can shift in response to social cues, and this plasticity contributes to task switching. Daily rhythms in individual ant behavior combine, via interactions within and across task groups, to adjust the collective behavior of colonies. Further work is needed to elucidate how the social cues that lead to task switching influence the molecular mechanisms that generate clock outputs associated with each task, and to investigate the evolution of temporal patterns in task allocation in relation to ecological factors.
Collapse
|
7
|
Das B, de Bekker C. Time-course RNASeq of Camponotus floridanus forager and nurse ant brains indicate links between plasticity in the biological clock and behavioral division of labor. BMC Genomics 2022; 23:57. [PMID: 35033027 PMCID: PMC8760764 DOI: 10.1186/s12864-021-08282-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background Circadian clocks allow organisms to anticipate daily fluctuations in their environment by driving rhythms in physiology and behavior. Inter-organismal differences in daily rhythms, called chronotypes, exist and can shift with age. In ants, age, caste-related behavior and chronotype appear to be linked. Brood-tending nurse ants are usually younger individuals and show “around-the-clock” activity. With age or in the absence of brood, nurses transition into foraging ants that show daily rhythms in activity. Ants can adaptively shift between these behavioral castes and caste-associated chronotypes depending on social context. We investigated how changes in daily gene expression could be contributing to such behavioral plasticity in Camponotus floridanus carpenter ants by combining time-course behavioral assays and RNA-Sequencing of forager and nurse brains. Results We found that nurse brains have three times fewer 24 h oscillating genes than foragers. However, several hundred genes that oscillated every 24 h in forager brains showed robust 8 h oscillations in nurses, including the core clock genes Period and Shaggy. These differentially rhythmic genes consisted of several components of the circadian entrainment and output pathway, including genes said to be involved in regulating insect locomotory behavior. We also found that Vitellogenin, known to regulate division of labor in social insects, showed robust 24 h oscillations in nurse brains but not in foragers. Finally, we found significant overlap between genes differentially expressed between the two ant castes and genes that show ultradian rhythms in daily expression. Conclusion This study provides a first look at the chronobiological differences in gene expression between forager and nurse ant brains. This endeavor allowed us to identify a putative molecular mechanism underlying plastic timekeeping: several components of the ant circadian clock and its output can seemingly oscillate at different harmonics of the circadian rhythm. We propose that such chronobiological plasticity has evolved to allow for distinct regulatory networks that underlie behavioral castes, while supporting swift caste transitions in response to colony demands. Behavioral division of labor is common among social insects. The links between chronobiological and behavioral plasticity that we found in C. floridanus, thus, likely represent a more general phenomenon that warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08282-x.
Collapse
Affiliation(s)
- Biplabendu Das
- Department of Biology, College of Sciences, University of Central Florida, Orlando, FL, 32816, USA. .,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| | - Charissa de Bekker
- Department of Biology, College of Sciences, University of Central Florida, Orlando, FL, 32816, USA. .,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
8
|
Siehler O, Wang S, Bloch G. Remarkable Sensitivity of Young Honey Bee Workers to Multiple Non-photic, Non-thermal, Forager Cues That Synchronize Their Daily Activity Rhythms. Front Physiol 2022; 12:789773. [PMID: 35002771 PMCID: PMC8733668 DOI: 10.3389/fphys.2021.789773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Honey bees live in colonies containing tens of thousands of workers that coordinate their activities to produce efficient colony-level behavior. In free-foraging colonies, nest bees are entrained to the forager daily phase of activity even when experiencing conflicting light-dark illumination regime, but little is known on the cues mediating this potent social synchronization. We monitored locomotor activity in an array of individually caged bees in which we manipulated the contact with neighbour bees. We used circular statistics and coupling function analyses to estimate the degree of social synchronization. We found that young bees in cages connected to cages housing foragers showed stronger rhythms, better synchronization with each other, higher coupling strength, and a phase more similar to that of the foragers compared to similar bees in unconnected cages. These findings suggest that close distance contacts are sufficient for social synchronization or that cage connection facilitated the propagation of time-giving social cues. Coupling strength was higher for bees placed on the same tray compared with bees at a similar distance but on a different tray, consistent with the hypothesis that substrate borne vibrations mediate phase synchronization. Additional manipulation of the contact between cages showed that social synchronization is better among bees in cages connected with tube with a single mesh partition compared to sealed tubes consistent with the notion that volatile cues act additively to substrate borne vibrations. These findings are consistent with self-organization models for social synchronization of activity rhythms and suggest that the circadian system of honey bees evolved remarkable sensitivity to non-photic, non-thermal, time giving entraining cues enabling them to tightly coordinate their behavior in the dark and constant physical environment of their nests.
Collapse
Affiliation(s)
- Oliver Siehler
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shuo Wang
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Miler K, Opalek M, Ostap‐Chec M, Stec D. Diel rhythmicity of alcohol‐induced intoxication in the honeybee workers. J Zool (1987) 2021. [DOI: 10.1111/jzo.12872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- K. Miler
- Institute of Systematics and Evolution of Animals Polish Academy of Sciences Kraków Poland
| | - M. Opalek
- Institute of Environmental Sciences Faculty of Biology Jagiellonian University Kraków Poland
| | - M. Ostap‐Chec
- Institute of Environmental Sciences Faculty of Biology Jagiellonian University Kraków Poland
| | - D. Stec
- Institute of Zoology and Biomedical Research Faculty of Biology Jagiellonian University Kraków Poland
| |
Collapse
|
10
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
11
|
Eduardo da Costa Domingues C, Bello Inoue LV, Mathias da Silva-Zacarin EC, Malaspina O. Foragers of Africanized honeybee are more sensitive to fungicide pyraclostrobin than newly emerged bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115267. [PMID: 32822922 DOI: 10.1016/j.envpol.2020.115267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
The honeybee has economic importance both for the commercial value of bee products and for its role in the pollination of agricultural crops. Despite the fact that the fungicides are widely used in agriculture, studies comparing the effects of this group of pesticides on bees are still scarce. There are many gaps preventing the understanding of bees' responses to exposure to fungicides, including the influence of the age of the exposed workers. However, this study aimed to compare the effects of residual concentrations of pyraclostrobin on young and old bees of Africanized Apis mellifera. The parameters analyzed were the survival rates, as well as the histopathological and histochemical changes in midgut of orally exposed workers to different sublethal concentrations of this strobilurin fungicide: 0.125 ng a.i./μL (C1), 0.025 ng a.i./μL (C2) e 0.005 ng a.i./μL (C3). The results showed a significant decrease in the longevity only for old bees exposed to the three concentrations of pyraclostrobin. After the five-day exposure period, the fungicide induced sublethal effects in the midgut only from the old bees. These effects were the increase both in cytoplasmic vacuolization of digestive cells and morphological changes in the nests of regenerative cells, which reflected in the higher lesion index of organ for groups C1 and C2. Additionally, there was a reduction in total protein staining in the intestinal epithelium in C1 and C2. At the same exposure period, the midgut of young bees presented only a reduction in the staining of neutral polysaccharides in the group C1. Concluding, old workers are more sensitive to the fungicide than young workers. This study showed different responses according to worker age, which can affect the maintenance of colony health. Future studies should take into account the age of the workers to better understand the effects of fungicides on bees.
