1
|
Fernandes P, Pereira LDM, Horta NAC, Cardoso TSR, Coimbra CC, Szawka RE, Pereira GS, Poletini MO. Social interaction masking contributes to changes in the activity of the suprachiasmatic nucleus and impacts on circadian rhythms. Physiol Behav 2021; 237:113420. [PMID: 33878315 DOI: 10.1016/j.physbeh.2021.113420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022]
Abstract
Light is the most powerful temporal cue that entrains physiology and behavior through modulation of the suprachiasmatic nucleus (SCN) of the hypothalamus. However, on a daily basis, individuals face a combination of light and several non-photic cues, such as social interaction. In order to investigate whether SCN activity and SCN-driven rhythms are altered by social interaction, adult male C57BLJ/6 mice were maintained in groups of 3-4 animals per cage or 1 animal per cage (socially isolated) under 12:12 h / light:dark (LD) cycles or constant darkness (DD). Analysis of the two anatomical subdivisions (ventral, v and dorsal, d) of the medial SCN revealed an effect of housing conditions on the d-SCN but not on the v-SCN on the number of c-Fos immunoreactive (ir) neurons. As such, 2 h after the light-phase onset d-SCN c-Fos-ir number was lower in single-housed mice under LD. Importantly, under DD there were no effect of housing conditions in the number of c-Fos-ir SCN neurons. Social isolation increased the amplitude and strength of SCN-driven rhythm of body temperature (Tc) entrained to LD and it advanced its onset, uncoupling with spontaneous locomotor activity (SLA) rhythm, without altering endogenous Tc and SLA rhythms expressed under DD. Associated with reduced Tc in the light phase, single-housed mice showed reduced body weight. However, these phenotypes were not accompanied by changes in the number of c-Fos-ir neurons in the preoptic area (POA), which are known to regulate energy metabolism and Tc. Altogether, these results imply that the social interaction masking effect on the d-SCN is added to that of light stimulus, in order to achieve full c-Fos expression in the SCN, which, in turn seems to be required to maintain daily-phase coherence between the photo-entrained rhythms of Tc and SLA. There might be an inter-relationship between masking (social interaction) and entrainment stimulus (light) that impacts the circadian parameters of the photo-entrained Tc rhythm. As such, in the absence of social interactions a more robust Tc rhythm is shown. This inter-relationship seems to occur in the dorsal subdivision of the SCN but not in the POA.
Collapse
Affiliation(s)
- Paola Fernandes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana de Melo Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nayara Abreu Coelho Horta
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Santana Rocha Cardoso
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cândido Celso Coimbra
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raphael Escorsim Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace Schenatto Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maristela Oliveira Poletini
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Tischkau SA. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling. Eur J Neurosci 2019; 51:379-395. [DOI: 10.1111/ejn.14361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Shelley A. Tischkau
- Department of PharmacologySouthern Illinois University School of Medicine Springfield Illinois
| |
Collapse
|
3
|
Silva LCA, Viana MB, Andrade JS, Souza MA, Céspedes IC, D'Almeida V. Tryptophan overloading activates brain regions involved with cognition, mood and anxiety. AN ACAD BRAS CIENC 2017; 89:273-283. [PMID: 28225852 DOI: 10.1590/0001-3765201720160177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/18/2016] [Indexed: 12/25/2022] Open
Abstract
Tryptophan is the only precursor of serotonin and mediates serotonergic activity in the brain. Previous studies have shown that the administration of tryptophan or tryptophan depletion significantly alters cognition, mood and anxiety. Nevertheless, the neurobiological alterations that follow these changes have not yet been fully investigated. The aim of this study was to verify the effects of a tryptophan-enriched diet on immunoreactivity to Fos-protein in the rat brain. Sixteen male Wistar rats were distributed into two groups that either received standard chow diet or a tryptophan-enriched diet for a period of thirty days. On the morning of the 31st day, animals were euthanized and subsequently analyzed for Fos-immunoreactivity (Fos-ir) in the dorsal and median raphe nuclei and in regions that receive serotonin innervation from these two brain areas. Treatment with a tryptophan-enriched diet increased Fos-ir in the prefrontal cortex, nucleus accumbens, paraventricular hypothalamus, arcuate and ventromedial hypothalamus, dorsolateral and dorsomedial periaqueductal grey and dorsal and median raphe nucleus. These observations suggest that the physiological and behavioral alterations that follow the administration of tryptophan are associated with the activation of brain regions that regulate cognition and mood/anxiety-related responses.
