1
|
Lou L, Tu ZJ, Lahondère C, Vinauger C. Rhythms in insect olfactory systems: underlying mechanisms and outstanding questions. J Exp Biol 2024; 227:jeb244182. [PMID: 39508241 PMCID: PMC11574354 DOI: 10.1242/jeb.244182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Olfaction is a critical sensory modality for invertebrates, and it mediates a wide range of behaviors and physiological processes. Like most living organisms, insects live in rhythmic environments: the succession of nights and days is accompanied by cyclic variations in light intensity and temperature, as well as in the availability of resources and the activity of predators. Responding to olfactory cues in the proper temporal context is thus highly adaptive and allows for the efficient allocation of energy resources. Given the agricultural or epidemiological importance of some insect species, understanding olfactory rhythms is critical for the development of effective control strategies. Although the vinegar fly Drosophila melanogaster has been a classical model for the study of olfaction and circadian rhythms, recent studies focusing on non-model species have expanded our understanding of insect olfactory rhythms. Additionally, recent evidence revealing receptor co-expression by sensory neurons has brought about an ongoing paradigm shift in our understanding of insect olfaction, making it timely to review the state of our knowledge on olfactory rhythms and identify critical future directions for the field. In this Review, we discuss the multiple biological scales at which insect olfactory rhythms are being analyzed, and identify outstanding questions.
Collapse
Affiliation(s)
- Lan Lou
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Jake Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
- Global Change Center, Virginia Tech, Blacksburg, VA 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Panagiotou K, Stefanou G, Kourlaba G, Athanasopoulos D, Kassari P, Charmandari E. The Effect of Time-Restricted Eating on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3700. [PMID: 39519533 PMCID: PMC11547938 DOI: 10.3390/nu16213700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Endogenous metabolic pathways periodically adjust with fluctuations in day and night, a biological process known as circadian rhythm. Time-restricted eating (TRE) aligns the time of food intake with the circadian rhythm. This study aims to investigate the effects of TRE on body weight, body composition and cardiometabolic risk factors. Methods: We reviewed articles from PubMed and Cochrane libraries for clinical trials that compare TRE with regular diet without calorie restriction. We conducted a meta-analysis of 26 studies. Results: Participants who followed TRE demonstrated reduction in body weight [mean-MD: -1.622 kg, (95% confidence interval (CI -2.302 to -0.941)], body mass index (BMI) [MD: -0.919 kg/m2 (95% CI: -1.189 to -0.650)], waist circumference [MD: -2.015 cm (95% CI: -3.212 to -0.819] and whole-body fat mass (WBFM) [MD: -0.662 kg (95% CI: -0.795 to -0.530)]. Improvements in cardiometabolic risk factors such as a decrease in insulin concentrations [MD: -0.458 mIU/L, (95% CI: -0.843 to -0.073)], total cholesterol [MD: -2.889 mg/dL (95% CI: -5.447 to -0.330) and LDL concentrations [MD: -2.717 mg/dL (95% CI: -4.412 to -1.021)] were observed. Conclusions: TRE is beneficial for weight loss and improvements in cardiometabolic risk factors. Further large-scale clinical trials are needed to confirm these findings.