Collapse
Affiliation(s)
- Caio Eduardo da Costa Domingues
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Rio Claro, SP, Brazil.
| | - Lais Vieira Bello Inoue
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Rio Claro, SP, Brazil
| | - Elaine Cristina Mathias da Silva-Zacarin
- Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Ecotoxicologia e Análise de Integridade Ambiental (LEIA), Sorocaba, SP, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Rio Claro, SP, Brazil
| |
Collapse
|
12
|
Siehler O, Bloch G. Colony Volatiles and Substrate-borne Vibrations Entrain Circadian Rhythms and Are Potential Cues Mediating Social Synchronization in Honey Bee Colonies. J Biol Rhythms 2020; 35:246-256. [PMID: 32295458 DOI: 10.1177/0748730420913362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Internal circadian clocks organize animal behavior and physiology and are entrained by ecologically relevant external time-givers such as light and temperature cycles. In the highly social honey bee, social time-givers are potent and can override photic entrainment, but the cues mediating social entrainment are unknown. Here, we tested whether substrate-borne vibrations and hive volatiles can mediate social synchronization in honey bees. We first placed newly emerged worker bees on the same or on a different substrate on which we placed cages with foragers entrained to ambient day-night cycles, while minimizing the spread of volatiles between cages. In the second experiment, we exposed young bees to constant airflow drawn from either a free-foraging colony or a similar-size control hive containing only heated empty honeycombs, while minimizing transfer of substrate-borne vibrations between cages. After 6 days, we isolated each focal bee in an individual cage in an environmental chamber and monitored her locomotor activity. We repeated each experiment 5 times, each trial with bees from a different source colony, monitoring a total of more than 1000 bees representing diverse genotypes. We found that bees placed on the same substrate as foragers showed a stronger phase coherence and a phase more similar to that of foragers compared with bees placed on a different substrate. In the second experiment, bees exposed to air drawn from a colony showed a stronger phase coherence and a phase more similar to that of foragers compared with bees exposed to air from an empty hive. These findings lend credence to the hypothesis that surrogates of activity entrain circadian rhythms and suggest that multiple social cues can act in concert to entrain social insect colonies to a common phase.
Collapse
Affiliation(s)
- Oliver Siehler
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| |
Collapse
|
13
|
Libbrecht R, Nadrau D, Foitzik S. A Role of Histone Acetylation in the Regulation of Circadian Rhythm in Ants. iScience 2020; 23:100846. [PMID: 32004990 PMCID: PMC6995257 DOI: 10.1016/j.isci.2020.100846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/03/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
In many organisms, circadian rhythms and associated oscillations in gene expression are controlled by post-translational modifications of histone proteins. Although epigenetic mechanisms influence key aspects of insect societies, their implication in regulating circadian rhythms has not been studied in social insects. Here we ask whether histone acetylation plays a role in adjusting circadian activity in the ant Temnothorax longispinosus. We characterized activity patterns in 20 colonies to reveal that these ants exhibit a diurnal rhythm in colony-level activity and can rapidly respond to changes in the light regime. Then we fed T. longispinosus colonies with C646, a chemical inhibitor of histone acetyltransferases, to show that treated colonies lost their circadian rhythmicity and failed to adjust their activity to the light regime. These findings suggest a role for histone acetylation in controlling rhythmicity in ants and implicate epigenetic processes in the regulation of circadian rhythms in a social context.
Collapse
Affiliation(s)
- Romain Libbrecht
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany.
| | - Dennis Nadrau
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| |
Collapse
|
14
|
Lei Y, Zhou Y, Lü L, He Y. Rhythms in Foraging Behavior and Expression Patterns of the Foraging Gene in Solenopsis invicta (Hymenoptera: Formicidae) in relation to Photoperiod. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2923-2930. [PMID: 31237954 DOI: 10.1093/jee/toz175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 06/09/2023]
Abstract
The foraging gene (for) is associated with foraging and other associated behaviors in social insect species. Photoperiod is known to entrain the rhythmic biological functions of ants; however, how photoperiod might influence the intensity and duration of foraging, and the expression of for, remains unexplored. This study determined the correlation between rhythm in foraging behavior and expression of the foraging gene (Sifor) mRNA in red imported fire ant, Solenopsis invicta Buren. Foragers were exposed to three photoperiod conditions (12:12 [L:D], 24:0 [L:D], and 0:24 [L:D]) in the laboratory and foraging activities were recorded using a video-computer recording system. Sifor expression in the foragers was tested using real-time reverse-transcription quantitative PCR. Results revealed that foraging activity rhythm and Sifor expression profile were unimodal under all three photoperiod conditions. Levels of foraging activity were associated with photoperiodic modification, a stable phase difference between the onset of activity and the onset of gene expression was discovered. Light-dark transients stimulated foraging activity in 12:12 (L:D). There were significant daily oscillations (amplitude of 0.21 ± 0.08 for 12:12 [L:D], 0.12 ± 0.02 for 24:0 [L:D], and 0.09 ± 0.01 for 0:24 [L:D]) in the expression of Sifor. A positive relationship (r = 0.5903, P < 0.01) was found between the expression level of Sifor and foraging activity, which indicated that Sifor is linked to some extent to foraging behavior. Our results demonstrated that foragers could adjust the rhythms in foraging behavior according to light-dark cycle and suggested that Sifor may play an important role in the response of S. invicta to photoperiod.
Collapse
Affiliation(s)
- Yanyuan Lei
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, P. R. China
| | - Yangyang Zhou
- College of Agriculture, South China Agriculture University, Guangzhou, Guangdong, P. R. China
| | - Lihua Lü
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, P. R. China
| | - Yurong He
- College of Agriculture, South China Agriculture University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
15
|
Beer K, Kolbe E, Kahana NB, Yayon N, Weiss R, Menegazzi P, Bloch G, Helfrich-Förster C. Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain. Open Biol 2019; 8:rsob.170224. [PMID: 29321240 PMCID: PMC5795053 DOI: 10.1098/rsob.170224] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
Pigment-Dispersing Factor (PDF) is an important neuropeptide in the brain circadian network of Drosophila and other insects, but its role in bees in which the circadian clock influences complex behaviour is not well understood. We combined high-resolution neuroanatomical characterizations, quantification of PDF levels over the day and brain injections of synthetic PDF peptide to study the role of PDF in the honey bee Apis mellifera We show that PDF co-localizes with the clock protein Period (PER) in a cluster of laterally located neurons and that the widespread arborizations of these PER/PDF neurons are in close vicinity to other PER-positive cells (neurons and glia). PDF-immunostaining intensity oscillates in a diurnal and circadian manner with possible influences for age or worker task on synchrony of oscillations in different brain areas. Finally, PDF injection into the area between optic lobes and the central brain at the end of the subjective day produced a consistent trend of phase-delayed circadian rhythms in locomotor activity. Altogether, these results are consistent with the hypothesis that PDF is a neuromodulator that conveys circadian information from pacemaker cells to brain centres involved in diverse functions including locomotion, time memory and sun-compass orientation.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Esther Kolbe
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Noa B Kahana
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nadav Yayon
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ron Weiss
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Guy Bloch
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
16
|
Fuchikawa T, Beer K, Linke-Winnebeck C, Ben-David R, Kotowoy A, Tsang VWK, Warman GR, Winnebeck EC, Helfrich-Förster C, Bloch G. Neuronal circadian clock protein oscillations are similar in behaviourally rhythmic forager honeybees and in arrhythmic nurses. Open Biol 2018; 7:rsob.170047. [PMID: 28615472 PMCID: PMC5493776 DOI: 10.1098/rsob.170047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/11/2017] [Indexed: 11/12/2022] Open
Abstract
Internal clocks driving rhythms of about a day (circadian) are ubiquitous in animals, allowing them to anticipate environmental changes. Genetic or environmental disturbances to circadian clocks or the rhythms they produce are commonly associated with illness, compromised performance or reduced survival. Nevertheless, some animals including Arctic mammals, open sea fish and social insects such as honeybees are active around-the-clock with no apparent ill effects. The mechanisms allowing this remarkable natural plasticity are unknown. We generated and validated a new and specific antibody against the clock protein PERIOD of the honeybee Apis mellifera (amPER) and used it to characterize the circadian network in the honeybee brain. We found many similarities to Drosophila melanogaster and other insects, suggesting common anatomical organization principles in the insect clock that have not been appreciated before. Time course analyses revealed strong daily oscillations in amPER levels in foragers, which show circadian rhythms, and also in nurses that do not, although the latter have attenuated oscillations in brain mRNA clock gene levels. The oscillations in nurses show that activity can be uncoupled from the circadian network and support the hypothesis that a ticking circadian clock is essential even in around-the-clock active animals in a constant physical environment.