Collapse
Affiliation(s)
- Luana C A Silva
- 1Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, 3º andar, 04023-062 São Paulo, SP, Brazil
| | - Milena B Viana
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim, 136, 3º andar, 11060-001 Santos, SP, Brazil
| | - José S Andrade
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim, 136, 3º andar, 11060-001 Santos, SP, Brazil
| | - Melyssa A Souza
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim, 136, 3º andar, 11060-001 Santos, SP, Brazil
| | - Isabel C Céspedes
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim, 136, 3º andar, 11060-001 Santos, SP, Brazil
| | - Vânia D'Almeida
- 1Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, 3º andar, 04023-062 São Paulo, SP, Brazil
| |
Collapse
|
4
|
Hildebrand P, Königschulte W, Gaber TJ, Bubenzer-Busch S, Helmbold K, Biskup CS, Langen KJ, Fink GR, Zepf FD. Effects of dietary tryptophan and phenylalanine-tyrosine depletion on phasic alertness in healthy adults - A pilot study. Food Nutr Res 2015; 59:26407. [PMID: 25933613 PMCID: PMC4417080 DOI: 10.3402/fnr.v59.26407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 11/14/2022] Open
Abstract
Background The synthesis of the neurotransmitters serotonin (5-HT) and dopamine (DA) in the brain can be directly altered by dietary manipulation of their relevant precursor amino acids (AA). There is evidence that altered serotonergic and dopaminergic neurotransmission are both associated with impaired attentional control. Specifically, phasic alertness is one specific aspect of attention that has been linked to changes in 5-HT and DA availability in different neurocircuitries related to attentional processes. The present study investigated the impact of short-term reductions in central nervous system 5-HT and DA synthesis, which was achieved by dietary depletion of the relevant precursor AA, on phasic alertness in healthy adult volunteers; body weight–adapted dietary tryptophan and phenylalanine–tyrosine depletion (PTD) techniques were used. Methods The study employed a double-blind between-subject design. Fifty healthy male and female subjects were allocated to three groups in a randomized and counterbalanced manner and received three different dietary challenge conditions: acute tryptophan depletion (ATD, for the depletion of 5-HT; N=16), PTD (for the depletion of DA; N=17), and a balanced AA load (BAL; N=17), which served as a control condition. Three hours after challenge intake (ATD/PTD/BAL), phasic alertness was assessed using a standardized test battery for attentional performance (TAP). Blood samples for AA level analyses were obtained at baseline and 360 min after the challenge intake. Results Overall, there were no significant differences in phasic alertness for the different challenge conditions. Regarding PTD administration, a positive correlation between the reaction times and the DA-related depletion magnitude was detected via the lower plasma tyrosine levels and the slow reaction times of the first run of the task. In contrast, higher tryptophan concentrations were associated with slower reaction times in the fourth run of the task in the same challenge group. Conclusion The present study is the first to demonstrate preliminary data that support an association between decreased central nervous system DA synthesis, which was achieved by dietary depletion strategies, and slower reaction times in specific runs of a task designed to assess phasic alertness in healthy adult volunteers; these findings are consistent with previous evidence that links phasic alertness with dopaminergic neurotransmission. A lack of significant differences between the three groups could be due to compensatory mechanisms and the limited sample size, as well as the dietary challenge procedures administered to healthy participants and the strict exclusion criteria used. The potential underlying neurochemical processes related to phasic alertness should be the subject of further investigations.