Collapse
Affiliation(s)
- Krystalia Panagiotou
- Master of Sciences (MSc) Program "General Pediatrics and Pediatric Subspecialties: Clinical Practice and Research", National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | | | - Georgia Kourlaba
- Nursing Department, University of the Peloponnese, 22131 Tripoli, Greece
| | - Dimitrios Athanasopoulos
- Master of Sciences (MSc) Program "General Pediatrics and Pediatric Subspecialties: Clinical Practice and Research", National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - Penio Kassari
- Master of Sciences (MSc) Program "General Pediatrics and Pediatric Subspecialties: Clinical Practice and Research", National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
- Center for the Prevention and Management of Overweight and Obesity, Division of Clinical and Translational Research in Endocrinology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Evangelia Charmandari
- Master of Sciences (MSc) Program "General Pediatrics and Pediatric Subspecialties: Clinical Practice and Research", National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
- Center for the Prevention and Management of Overweight and Obesity, Division of Clinical and Translational Research in Endocrinology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Saurabh S, Meier RJ, Pireva LM, Mirza RA, Cavanaugh DJ. Overlapping Central Clock Network Circuitry Regulates Circadian Feeding and Activity Rhythms in Drosophila. J Biol Rhythms 2024; 39:440-462. [PMID: 39066485 DOI: 10.1177/07487304241263734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The circadian system coordinates multiple behavioral outputs to ensure proper temporal organization. Timing information underlying circadian regulation of behavior depends on a molecular circadian clock that operates within clock neurons in the brain. In Drosophila and other organisms, clock neurons can be divided into several molecularly and functionally discrete subpopulations that form an interconnected central clock network. It is unknown how circadian signals are coherently generated by the clock network and transmitted across output circuits that connect clock cells to downstream neurons that regulate behavior. Here, we have exhaustively investigated the contribution of clock neuron subsets to the control of two prominent behavioral outputs in Drosophila: locomotor activity and feeding. We have used cell-specific manipulations to eliminate molecular clock function or induce electrical silencing either broadly throughout the clock network or in specific subpopulations. We find that clock cell manipulations produce similar changes in locomotor activity and feeding, suggesting that overlapping central clock circuitry regulates these distinct behavioral outputs. Interestingly, the magnitude and nature of the effects depend on the clock subset targeted. Lateral clock neuron manipulations profoundly degrade the rhythmicity of feeding and activity. In contrast, dorsal clock neuron manipulations only subtly affect rhythmicity but produce pronounced changes in the distribution of activity and feeding across the day. These experiments expand our knowledge of clock regulation of activity rhythms and offer the first extensive characterization of central clock control of feeding rhythms. Despite similar effects of central clock cell disruptions on activity and feeding, we find that manipulations that prevent functional signaling in an identified output circuit preferentially degrade locomotor activity rhythms, leaving feeding rhythms relatively intact. This demonstrates that activity and feeding are indeed dissociable behaviors, and furthermore suggests that differential circadian control of these behaviors diverges in output circuits downstream of the clock network.
Collapse
Affiliation(s)
- Sumit Saurabh
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Ruth J Meier
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Liliya M Pireva
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Rabab A Mirza
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | | |
Collapse
|
4
|
Wegener C, Amatobi KM, Ozbek-Unal AG, Fekete A. Circadian Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874889 DOI: 10.1007/5584_2024_810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
To ensure optimum health and performance, lipid metabolism needs to be temporally aligned to other body processes and to daily changes in the environment. Central and peripheral circadian clocks and environmental signals such as light provide internal and external time cues to the body. Importantly, each of the key organs involved in insect lipid metabolism contains a molecular clockwork which ticks with a varying degree of autonomy from the central clock in the brain. In this chapter, we review our current knowledge about peripheral clocks in the insect fat body, gut and oenocytes, and light- and circadian-driven diel patterns in lipid metabolites and lipid-related transcripts. In addition, we highlight selected neuroendocrine signaling pathways that are or may be involved in the temporal coordination and control of lipid metabolism.
Collapse
Affiliation(s)
- Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Kelechi M Amatobi
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ayten Gizem Ozbek-Unal
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov 2024; 10:199. [PMID: 38678017 PMCID: PMC11055927 DOI: 10.1038/s41420-024-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Circadian rhythms are present in almost all cells and play a crucial role in regulating various biological processes. Maintaining a stable circadian rhythm is essential for overall health. Disruption of this rhythm can alter the expression of clock genes and cancer-related genes, and affect many metabolic pathways and factors, thereby affecting the function of the immune system and contributing to the occurrence and progression of tumors. This paper aims to elucidate the regulatory effects of BMAL1, clock and other clock genes on immune cells, and reveal the molecular mechanism of circadian rhythm's involvement in tumor and its microenvironment regulation. A deeper understanding of circadian rhythms has the potential to provide new strategies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Yuen Zeng
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mengqi Wu
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Fulin Chen
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China.
| |
Collapse
|
6
|
Torson AS, Yocum GD, Bowsher JH. Molecular mechanisms and trade-offs underlying fluctuating thermal regimes during low-temperature storage. CURRENT OPINION IN INSECT SCIENCE 2024; 62:101160. [PMID: 38215877 DOI: 10.1016/j.cois.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Insects exposed to constant low temperatures (CLT) exhibit high rates of mortality as well as a variety of sublethal effects. In many species, interruptions of CLT with brief pulses of warm temperatures (fluctuating thermal regimes, FTR) lead to increases in survival and fewer sublethal effects. However, we still lack a complete understanding of the physiological mechanisms activated during FTR. In this review, we discuss recent advances in understanding FTR's underlying molecular mechanisms. We discuss knowledge gaps related to potential trade-offs between FTR's beneficial effects and the costs of these repairs to overwintering reserves and reproduction. We present the hypothesis that the warm pulse of FTR helps to maintain daily rhythmicity.