Collapse
Affiliation(s)
- T Fuchikawa
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - K Beer
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | | | - R Ben-David
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - A Kotowoy
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - V W K Tsang
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - G R Warman
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - E C Winnebeck
- School of Biological Sciences, University of Auckland, New Zealand .,Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | | | - G Bloch
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
17
|
Jain R, Brockmann A. Time-restricted foraging under natural light/dark condition shifts the molecular clock in the honey bee, Apis mellifera. Chronobiol Int 2018; 35:1723-1734. [PMID: 30252538 DOI: 10.1080/07420528.2018.1509867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Honey bees have a remarkable sense of time and individual honey bee foragers are capable of adjusting their foraging activity with respect to the time of food availability. Although, there is compelling experimental evidence that foraging behavior is guided by the circadian clock, nothing is known about the underlying molecular mechanisms. Here we present for the first time a study that explores whether time-restricted foraging under natural light-dark (LD) condition affects the molecular clock in honey bees. Food was presented in an enclosed flight chamber (12 m × 4 m × 4 m) either for 2 hours in the morning or 2 hours in the afternoon for several consecutive days and daily cycling of the two major clock genes, cryptochrome2 (cry2) and period (per), were analyzed for three different parts of the nervous system involved in feeding-related behaviors: brain, subesophageal ganglion (SEG), and the antennae with olfactory sensory neurons. We found that morning and afternoon trained foragers showed significant phase differences in the cycling of both clock genes in all three tissues. In addition, the phase differences were more pronounced when the feeder was scented with the common plant odor, linalool. Together our findings suggest that foraging time may function as a Zeitgeber that might have the capability to modulate the light entrained molecular clock.
Collapse
Affiliation(s)
- Rikesh Jain
- a National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore , Karnataka , India.,b School of Chemical and Biotechnology (SCBT) , SASTRA University , Thanjavur , Tamil Nadu , India
| | - Axel Brockmann
- a National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore , Karnataka , India
| |
Collapse
|
18
|
Krzeptowski W, Hess G, Pyza E. Circadian Plasticity in the Brain of Insects and Rodents. Front Neural Circuits 2018; 12:32. [PMID: 29770112 PMCID: PMC5942159 DOI: 10.3389/fncir.2018.00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
In both vertebrate and invertebrate brains, neurons, glial cells and synapses are plastic, which means that the physiology and structure of these components are modified in response to internal and external stimuli during development and in mature brains. The term plasticity has been introduced in the last century to describe experience-dependent changes in synapse strength and number. These changes result from local functional and morphological synapse modifications; however, these modifications also occur more commonly in pre- and postsynaptic neurons. As a result, neuron morphology and neuronal networks are constantly modified during the life of animals and humans in response to different stimuli. Nevertheless, it has been discovered in flies and mammals that the number of synapses and size and shape of neurons also oscillate during the day. In most cases, these rhythms are circadian since they are generated by endogenous circadian clocks; however, some rhythmic changes in neuron morphology and synapse number and structure are controlled directly by environmental cues or by both external cues and circadian clocks. When the circadian clock is involved in generating cyclic changes in the nervous system, this type of plasticity is called circadian plasticity. It seems to be important in processing sensory information, in learning and in memory. Disruption of the clock may affect major brain functions.
Collapse
Affiliation(s)
- Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.,Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
19
|
Lichtenstein L, Grübel K, Spaethe J. Opsin expression patterns coincide with photoreceptor development during pupal development in the honey bee, Apis mellifera. BMC DEVELOPMENTAL BIOLOGY 2018; 18:1. [PMID: 29382313 PMCID: PMC5791347 DOI: 10.1186/s12861-018-0162-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022]
Abstract
Background The compound eyes of insects allow them to catch photons and convert the energy into electric signals. All compound eyes consist of numerous ommatidia, each comprising a fixed number of photoreceptors. Different ommatidial types are characterized by a specific set of photoreceptors differing in spectral sensitivity. In honey bees, males and females possess different ommatidial types forming distinct retinal mosaics. However, data are lacking on retinal ontogeny and the mechanisms by which the eyes are patterned. In this study, we investigated the intrinsic temporal and circadian expression patterns of the opsins that give rise to the ultraviolet, blue and green sensitive photoreceptors, as well as the morphological maturation of the retina during pupal development of honey bees. Results qPCR and histological labeling revealed that temporal opsin mRNA expression differs between sexes and correlates with rhabdom elongation during photoreceptor development. In the first half of the pupal stage, when the rhabdoms of the photoreceptors are still short, worker and (dorsal) drone retinae exhibit similar expression patterns with relatively high levels of UV (UVop) and only marginal levels of blue (BLop) and green (Lop1) opsin mRNA. In the second half of pupation, when photoreceptors and rhabdoms elongate, opsin expression in workers becomes dominated by Lop1 mRNA. In contrast, the dorsal drone eye shows high expression levels of UVop and BLop mRNA, whereas Lop1 mRNA level decreases. Interestingly, opsin expression levels increase up to 22-fold during early adult life. We also found evidence that opsin expression in adult bees is under the control of the endogenous clock. Conclusions Our data indicate that the formation of the sex-specific retinal composition of photoreceptors takes place during the second half of the pupal development, and that opsin mRNA expression levels continue to increase in young bees, which stands in contrast to Drosophila, where the highest expression levels are found during the late pupal stage and remain constant in adults. From an evolutionary perspective, we hypothesize that the delayed retinal maturation during the early adult phase is linked to the delayed transition from indoor to outdoor activities in bees, when vision becomes important.
