1
|
Huang S, Zhang W, Xuan S, Si H, Huang D, Ba M, Qi D, Pei X, Lu D, Li Z. Chronic sleep deprivation impairs retinal circadian transcriptome and visual function. Exp Eye Res 2024; 243:109907. [PMID: 38649019 DOI: 10.1016/j.exer.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Sleep loss is common in modern society and is increasingly associated with eye diseases. However, the precise effects of sleep loss on retinal structure and function, particularly on the retinal circadian system, remain largely unexplored. This study investigates these effects using a chronic sleep deprivation (CSD) model in mice. Our investigation reveals that CSD significantly alters the retinal circadian transcriptome, leading to remarkable changes in the temporal patterns of enriched pathways. This perturbation extends to metabolic and immune-related transcriptomes, coupled with an accumulation of reactive oxygen species in the retina. Notably, CSD rhythmically affects the thickness of the ganglion cell complex, along with diurnal shifts in microglial migration and morphology within the retina. Most critically, we observe a marked decrease in both scotopic and photopic retinal function under CSD conditions. These findings underscore the broad impact of sleep deprivation on retinal health, highlighting its role in altering circadian gene expression, metabolism, immune response, and structural integrity. Our study provides new insights into the broader impact of sleep loss on retinal health.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China; Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenxiao Zhang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shuting Xuan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongli Si
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Duliurui Huang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mengru Ba
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China; Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
2
|
Rong R, Zhou X, Liang G, Li H, You M, Liang Z, Zeng Z, Xiao H, Ji D, Xia X. Targeting Cell Membranes, Depleting ROS by Dithiane and Thioketal-Containing Polymers with Pendant Cholesterols Delivering Necrostatin-1 for Glaucoma Treatment. ACS NANO 2022; 16:21225-21239. [PMID: 36487191 DOI: 10.1021/acsnano.2c09202] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide, characterized by progressive vision loss due to the selective damage to retinal ganglion cells (RGCs) and their axons. Oxidative stress is generally believed as one key factor of RGCs death. Recently, necroptosis was identified to play a key role in glaucomatous injury. Therefore, depletion of reactive oxygen species (ROS) and inhibition of necroptosis in RGCs has become one of treatment strategies for glaucoma. However, existing drugs without efficient drug enter into the retina and have controlled release due to a short drug retention. Herein, we designed a glaucomatous microenvironment-responsive drug carrier polymer, which is characterized by the presence of thioketal bonds and 1,4-dithiane unit in the main chain for depleting ROS as well as the pendant cholesterols for targeting cell membranes. This polymer was adopted to encapsulate an inhibitor of necroptosis, necrostatin-1, into nanoparticles (designated as NP1). NP1 with superior biosafety could scavenge ROS in RGCs both in vitro and in vivo of an acute pathological glaucomatous injury model. Further, NP1 was found to effectively inhibit the upregulation of the necroptosis pathway, reducing the death of RGCs. The findings in this study exemplified the use of nanomaterials as potential strategies to treat glaucoma.
Collapse
Affiliation(s)
- Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan410008, P. R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan410008, P. R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan410008, P. R. China
| | - Xuezhi Zhou
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan410008, P. R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan410008, P. R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan410008, P. R. China
| | - Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Haibo Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan410008, P. R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan410008, P. R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan410008, P. R. China
| | - Mengling You
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan410008, P. R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan410008, P. R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan410008, P. R. China
| | - Zhuotao Liang
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan410008, P. R. China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan410008, P. R. China
| | - Zhou Zeng
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan410008, P. R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan410008, P. R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan410008, P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan410008, P. R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan410008, P. R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan410008, P. R. China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan410008, P. R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan410008, P. R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan410008, P. R. China
| |
Collapse
|
3
|
Reichert CF, Deboer T, Landolt HP. Adenosine, caffeine, and sleep-wake regulation: state of the science and perspectives. J Sleep Res 2022; 31:e13597. [PMID: 35575450 PMCID: PMC9541543 DOI: 10.1111/jsr.13597] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/11/2023]
Abstract
For hundreds of years, mankind has been influencing its sleep and waking state through the adenosinergic system. For ~100 years now, systematic research has been performed, first started by testing the effects of different dosages of caffeine on sleep and waking behaviour. About 70 years ago, adenosine itself entered the picture as a possible ligand of the receptors where caffeine hooks on as an antagonist to reduce sleepiness. Since the scientific demonstration that this is indeed the case, progress has been fast. Today, adenosine is widely accepted as an endogenous sleep‐regulatory substance. In this review, we discuss the current state of the science in model organisms and humans on the working mechanisms of adenosine and caffeine on sleep. We critically investigate the evidence for a direct involvement in sleep homeostatic mechanisms and whether the effects of caffeine on sleep differ between acute intake and chronic consumption. In addition, we review the more recent evidence that adenosine levels may also influence the functioning of the circadian clock and address the question of whether sleep homeostasis and the circadian clock may interact through adenosinergic signalling. In the final section, we discuss the perspectives of possible clinical applications of the accumulated knowledge over the last century that may improve sleep‐related disorders. We conclude our review by highlighting some open questions that need to be answered, to better understand how adenosine and caffeine exactly regulate and influence sleep.
Collapse
Affiliation(s)
- Carolin Franziska Reichert
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.,Center for Affective, Stress, and Sleep Disorders, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
| |
Collapse
|