Collapse
Affiliation(s)
- Alex S Torson
- Department of Biological Sciences, North Dakota State University, P.O. Box 6050, Fargo, ND 58108, USA
| | - George D Yocum
- Department of Biological Sciences, North Dakota State University, P.O. Box 6050, Fargo, ND 58108, USA
| | - Julia H Bowsher
- USDA-ARS Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA.
| |
Collapse
|
7
|
Boyd HM, Frick KM, Kwapis JL. Connecting the Dots: Potential Interactions Between Sex Hormones and the Circadian System During Memory Consolidation. J Biol Rhythms 2023; 38:537-555. [PMID: 37464775 PMCID: PMC10615791 DOI: 10.1177/07487304231184761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Both the circadian clock and sex hormone signaling can strongly influence brain function, yet little is known about how these 2 powerful modulatory systems might interact during complex neural processes like memory consolidation. Individually, the molecular components and action of each of these systems have been fairly well-characterized, but there is a fundamental lack of information about how these systems cooperate. In the circadian system, clock genes function as timekeeping molecules that convey time-of-day information on a well-stereotyped cycle that is governed by the suprachiasmatic nucleus. Keeping time is particularly important to synchronize various physiological processes across the brain and body, including those that regulate memory consolidation. Similarly, sex hormones are powerful modulators of memory, with androgens, estrogens, and progestins, all influencing memory consolidation within memory-relevant brain regions like the hippocampus. Despite clear evidence that each system can influence memory individually, exactly how the circadian and hormonal systems might interact to impact memory consolidation remains unclear. Research investigating either sex hormone action or circadian gene function within memory-relevant brain regions has unveiled several notable places in which the two systems could interact to control memory. Here, we bring attention to known interactions between the circadian clock and sex hormone signaling. We then review sex hormone-mediated control of memory consolidation, highlighting potential nodes through which the circadian system might interact during memory formation. We suggest that the bidirectional relationship between these two systems is essential for proper control of memory formation based on an animal's hormonal and circadian state.
Collapse
Affiliation(s)
- Hannah M. Boyd
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| | - Karyn M. Frick
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Janine L. Kwapis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
8
|
Maruko A, Iijima KM, Ando K. Dissecting the daily feeding pattern: Peripheral CLOCK/CYCLE generate the feeding/fasting episodes and neuronal molecular clocks synchronize them. iScience 2023; 26:108164. [PMID: 37915609 PMCID: PMC10616324 DOI: 10.1016/j.isci.2023.108164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/06/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
A 24-h rhythm of feeding behavior, or synchronized feeding/fasting episodes during the day, is crucial for survival. Internal clocks and light input regulate rhythmic behaviors, but how they generate feeding rhythms is not fully understood. Here we aimed to dissect the molecular pathways that generate daily feeding patterns. By measuring the semidiurnal amount of food ingested by single flies, we demonstrate that the generation of feeding rhythms under light:dark conditions requires quasimodo (qsm) but not molecular clocks. Under constant darkness, rhythmic feeding patterns consist of two components: CLOCK (CLK) in digestive/metabolic tissues generating feeding/fasting episodes, and the molecular clock in neurons synchronizing them to subjective daytime. Although CLK is a part of the molecular clock, the generation of feeding/fasting episodes by CLK in metabolic tissues was independent of molecular clock machinery. Our results revealed novel functions of qsm and CLK in feeding rhythms in Drosophila.