Collapse
Affiliation(s)
- Leonie Lichtenstein
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany.
| | - Kornelia Grübel
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Ingram KK, Gordon DM, Friedman DA, Greene M, Kahler J, Peteru S. Context-dependent expression of the foraging gene in field colonies of ants: the interacting roles of age, environment and task. Proc Biol Sci 2017; 283:rspb.2016.0841. [PMID: 27581876 PMCID: PMC5013789 DOI: 10.1098/rspb.2016.0841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/05/2016] [Indexed: 12/31/2022] Open
Abstract
Task allocation among social insect workers is an ideal framework for studying the molecular mechanisms underlying behavioural plasticity because workers of similar genotype adopt different behavioural phenotypes. Elegant laboratory studies have pioneered this effort, but field studies involving the genetic regulation of task allocation are rare. Here, we investigate the expression of the foraging gene in harvester ant workers from five age- and task-related groups in a natural population, and we experimentally test how exposure to light affects foraging expression in brood workers and foragers. Results from our field study show that the regulation of the foraging gene in harvester ants occurs at two time scales: levels of foraging mRNA are associated with ontogenetic changes over weeks in worker age, location and task, and there are significant daily oscillations in foraging expression in foragers. The temporal dissection of foraging expression reveals that gene expression changes in foragers occur across a scale of hours and the level of expression is predicted by activity rhythms: foragers have high levels of foraging mRNA during daylight hours when they are most active outside the nests. In the experimental study, we find complex interactions in foraging expression between task behaviour and light exposure. Oscillations occur in foragers following experimental exposure to 13 L : 11 D (LD) conditions, but not in brood workers under similar conditions. No significant differences were seen in foraging expression over time in either task in 24 h dark (DD) conditions. Interestingly, the expression of foraging in both undisturbed field and experimentally treated foragers is also significantly correlated with the expression of the circadian clock gene, cycle. Our results provide evidence that the regulation of this gene is context-dependent and associated with both ontogenetic and daily behavioural plasticity in field colonies of harvester ants. Our results underscore the importance of assaying temporal patterns in behavioural gene expression and suggest that gene regulation is an integral mechanism associated with behavioural plasticity in harvester ants.
Collapse
Affiliation(s)
- Krista K Ingram
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Deborah M Gordon
- Department of Biology, Stanford University, Gilbert Biological Science Building, Stanford, CA 94305, USA
| | - Daniel A Friedman
- Department of Biology, Stanford University, Gilbert Biological Science Building, Stanford, CA 94305, USA
| | - Michael Greene
- Department of Integrative Biology, University of Colorado, Campus Box 171, PO Box 176634, Denver, CO 80217-3364, USA
| | - John Kahler
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Swetha Peteru
- Department of Geography, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
21
|
Helm B, Visser ME, Schwartz W, Kronfeld-Schor N, Gerkema M, Piersma T, Bloch G. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160246. [PMID: 28993490 PMCID: PMC5647273 DOI: 10.1098/rstb.2016.0246] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2017] [Indexed: 12/19/2022] Open
Abstract
Most processes within organisms, and most interactions between organisms and their environment, have distinct time profiles. The temporal coordination of such processes is crucial across levels of biological organization, but disciplines differ widely in their approaches to study timing. Such differences are accentuated between ecologists, who are centrally concerned with a holistic view of an organism in relation to its external environment, and chronobiologists, who emphasize internal timekeeping within an organism and the mechanisms of its adjustment to the environment. We argue that ecological and chronobiological perspectives are complementary, and that studies at the intersection will enable both fields to jointly overcome obstacles that currently hinder progress. However, to achieve this integration, we first have to cross some conceptual barriers, clarifying prohibitively inaccessible terminologies. We critically assess main assumptions and concepts in either field, as well as their common interests. Both approaches intersect in their need to understand the extent and regulation of temporal plasticity, and in the concept of 'chronotype', i.e. the characteristic temporal properties of individuals which are the targets of natural and sexual selection. We then highlight promising developments, point out open questions, acknowledge difficulties and propose directions for further integration of ecological and chronobiological perspectives through Wild Clock research.This article is part of the themed issue 'Wild Clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G128QQ, UK
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO 50, 6700 AB Wageningen, The Netherlands
| | - William Schwartz
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, USA
| | | | - Menno Gerkema
- Chronobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Theunis Piersma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
22
|
Nagari M, Szyszka P, Galizia G, Bloch G. Task-Related Phasing of Circadian Rhythms in Antennal Responsiveness to Odorants and Pheromones in Honeybees. J Biol Rhythms 2017; 32:593-608. [PMID: 28984167 DOI: 10.1177/0748730417733573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The insect antennae receive olfactory information from the environment. In some insects, it has been shown that antennal responsiveness is dynamically regulated by circadian clocks. However, it is unknown how general this phenomenon is and what functions it serves. Circadian regulation in honeybee workers is particularly interesting in this regard because they show natural task-related chronobiological plasticity. Forager bees show strong circadian rhythms in behavior and brain gene expression, whereas nurse bees tend brood around-the-clock and have attenuated circadian rhythms in activity and whole-brain gene expression. Here, we tested the hypothesis that there is task-related plasticity in circadian rhythms of antennal responsiveness to odorants in worker honeybees. We used electroantennogram (EAG) to measure the antennal responsiveness of nurses and foragers to general odorants and pheromones around the day. The capacity to track 10-Hz odorant pulses varied with time of day for both task groups but with different phases. The antennal pulse-tracking capacity was higher during the subjective day for the day-active foragers, whereas it was better during the night for around-the-clock active nurses. The task-related phases of pulse-tracking rhythms were similar for all the tested stimuli. We also found evidence for circadian rhythms in the EAG response magnitude of foragers but not of nurses. To the best of our knowledge, these results provide the first evidence for circadian regulation of antennal olfactory responsiveness and odorant pulse-tracking capacity in bees or any other hymenopteran insect. Importantly, our study shows for the first time that the circadian phase of olfactory responsiveness may be socially regulated.
Collapse
Affiliation(s)
- Moshe Nagari
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Szyszka
- Department of Neuroscience, University of Konstanz, Germany
| | | | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
Nagari M, Brenner Y, Bloch G. Nurse honeybee workers tend capped-brood, which does not require feeding, around-the-clock. J Exp Biol 2017; 220:4130-4140. [DOI: 10.1242/jeb.166884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
“Nurse” honeybees tend brood around-the-clock with attenuated or no circadian rhythms, but the brood signals inducing this behavior remain elusive. We first tested the hypothesis that worker circadian rhythms are regulated by brood pheromones. We monitored locomotor activity of individually isolated nurse bees that were either exposed to various doses of larval extracts or synthetic brood ester pheromone (BEP). Bees orally treated with larvae extracts showed attenuated circadian rhythms in one of four tested colonies; a similar but statistically non-significant trend was seen in two additional colonies. Nurse bees treated with synthetic BEP showed rhythm attenuation in one of three tested colonies. Next, we tested the hypothesis that capped brood, which does not require feeding, nevertheless induces around-the-clock activity in nurses. By combining a new protocol that enables brood care by individually isolated nurse bees, detailed behavioral observations, and automatic high resolution monitoring of locomotor activity, we found that isolated nurses tended capped brood around-the-clock with attenuated circadian rhythms. Bees individually isolated in similar cages but without brood, showed strong circadian rhythms in locomotor activity and rest. This study shows for the first time that the need to feed hungry larvae is not the only factor accounting for around-the-clock activity in nurse bees. Our results further suggest that the transition between activity with and without circadian rhythms is not a simple switch triggered by brood pheromones. Around-the-clock tending may enhance brood development and health in multiple ways that may include improved larval feeding, thermoregulation and hygienic behavior.