Collapse
Affiliation(s)
- Patricia Hildebrand
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Werner Königschulte
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tilman Jakob Gaber
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sarah Bubenzer-Busch
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katrin Helmbold
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Caroline Sarah Biskup
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Jülich, Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Florian Daniel Zepf
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, Australia.,Specialised Child and Adolescent Mental Health Services (CAHMS), Department of Health in Western Australia, Perth, WA, Australia;
| |
Collapse
|
5
|
Biskup CS, Gaber T, Helmbold K, Bubenzer-Busch S, Zepf FD. Amino acid challenge and depletion techniques in human functional neuroimaging studies: an overview. Amino Acids 2015; 47:651-83. [DOI: 10.1007/s00726-015-1919-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/09/2015] [Indexed: 01/16/2023]
|
6
|
Effects of lighting condition on circadian behavior in 5-HT1A receptor knockout mice. Physiol Behav 2014; 139:136-44. [PMID: 25446224 DOI: 10.1016/j.physbeh.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/21/2022]
Abstract
Serotonin (5-HT) is an important regulator of the mammalian circadian system, and has been implicated in modulating entrained and free-running rhythms, as well as photic and non-photic phase shifting. In general, 5-HT appears to oppose the actions of light on the circadian system of nocturnal rodents. As well, 5-HT mediates, at least in part, some non-photic responses. The 5-HT1A, 1B and 7 receptors regulate these acute responses to zeitgebers. 5-HT also regulates some entrained and free-running properties of the circadian clock. The receptors that contribute to these phenomena have not been fully examined. Here, we use 5-HT1A receptor knockout (KO) mice to examine the response of the mouse circadian system to a variety of lighting conditions, including a normal light-dark cycle (LD), T-cycles, phase advanced LD cycles, constant darkness (DD), constant light (LL) and a 6 hour dark pulse starting at CT5. Relative to wildtype mice, the 5-HT1A receptor KO mice have lower levels of activity during the first 8h of the night/subjective night in LD and LL, later activity onsets on transient days during re-entrainment, shorter free-running periods in LL when housed with wheels, and smaller phase shifts to dark pulses. No differences were noted in activity levels during DD, alpha under any light condition, free-running period in DD, or phase angle of entrainment in LD. While the 5-HT1A receptor plays an important role in regulating photic and non-photic phase shifting, its contribution to entrained and free-running properties of the circadian clock is relatively minor.
Collapse
|
7
|
Matthys A, Haegeman G, Van Craenenbroeck K, Vanhoenacker P. Role of the 5-HT7 receptor in the central nervous system: from current status to future perspectives. Mol Neurobiol 2011; 43:228-53. [PMID: 21424680 DOI: 10.1007/s12035-011-8175-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/01/2011] [Indexed: 12/11/2022]
Abstract
Pharmacological and genetic tools targeting the 5-hydroxytryptamine (5-HT)7 receptor in preclinical animal models have implicated this receptor in diverse (patho)physiological processes of the central nervous system (CNS). Some data obtained with 5-HT7 receptor knockout mice, selective antagonists, and, to a lesser extent, agonists, however, are quite contradictory. In this review, we not only discuss in detail the role of the 5-HT7 receptor in the CNS but also propose some hypothetical models, which could explain the observed inconsistencies. These models are based on two novel concepts within the field of G protein-coupled receptors (GPCR), namely biphasic signaling and G protein-independent signaling, which both have been shown to be mediated by GPCR dimerization. This led us to suggest that the 5-HT7 receptor could reside in different dimeric contexts and initiate different signaling pathways, depending on the neuronal circuitry and/or brain region. In conclusion, we highlight GPCR dimerization and G protein-independent signaling as two promising future directions in 5-HT7 receptor research, which ultimately might lead to the development of more efficient dimer- and/or pathway-specific therapeutics.
Collapse
Affiliation(s)
- Anne Matthys
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University (UGent), Ghent, Belgium
| | | | | | | |
Collapse
|
8
|
Bartoszewicz R, Chmielewska D, Domoń M, Barbacka-Surowiak G. Influence of short-term constant light on phase shift of mouse circadian locomotor activity rhythm induced by agonist and antagonist of serotonin. BIOL RHYTHM RES 2010. [DOI: 10.1080/09291010903018016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Cooke RG, Levitan RD. Tryptophan for refractory bipolar spectrum disorder and sleep-phase delay. J Psychiatry Neurosci 2010; 35:144. [PMID: 20184811 PMCID: PMC2834795 DOI: 10.1503/jpn.100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Robert G Cooke
- Mood and Anxiety Division, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ont., Canada
| | | |
Collapse
|
10
|
Functional neuroanatomy of sleep and circadian rhythms. ACTA ACUST UNITED AC 2009; 61:281-306. [PMID: 19695288 DOI: 10.1016/j.brainresrev.2009.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/02/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022]
Abstract
The daily sleep-wake cycle is perhaps the most dramatic overt manifestation of the circadian timing system, and this is especially true for the monophasic sleep-wake cycle of humans. Considerable recent progress has been made in elucidating the neurobiological mechanisms underlying sleep and arousal, and more generally, of circadian rhythmicity in behavioral and physiological systems. This paper broadly reviews these mechanisms from a functional neuroanatomical and neurochemical perspective, highlighting both historical and recent advances. In particular, I focus on the neural pathways underlying reciprocal interactions between the sleep-regulatory and circadian timing systems, and the functional implications of these interactions. While these two regulatory systems have often been considered in isolation, sleep-wake and circadian regulation are closely intertwined processes controlled by extensively integrated neurobiological mechanisms.