Collapse
Affiliation(s)
- Akiko Maruko
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Koichi M. Iijima
- Department of Neurogenetics, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Kanae Ando
- Department of Biological Sciences, School of Science, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
9
|
He L, Wu B, Shi J, Du J, Zhao Z. Regulation of feeding and energy homeostasis by clock-mediated Gart in Drosophila. Cell Rep 2023; 42:112912. [PMID: 37531254 DOI: 10.1016/j.celrep.2023.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/19/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Feeding behavior is essential for growth and survival of animals; however, relatively little is known about its intrinsic mechanisms. Here, we demonstrate that Gart is expressed in the glia, fat body, and gut and positively regulates feeding behavior via cooperation and coordination. Gart in the gut is crucial for maintaining endogenous feeding rhythms and food intake, while Gart in the glia and fat body regulates energy homeostasis between synthesis and metabolism. These roles of Gart further impact Drosophila lifespan. Importantly, Gart expression is directly regulated by the CLOCK/CYCLE heterodimer via canonical E-box, in which the CLOCKs (CLKs) in the glia, fat body, and gut positively regulate Gart of peripheral tissues, while the core CLK in brain negatively controls Gart of peripheral tissues. This study provides insight into the complex and subtle regulatory mechanisms of feeding and lifespan extension in animals.
Collapse
Affiliation(s)
- Lei He
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Binbin Wu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Jian Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China; College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China.
| |
Collapse
|
10
|
Hidalgo S, Chiu JC. CRUMB: a shiny-based app to analyze rhythmic feeding in Drosophila using the FLIC system. F1000Res 2023; 12:374. [PMID: 37396048 PMCID: PMC10314183 DOI: 10.12688/f1000research.132587.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/04/2023] Open
Abstract
Rhythmic feeding activity has become an important research area for circadian biologists as it is now clear that metabolic input is critical for regulating circadian rhythms, and chrononutrition has been shown to promote health span. In contrast to locomotor activity rhythm, studies conducting high throughput analysis of Drosophila rhythmic food intake have been limited and few monitoring system options are available. One monitoring system, the Fly Liquid-Food Interaction Counter (FLIC) has become popular, but there is a lack of efficient analysis toolkits to facilitate scalability and ensure reproducibility by using unified parameters for data analysis. Here, we developed Circadian Rhythm Using Mealtime Behavior (CRUMB), a user-friendly Shiny app to analyze data collected using the FLIC system. CRUMB leverages the 'plotly' and 'DT' packages to enable interactive raw data review as well as the generation of easily manipulable graphs and data tables. We used the main features of the FLIC master code provided with the system to retrieve feeding events and provide a simplified pipeline to conduct circadian analysis. We also replaced the use of base functions in time-consuming processes such as 'rle' and 'read.csv' with faster versions available from other packages to optimize computing time. We expect CRUMB to facilitate analysis of feeding-fasting rhythm as a robust output of the circadian clock.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Department of Entomology and Nematology, University of California Davis, Davis, California, 94534, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California Davis, Davis, California, 94534, USA
| |
Collapse
|
11
|
Mather LM, Cholak ME, Morfoot CM, Curro KC, Love J, Cavanaugh DJ. Inducible Reporter Lines for Tissue-specific Monitoring of Drosophila Circadian Clock Transcriptional Activity. J Biol Rhythms 2023; 38:44-63. [PMID: 36495136 DOI: 10.1177/07487304221138946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organisms track time of day through the function of cell-autonomous molecular clocks. In addition to a central clock located in the brain, molecular clocks are present in most peripheral tissues. Circadian clocks are coordinated within and across tissues, but the manner through which this coordination is achieved is not well understood. We reasoned that the ability to track in vivo molecular clock activity in specific tissues of the fruit fly, Drosophila melanogaster, would facilitate an investigation into the relationship between different clock-containing tissues. Previous efforts to monitor clock gene expression in single flies in vivo have used regulatory elements of several different clock genes to dictate expression of a luciferase reporter enzyme, the activity of which can be monitored using a luminometer. Although these reporter lines have been instrumental in our understanding of the circadian system, they generally lack cell specificity, making it difficult to compare molecular clock oscillations between different tissues. Here, we report the generation of several novel lines of flies that allow for inducible expression of a luciferase reporter construct for clock gene transcriptional activity. We find that these lines faithfully report circadian transcription, as they exhibit rhythmic luciferase activity that is dependent on a functional molecular clock. Furthermore, we take advantage of our reporter lines' tissue specificity to demonstrate that peripheral molecular clocks are able to retain rhythmicity for multiple days under constant environmental conditions.