Collapse
Affiliation(s)
- Moshe Nagari
- The Hebrew University of Jerusalem, The Alexander A. Silberman Institute of Life Sciences, The Department of Evolution, Ecology and Behavior, Israel
| | - Yafit Brenner
- The Hebrew University of Jerusalem, The Alexander A. Silberman Institute of Life Sciences, The Department of Evolution, Ecology and Behavior, Israel
| | - Guy Bloch
- The Hebrew University of Jerusalem, The Alexander A. Silberman Institute of Life Sciences, The Department of Evolution, Ecology and Behavior, Israel
| |
Collapse
|
24
|
Rund SSC, Yoo B, Alam C, Green T, Stephens MT, Zeng E, George GF, Sheppard AD, Duffield GE, Milenković T, Pfrender ME. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation. BMC Genomics 2016; 17:653. [PMID: 27538446 PMCID: PMC4991082 DOI: 10.1186/s12864-016-2998-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/05/2016] [Indexed: 11/16/2022] Open
Abstract
Background Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Results Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. Conclusions This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel functional annotation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2998-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel S C Rund
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Centre for Immunity, Infection and Evolution, Institute of Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK.,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Boyoung Yoo
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.,Present Address: Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Camille Alam
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Taryn Green
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Melissa T Stephens
- Notre Dame Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Erliang Zeng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.,Notre Dame Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN, 46556, USA.,Present Address: Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA.,Present Address: Department of Computer Science, University of South Dakota, Vermillion, SD, 57069, USA
| | - Gary F George
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Aaron D Sheppard
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Giles E Duffield
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tijana Milenković
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.,Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael E Pfrender
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
25
|
Alayrangues J, Hotier L, Massou I, Bertrand Y, Armengaud C. Prolonged effects of in-hive monoterpenoids on the honey bee Apis mellifera. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:856-862. [PMID: 26965704 DOI: 10.1007/s10646-016-1642-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Honey bees are exposed in their environment to contaminants but also to biological stressors such as Varroa destructor that can weaken the colony. Preparations containing monoterpenoids that are essential oil components, can be introduced into hives to control Varroa. The long-term sublethal effects of monoterpenoids used as miticides have been poorly investigated. Analysis of behavior of free-moving bees in the laboratory is useful to evaluate the impact of chemical stressors on their cognitive functions such as vision function. Here, the walking behavior was quantified under a 200-lux light intensity. Weeks and months after introduction of the miticide (74 % thymol) into the hives, decreases of phototaxis was observed with both summer and winter bees. Curiously, in spring, bees collected in treated hives were less attracted by light in the morning than control bees. The survival of bees collected in spring was increased by treatment. After a 1-year period of observation, the colony losses were identical in treated and non-treated groups. Colony loss started earlier in the non-treated group. In public opinion, natural substances as essential oils are safer and more environmentally friendly. We demonstrated that a monoterpenoid-based treatment affects bee responses to light. The latter results have notable implications regarding the evaluation of miticides in beekeeping.
Collapse
Affiliation(s)
- Julie Alayrangues
- Centre Universitaire Jean-François Champollion, 81012, Albi Cedex 09, France
- Institut de Neurosciences (INT), Aix-Marseille Université -Faculté de Médecine, 13385, Marseille Cedex 05, France
| | - Lucie Hotier
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 09, France
| | - Isabelle Massou
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 09, France
| | - Yolaine Bertrand
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 09, France
| | - Catherine Armengaud
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 09, France.
| |
Collapse
|
26
|
Fuchikawa T, Eban-Rothschild A, Nagari M, Shemesh Y, Bloch G. Potent social synchronization can override photic entrainment of circadian rhythms. Nat Commun 2016; 7:11662. [PMID: 27210069 PMCID: PMC4879263 DOI: 10.1038/ncomms11662] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms in behaviour and physiology are important for animal health and survival. Studies with individually isolated animals in the laboratory have consistently emphasized the dominant role of light for the entrainment of circadian rhythms to relevant environmental cycles. Although in nature interactions with conspecifics are functionally significant, social signals are typically not considered important time-givers for the animal circadian clock. Our results challenge this view. By studying honeybees in an ecologically relevant context and using a massive data set, we demonstrate that social entrainment can be potent, may act without direct contact with other individuals and does not rely on gating the exposure to light. We show for the first time that social time cues stably entrain the clock, even in animals experiencing conflicting photic and social environmental cycles. These findings add to the growing appreciation for the importance of studying circadian rhythms in ecologically relevant contexts.
Collapse
Affiliation(s)
- Taro Fuchikawa
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 Israel
| | - Ada Eban-Rothschild
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 Israel
| | - Moshe Nagari
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 Israel
| | - Yair Shemesh
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 Israel
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 Israel
| |
Collapse
|
27
|
Southey BR, Zhu P, Carr-Markell MK, Liang ZS, Zayed A, Li R, Robinson GE, Rodriguez-Zas SL. Characterization of Genomic Variants Associated with Scout and Recruit Behavioral Castes in Honey Bees Using Whole-Genome Sequencing. PLoS One 2016; 11:e0146430. [PMID: 26784945 PMCID: PMC4718678 DOI: 10.1371/journal.pone.0146430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/15/2015] [Indexed: 12/01/2022] Open
Abstract
Among forager honey bees, scouts seek new resources and return to the colony, enlisting recruits to collect these resources. Differentially expressed genes between these behaviors and genetic variability in scouting phenotypes have been reported. Whole-genome sequencing of 44 Apis mellifera scouts and recruits was undertaken to detect variants and further understand the genetic architecture underlying the behavioral differences between scouts and recruits. The median coverage depth in recruits and scouts was 10.01 and 10.7 X, respectively. Representation of bacterial species among the unmapped reads reflected a more diverse microbiome in scouts than recruits. Overall, 1,412,705 polymorphic positions were analyzed for associations with scouting behavior, and 212 significant (p-value < 0.0001) associations with scouting corresponding to 137 positions were detected. Most frequent putative transcription factor binding sites proximal to significant variants included Broad-complex 4, Broad-complex 1, Hunchback, and CF2-II. Three variants associated with scouting were located within coding regions of ncRNAs including one codon change (LOC102653644) and 2 frameshift indels (LOC102654879 and LOC102655256). Significant variants were also identified on the 5’UTR of membrin, and 3’UTRs of laccase 2 and diacylglycerol kinase theta. The 60 significant variants located within introns corresponded to 39 genes and most of these positions were > 1000 bp apart from each other. A number of these variants were mapped to ncRNA LOC100578102, solute carrier family 12 member 6-like gene, and LOC100576965 (meprin and TRAF-C homology domain containing gene). Functional categories represented among the genes corresponding to significant variants included: neuronal function, exoskeleton, immune response, salivary gland development, and enzymatic food processing. These categories offer a glimpse into the molecular support to the behaviors of scouts and recruits. The level of association between genomic variants and scouting behavior observed in this study may be linked to the honey bee’s genomic plasticity and fluidity of transition between castes.
Collapse
Affiliation(s)
- Bruce R. Southey
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ping Zhu
- Biodynamic Optical Imaging Center, College of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Morgan K. Carr-Markell
- School of Integrative Biology, Ecology, Evolution, and Conservation Biology Program, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Zhengzheng S. Liang
- School of Molecular and Cell Biology and Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing, China and Biodynamic Optical Imaging Center, Peking-Tsinghua Center for Life Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Gene E. Robinson
- Carle Woese Institute for Genomic Biology, Department of Entomology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, Department of Statistics, Neuroscience Program, and Carle Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
28
|
Han B, Fang Y, Feng M, Hu H, Qi Y, Huo X, Meng L, Wu B, Li J. Quantitative Neuropeptidome Analysis Reveals Neuropeptides Are Correlated with Social Behavior Regulation of the Honeybee Workers. J Proteome Res 2015; 14:4382-93. [DOI: 10.1021/acs.jproteome.5b00632] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Han
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Yu Fang
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Mao Feng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Han Hu
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Yuping Qi
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Xinmei Huo
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Lifeng Meng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Bin Wu
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Jianke Li
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| |
Collapse
|
29
|
Liang ZS, Mattila HR, Rodriguez-Zas SL, Southey BR, Seeley TD, Robinson GE. Comparative brain transcriptomic analyses of scouting across distinct behavioural and ecological contexts in honeybees. Proc Biol Sci 2015; 281:rspb.2014.1868. [PMID: 25355476 DOI: 10.1098/rspb.2014.1868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Individual differences in behaviour are often consistent across time and contexts, but it is not clear whether such consistency is reflected at the molecular level. We explored this issue by studying scouting in honeybees in two different behavioural and ecological contexts: finding new sources of floral food resources and finding a new nest site. Brain gene expression profiles in food-source and nest-site scouts showed a significant overlap, despite large expression differences associated with the two different contexts. Class prediction and 'leave-one-out' cross-validation analyses revealed that a bee's role as a scout in either context could be predicted with 92.5% success using 89 genes at minimum. We also found that genes related to four neurotransmitter systems were part of a shared brain molecular signature in both types of scouts, and the two types of scouts were more similar for genes related to glutamate and GABA than catecholamine or acetylcholine signalling. These results indicate that consistent behavioural tendencies across different ecological contexts involve a mixture of similarities and differences in brain gene expression.
Collapse
Affiliation(s)
- Zhengzheng S Liang
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Heather R Mattila
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Sandra L Rodriguez-Zas
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Thomas D Seeley
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Gene E Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
30
|
Tomioka K, Matsumoto A. Circadian molecular clockworks in non-model insects. CURRENT OPINION IN INSECT SCIENCE 2015; 7:58-64. [PMID: 32846680 DOI: 10.1016/j.cois.2014.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 06/11/2023]
Abstract
The recent development of molecular genetic technology is promoting studies on the clock mechanism of various non-model insect species, revealing diversity and commonality of their molecular clock machinery. Like in Drosophila, their clocks generally consist of clock genes including period, timeless, Clock, and cycle, except for hymenopteran species which lack timeless in their genome. Unlike in Drosophila, however, some insects show vertebrate-like traits: The clock machinery involves mammalian type cryptochrome, cycle is rhythmically expressed, and Clock is constitutively expressed. Although the oscillatory mechanisms of the clock are still to be investigated in most insects, RNAi and genome editing technology should accelerate the study, leading toward understanding the origin of variable overt behavioral rhythms such as nocturnal, diurnal, and crepuscular activity rhythms.
Collapse
Affiliation(s)
- Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Akira Matsumoto
- Department of Biology, Juntendo University School of Medicine, 1-1 Hiraga Gakuendai, Inzai, Chiba 270-1695, Japan
| |
Collapse
|
31
|
Bloch G, Cohen M. The expression and phylogenetics of the Inhibitor Cysteine Knot peptide OCLP1 in the honey bee Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2014; 65:1-8. [PMID: 24721445 DOI: 10.1016/j.jinsphys.2014.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/27/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
Small cysteine-rich peptides have diverse functions in insects including antimicrobial defense, phenoloxidase activity regulation, and toxic inhibition of ion channels of prey or predator. We combined bioinformatics and measurements of transcript abundance to start characterizing AmOCLP1, a recently discovered Inhibitor Cysteine Knot peptide in the honey bee Apis mellifera. We found that the genomes of ants, bees, and the wasp Nasonia vitripennis encode orthologous sequences indicating that OCLP1 is a conserved peptide and not unique to the honey bee. Search of available EST libraries and quantitative real time PCR analyses indicate that the transcript of AmOCLP1 is ubiquitous with expression in life stages ranging from embryos to adults and in all tested tissues. In worker honey bees AmOCLP1 expression was not associated with age or task and did not show clear enrichment in any of the tested tissues. There was however a consistent trend toward higher transcript levels in the abdomen of foragers relative to levels in the head or thorax, and compared to levels in the abdomen of younger worker bees. By contrast, in drones AmOCLP1 transcript levels appeared higher in the head relative to the abdomen. Finer analyses of the head and abdomen indicated that the AmOCLP1 transcript is not enriched in the stinger and the associated venom sac or in cephalic exocrine glands. The evolutionary conservation in the Hymenoptera, the ubiquitous expression, and the lack of enrichment in the venom gland, stinger, exocrine glands, and the brain are not consistent with the hypotheses that OCLP1 is a secreted honeybee toxin or an endotoxin acting in the central nervous system. Rather we hypothesize that OCLP1 is a conserved antimicrobial or phenoloxidase inhibitor peptide.