Collapse
Affiliation(s)
- Lilyan M Mather
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Meghan E Cholak
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Connor M Morfoot
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | | | - Jacob Love
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | | |
Collapse
|
12
|
Singh VJ, Potdar S, Sheeba V. Effects of Food Availability Cycles on Phase and Period of Activity-rest Rhythm in Drosophila melanogaster. J Biol Rhythms 2022; 37:528-544. [PMID: 35983646 DOI: 10.1177/07487304221111287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Foraging and feeding are indispensable for survival and their timing depends not only on the metabolic state of the animal but also on the availability of food resources in their environment. Since both these aspects are subject to change over time, these behaviors exhibit rhythmicity in occurrence. As the locomotor activity of an organism is related to its disposition to acquire food, and peak feeding in fruit flies has been shown to occur at a particular time of the day, we asked if cyclic food availability can entrain their rhythmic activity. By subjecting flies to cyclic food availability, that is, feeding-starvation (FS) cycles, we provided food cues contrasting to the preferred activity times and observed if this imposed cycling in food availability could entrain the activity-rest rhythm. We found that phase control, which is a property integral to entrainment, was not achieved despite increasing starvation duration of FS cycles (FS 12:12, FS 10:14, and FS 8:16). We also found that flies subjected to T21 and T26 FS cycles were unable to match period of the activity rhythm to short or long T-cycles. Taken together, these results show that external food availability cycles do not entrain the activity-rest rhythm of fruit flies. However, we find that starvation-induced hyperactivity causes masking which results in phase changes. In addition, T-cycle experiments resulted in minor period changes during FS treatment. These findings highlight that food cyclicity by itself may not be a potent zeitgeber but may act in unison with other abiotic factors like light and temperature to help flies time their activity appropriately.
Collapse
Affiliation(s)
- Viveka Jagdish Singh
- Chronobiology and Behavioural Neurogenetics Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sheetal Potdar
- Chronobiology and Behavioural Neurogenetics Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vasu Sheeba
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
13
|
Crespo-Flores SL, Barber AF. The Drosophila circadian clock circuit is a nonhierarchical network of peptidergic oscillators. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100944. [PMID: 35709899 DOI: 10.1016/j.cois.2022.100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The relatively simple Drosophila circadian clock circuit consists of 150 clock neurons that coordinate rhythmic behavior and physiology, which are generally classified based on neuroanatomical location. Transcriptional and connectomic studies have identified novel subdivisions of these clock neuron populations, and identified neuropeptides not previously known to be expressed in the fly clock circuit. An additional feature of fly clock neurons is daily axonal remodeling, first noted in small ventrolateral neurons, but more recently also found in additional clock neuron groups. These findings raise new questions about the functional roles of clock neuron subpopulations and daily remodeling of network architecture in regulating circadian behavior and physiology.
Collapse
Affiliation(s)
- Sergio L Crespo-Flores
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, USA
| | - Annika F Barber
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, USA.
| |
Collapse
|
14
|
Yildirim E, Curtis R, Hwangbo DS. Roles of peripheral clocks: lessons from the fly. FEBS Lett 2022; 596:263-293. [PMID: 34862983 PMCID: PMC8844272 DOI: 10.1002/1873-3468.14251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
To adapt to and anticipate rhythmic changes in the environment such as daily light-dark and temperature cycles, internal timekeeping mechanisms called biological clocks evolved in a diverse set of organisms, from unicellular bacteria to humans. These biological clocks play critical roles in organisms' fitness and survival by temporally aligning physiological and behavioral processes to the external cues. The central clock is located in a small subset of neurons in the brain and drives daily activity rhythms, whereas most peripheral tissues harbor their own clock systems, which generate metabolic and physiological rhythms. Since the discovery of Drosophila melanogaster clock mutants in the early 1970s, the fruit fly has become an extensively studied model organism to investigate the mechanism and functions of circadian clocks. In this review, we primarily focus on D. melanogaster to survey key discoveries and progresses made over the past two decades in our understanding of peripheral clocks. We discuss physiological roles and molecular mechanisms of peripheral clocks in several different peripheral tissues of the fly.
Collapse
Affiliation(s)
| | - Rachel Curtis
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|