Collapse
Affiliation(s)
- Guy Bloch
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Mira Cohen
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
32
|
Lin YH, Lee CM, Huang JH, Lee HJ. Circadian regulation of permethrin susceptibility by glutathione S-transferase (BgGSTD1) in the German cockroach (Blattella germanica). JOURNAL OF INSECT PHYSIOLOGY 2014; 65:45-50. [PMID: 24819204 DOI: 10.1016/j.jinsphys.2014.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/22/2014] [Accepted: 05/01/2014] [Indexed: 06/03/2023]
Abstract
The daily susceptibility rhythm to permethrin and the expression level of the delta class glutathione S-transferase (BgGSTD1) gene were investigated in Blattella germanica. Male cockroaches were exposed to the same concentration of permethrin at different times in a light-dark cycle, and results showed that the highest resistance occurred at night. Furthermore, the circadian rhythmicity of permethrin susceptibility was demonstrated by the highest resistance at subjective night under constant darkness. The mRNA level of the BgGSTD1 gene in the fat body of B. germanica peaked early in the day or subjective day under light-dark or constant dark conditions, whereas enzyme activity of cytosolic GSTs did not reflect the rhythmic pattern as well as BgGSTD1 expression. RNA interference (RNAi) was employed to study the function of BgGSTD1 in the circadian rhythm of permethrin susceptibility in B. germanica. Both BgGSTD1 mRNA level and cytosolic GSTs activity were significantly decreased by dsGSTD1 injection. In addition, survival of B. germanica with silenced BgGSTD1 was significantly decreased at night but not in the day when the cockroaches were exposed to permethrin. Total cytosolic GSTs activity demonstrated that is not the only gene involved in the circadian regulation of the permethrin resistance, although it is one of the major regulators of permethrin resistance.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Chi-Mei Lee
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jia-Hsin Huang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - How-Jing Lee
- Department of Entomology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
33
|
Balmert NJ, Rund SSC, Ghazi JP, Zhou P, Duffield GE. Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. JOURNAL OF INSECT PHYSIOLOGY 2014; 64:30-39. [PMID: 24631684 DOI: 10.1016/j.jinsphys.2014.02.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/12/2014] [Accepted: 02/27/2014] [Indexed: 06/03/2023]
Abstract
Mosquitoes exhibit ∼24 h rhythms in physiology and behavior, regulated by the cooperative action of an endogenous circadian clock and the environmental light:dark cycle. Here, we characterize diel (observed under light:dark conditions) time-of-day changes in metabolic detoxification and resistance to insecticide challenge in Anopheles gambiae mosquitoes. A better understanding of mosquito chronobiology will yield insights into developing novel control strategies for this important disease vector. We have previously identified >2000 rhythmically expressed An. gambiae genes. These include metabolic detoxification enzymes peaking at various times throughout the day. Especially interesting was the identification of rhythmic genes encoding enzymes capable of pyrethroid and/or DDT metabolism (CYP6M2, CYP6P3, CYP6Z1, and GSTE2). We hypothesized that these temporal changes in gene expression would confer time-of-day specific changes in metabolic detoxification and responses to insecticide challenge. An. gambiae mosquitoes (adult female Pimperena and Mali-NIH strains) were tested by gene expression analysis for diel rhythms in key genes associated with insecticidal resistance. Biochemical assays for total GST, esterase, and oxidase enzymatic activities were undertaken on time-specific mosquito head and body protein lysates. To determine for rhythmic susceptibility to insecticides by survivorship, mosquitoes were exposed to DDT or deltamethrin across the diel cycle. We report the occurrence of temporal changes in GST activity in samples extracted from the body and head with a single peak at late-night to dawn, but no rhythms were detected in oxidase or esterase activity. The Pimperena strain was found to be resistant to insecticidal challenge, and subsequent genomic analysis revealed the presence of the resistance-conferring kdr mutation. We observed diel rhythmicity in key insecticide detoxification genes in the Mali-NIH strain, with peak phases as previously reported in the Pimperena strain. The insecticide sensitive Mali-NIH strain mosquitoes exhibited a diel rhythm in survivorship to DDT exposure and a bimodal variation to deltamethrin challenge. Our results demonstrate rhythms in detoxification and pesticide susceptibility in An. gambiae mosquitoes; this knowledge could be incorporated into mosquito control and experimental design strategies, and contributes to our basic understanding of mosquito biology.
Collapse
Affiliation(s)
- Nathaniel J Balmert
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Samuel S C Rund
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - John P Ghazi
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Peng Zhou
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Giles E Duffield
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
34
|
Ghezzi A, Liebeskind BJ, Thompson A, Atkinson NS, Zakon HH. Ancient association between cation leak channels and Mid1 proteins is conserved in fungi and animals. Front Mol Neurosci 2014; 7:15. [PMID: 24639627 PMCID: PMC3945613 DOI: 10.3389/fnmol.2014.00015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/19/2014] [Indexed: 12/22/2022] Open
Abstract
Neuronal resting potential can tune the excitability of neural networks, affecting downstream behavior. Sodium leak channels (NALCN) play a key role in rhythmic behaviors by helping set, or subtly changing neuronal resting potential. The full complexity of these newly described channels is just beginning to be appreciated, however. NALCN channels can associate with numerous subunits in different tissues and can be activated by several different peptides and second messengers. We recently showed that NALCN channels are closely related to fungal calcium channels, which they functionally resemble. Here, we use this relationship to predict a family of NALCN-associated proteins in animals on the basis of homology with the yeast protein Mid1, the subunit of the yeast calcium channel. These proteins all share a cysteine-rich region that is necessary for Mid1 function in yeast. We validate this predicted association by showing that the Mid1 homolog in Drosophila, encoded by the CG33988 gene, is coordinately expressed with NALCN, and that knockdown of either protein creates identical phenotypes in several behaviors associated with NALCN function. The relationship between Mid1 and leak channels has therefore persisted over a billion years of evolution, despite drastic changes to both proteins and the organisms in which they exist.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- Department of Neuroscience, University of Texas at Austin Austin, TX, USA
| | | | - Ammon Thompson
- Department of Integrative Biology, University of Texas at Austin TX, USA
| | - Nigel S Atkinson
- Department of Neuroscience, University of Texas at Austin Austin, TX, USA
| | - Harold H Zakon
- Department of Neuroscience, University of Texas at Austin Austin, TX, USA ; Department of Integrative Biology, University of Texas at Austin TX, USA ; Marine Biological Laboratory, The Josephine Bay Paul Center Woods Hole, MA, USA
| |
Collapse
|
35
|
Leboulle G, Niggebrügge C, Roessler R, Briscoe AD, Menzel R, Hempel de Ibarra N. Characterisation of the RNA interference response against the long-wavelength receptor of the honeybee. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:959-969. [PMID: 23933285 DOI: 10.1016/j.ibmb.2013.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
Targeted knock-down is the method of choice to advance the study of sensory and brain functions in the honeybee by using molecular techniques. Here we report the results of a first attempt to interfere with the function of a visual receptor, the long-wavelength-sensitive (L-) photoreceptor. RNA interference to inhibit this receptor led to a reduction of the respective mRNA and protein. The interference effect was limited in time and space, and its induction depended on the time of the day most probably because of natural daily variations in opsin levels. The inhibition did not effectively change the physiological properties of the retina. Possible constraints and implications of this method for the study of the bee's visual system are discussed. Overall this study underpins the usefulness and feasibility of RNA interference as manipulation tool in insect brain research.
Collapse
Affiliation(s)
- Gérard Leboulle
- Freie Universität Berlin, Institut für Biologie, Neurobiologie, Königin-Luise-Str. 28/30, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Bloch G, Herzog ED, Levine JD, Schwartz WJ. Socially synchronized circadian oscillators. Proc Biol Sci 2013; 280:20130035. [PMID: 23825203 PMCID: PMC3712435 DOI: 10.1098/rspb.2013.0035] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 06/03/2013] [Indexed: 12/26/2022] Open
Abstract
Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian 'clock'). The alternation of environmental light and darkness synchronizes (entrains) these rhythms to the natural day-night cycle, and underlying mechanisms have been investigated using singly housed animals in the laboratory. But, most species ordinarily would not live out their lives in such seclusion; in their natural habitats, they interact with other individuals, and some live in colonies with highly developed social structures requiring temporal synchronization. Social cues may thus be critical to the adaptive function of the circadian system, but elucidating their role and the responsible mechanisms has proven elusive. Here, we highlight three model systems that are now being applied to understanding the biology of socially synchronized circadian oscillators: the fruitfly, with its powerful array of molecular genetic tools; the honeybee, with its complex natural society and clear division of labour; and, at a different level of biological organization, the rodent suprachiasmatic nucleus, site of the brain's circadian clock, with its network of mutually coupled single-cell oscillators. Analyses at the 'group' level of circadian organization will likely generate a more complex, but ultimately more comprehensive, view of clocks and rhythms and their contribution to fitness in nature.
Collapse
Affiliation(s)
- Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Erik D. Herzog
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| | - Joel D. Levine
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada, L5L 136
| | - William J. Schwartz
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
37
|
Bloch G, Barnes BM, Gerkema MP, Helm B. Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value. Proc Biol Sci 2013; 280:20130019. [PMID: 23825202 DOI: 10.1098/rspb.2013.0019] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythms are ubiquitous in many organisms. Animals that are forced to be active around the clock typically show reduced performance, health and survival. Nevertheless, we review evidence of animals showing prolonged intervals of activity with attenuated or nil overt circadian rhythms and no apparent ill effects. We show that around-the-clock and ultradian activity patterns are more common than is generally appreciated, particularly in herbivores, in animals inhabiting polar regions and habitats with constant physical environments, in animals during specific life-history stages (such as migration or reproduction), and in highly social animals. The underlying mechanisms are diverse, but studies suggest that some circadian pacemakers continue to measure time in animals active around the clock. The prevalence of around-the-clock activity in diverse animals and habitats, and an apparent diversity of underlying mechanisms, are consistent with convergent evolution. We suggest that the basic organizational principles of the circadian system and its complexity encompass the potential for chronobiological plasticity. There may be trade-offs between benefits of persistent daily rhythms versus plasticity, which for reasons still poorly understood make overt daily arrhythmicity functionally adaptive only in selected habitats and for selected lifestyles.
Collapse
Affiliation(s)
- Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
38
|
Bloch G, Hazan E, Rafaeli A. Circadian rhythms and endocrine functions in adult insects. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:56-69. [PMID: 23103982 DOI: 10.1016/j.jinsphys.2012.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Many behavioral and physiological processes in adult insects are influenced by both the endocrine and circadian systems, suggesting that these two key physiological systems interact. We reviewed the literature and found that experiments explicitly testing these interactions in adult insects have only been conducted for a few species. There is a shortage of measurements of hormone titers throughout the day under constant conditions even for the juvenile hormones (JHs) and ecdysteroids, the best studied insect hormones. Nevertheless, the available measurements of hormone titers coupled with indirect evidence for circadian modulation of hormone biosynthesis rate, and the expression of genes encoding proteins involved in hormone biosynthesis, binding or degradation are consistent with the hypothesis that the circulating levels of many insect hormones are influenced by the circadian system. Whole genome microarray studies suggest that the modulation of farnesol oxidase levels is important for the circadian regulation of JH biosynthesis in honey bees, mosquitoes, and fruit flies. Several studies have begun to address the functional significance of circadian oscillations in endocrine signaling. The best understood system is the circadian regulation of Pheromone Biosynthesis Activating Neuropeptide (PBAN) titers which is important for the temporal organization of sexual behavior in female moths. The evidence that the circadian and endocrine systems interact has important implications for studies of insect physiology and behavior. Additional studies on diverse species and physiological processes are needed for identifying basic principles underlying the interactions between the circadian and endocrine systems in insects.
Collapse
Affiliation(s)
- Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | |
Collapse
|
39
|
Ingram KK, Kutowoi A, Wurm Y, Shoemaker D, Meier R, Bloch G. The molecular clockwork of the fire ant Solenopsis invicta. PLoS One 2012; 7:e45715. [PMID: 23152747 PMCID: PMC3496728 DOI: 10.1371/journal.pone.0045715] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
The circadian clock is a core molecular mechanism that allows organisms to anticipate daily environmental changes and adapt the timing of behaviors to maximize efficiency. In social insects, the ability to maintain the appropriate temporal order is thought to improve colony efficiency and fitness. We used the newly sequenced fire ant (Solenopsis invicta) genome to characterize the first ant circadian clock. Our results reveal that the fire ant clock is similar to the clock of the honeybee, a social insect with an independent evolutionary origin of sociality. Gene trees for the eight core clock genes, period, cycle, clock, cryptochrome-m, timeout, vrille, par domain protein 1 & clockwork orange, show ant species grouping closely with honeybees and Nasonia wasps as an outgroup to the social Hymenoptera. Expression patterns for these genes suggest that the ant clock functions similar to the honeybee clock, with period and cry-m mRNA levels increasing during the night and cycle and clockwork orange mRNAs cycling approximately anti-phase to period. Gene models for five of these genes also parallel honeybee models. In particular, the single ant cryptochrome is an ortholog of the mammalian-type (cry-m), rather than Drosophila-like protein (cry-d). Additionally, we find a conserved VPIFAL C-tail region in clockwork orange shared by insects but absent in vertebrates. Overall, our characterization of the ant clock demonstrates that two social insect lineages, ants and bees, share a similar, mammalian-like circadian clock. This study represents the first characterization of clock genes in an ant and is a key step towards understanding socially-regulated plasticity in circadian rhythms by facilitating comparative studies on the organization of circadian clockwork.
Collapse
Affiliation(s)
- Krista K Ingram
- Department of Biology, Colgate University, Hamilton, New York, United States of America.
| | | | | | | | | | | |
Collapse
|
40
|
Zayed A, Robinson GE. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu Rev Genet 2012; 46:591-615. [PMID: 22994354 DOI: 10.1146/annurev-genet-110711-155517] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Behavior is a complex phenotype that is plastic and evolutionarily labile. The advent of genomics has revolutionized the field of behavioral genetics by providing tools to quantify the dynamic nature of brain gene expression in relation to behavioral output. The honey bee Apis mellifera provides an excellent platform for investigating the relationship between brain gene expression and behavior given both the remarkable behavioral repertoire expressed by members of its intricate society and the degree to which behavior is influenced by heredity and the social environment. Here, we review a linked series of studies that assayed changes in honey bee brain transcriptomes associated with natural and experimentally induced changes in behavioral state. These experiments demonstrate that brain gene expression is closely linked with behavior, that changes in brain gene expression mediate changes in behavior, and that the association between specific genes and behavior exists over multiple timescales, from physiological to evolutionary.
Collapse
Affiliation(s)
- Amro Zayed
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| | | |
Collapse
|
41
|
Eban-Rothschild A, Bloch G. Social influences on circadian rhythms and sleep in insects. ADVANCES IN GENETICS 2012; 77:1-32. [PMID: 22902124 DOI: 10.1016/b978-0-12-387687-4.00001-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diverse social lifestyle and the small and accessible nervous system of insects make them valuable for research on the adaptive value and the organization principles of circadian rhythms and sleep. We focus on two complementary model insects, the fruit fly Drosophila melanogaster, which is amenable to extensive transgenic manipulations, and the honey bee Apis mellifera, which has rich and well-studied social behaviors. Social entrainment of activity rhythms (social synchronization) has been studied in many animals. Social time givers appear to be specifically important in dark cavity-dwelling social animals, but here there are no other clear relationships between the degree of sociality and the effectiveness of social entrainment. The olfactory system is important for social entrainment in insects. Little is known, however, about the molecular and neuronal pathways linking olfactory neurons to the central clock. In the honey bee, the expression, phase, and development of circadian rhythms are socially regulated, apparently by different signals. Peripheral clocks regulating pheromone synthesis and the olfactory system have been implicated in social influences on circadian rhythms in the fruit fly. An enriched social environment increases the total amount of sleep in both fruit flies and honey bees. In fruit flies, these changes have been linked to molecular and neuronal processes involved in learning, memory, and synaptic plasticity. The studies on insects suggest that social influences on the clock are richer than previously appreciated and have led to important breakthroughs in our understanding of the mechanisms underlying social influences on sleep and circadian rhythms.
Collapse
Affiliation(s)
- Ada Eban-Rothschild
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|