Collapse
|
11
|
Kaur G, Thind R, Glass JD. Brief constant light accelerates serotonergic re-entrainment to large shifts of the daily light/dark cycle. Neuroscience 2009; 159:1430-40. [PMID: 19217929 DOI: 10.1016/j.neuroscience.2009.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/06/2009] [Accepted: 02/07/2009] [Indexed: 11/29/2022]
Abstract
Brief ( approximately 2 day) constant light exposure (LL(b)) in hamsters dramatically enhances circadian phase-resetting induced by the 5-HT receptor agonist, (+/-)-2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT) and other nonphotic stimuli. The present study was undertaken to determine if LL(b) can also amplify phase-resetting responses to endogenous 5-HT and accelerate re-entrainment to large-magnitude advance and delay shifts of the light/dark (LD) cycle. First, central serotonergic activity was increased by i.p. injection of L-tryptophan+/-the 5-HT reuptake inhibitor fluoxetine. Hamsters under LD or exposed to LL(b) received vehicle or drugs during the early morning, and phase-shifts of the locomotor activity rhythm were measured after release to constant darkness. Neither drug phase-shifted animals not exposed to LL(b) (P>0.5 vs. vehicle); however in animals receiving LL(b,)L-tryptophan with and without fluoxetine produced large phase-advance shifts (means=2.5+/-0.4 h and 2.6+/-0.2 h, respectively; both P<0.035 vs. vehicle). Next, the effects of LL(b) combined with 8-OH-DPAT or L-tryptophan+fluoxetine on serotonergic re-entrainment to 10 h phase-advance and phase-delay shifts of the LD cycle were assessed. In groups not exposed to LL(b), vehicle controls re-entrained slowly to the advance and delay shifts (means=16+/-1 and 24+/-4 days, respectively), but those treated with 8-OH-DPAT re-entrained faster (means=11+/-2 and 9+/-2 days, respectively; both P<0.05 vs. vehicle). In groups exposed to LL(b), vehicle controls re-entrained slowly to the advance and delay shifts (means=15+/-2 and 25+/-3 days, respectively); however those receiving 8-OH-DPAT rapidly re-entrained to the delay and advance shifts, with the majority (75%) requiring only 1-2 days (means=2+/-1 and 4+/-2 days, respectively; both P<0.05 vs. vehicle). Animals exposed to LL(b) and treated with L-tryptophan+fluoxetine also exhibited accelerated re-entrainment to a 10 h advance shift (mean=5+/-2 days; P<0.05 vs. vehicle). Thus through enhancing serotonergic phase-resetting, LL(b) facilitates rapid re-entrainment to large shifts of the LD cycle which offers a potential approach for treating circadian-related desynchronies.
Collapse
Affiliation(s)
- G Kaur
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | |
Collapse
|
12
|
Sterniczuk R, Stepkowski A, Jones M, Antle M. Enhancement of photic shifts with the 5-HT1A mixed agonist/antagonist NAN-190: Intra-suprachiasmatic nucleus pathway. Neuroscience 2008; 153:571-80. [DOI: 10.1016/j.neuroscience.2008.02.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/14/2008] [Accepted: 02/01/2008] [Indexed: 01/02/2023]
|
13
|
Bright light exposure during acute tryptophan depletion prevents a lowering of mood in mildly seasonal women. Eur Neuropsychopharmacol 2008; 18:14-23. [PMID: 17582745 DOI: 10.1016/j.euroneuro.2007.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 05/01/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
We investigated the influence of bright light exposure on the mood-lowering effect of acute tryptophan depletion (ATD). Mildly seasonal healthy young women without a personal or family history of psychiatric disorders remained in either dim or bright light during two test days. Tryptophan-deficient and nutritionally balanced amino acid mixtures were administered in counterbalanced order. Mood state was assessed using the Profile of Mood States (POMS) and Visual Analogue Scales (VAS). In dim light, ATD decreased POMS scores across most subscales, indicating a worsening of mood. In bright light, mood was unaffected by ATD. Thus, bright light blocked the worsening of mood caused by ATD. This was also observed on the positive mood VAS. These results indicate a direct, immediate interaction between bright light and serotonin function. Bright light might help protect against ATD-induced mood change by increasing serotonin above the threshold level below which there is a lowering of mood.
Collapse
|
14
|
Sprouse J, Braselton J, Reynolds L. Fluoxetine modulates the circadian biological clock via phase advances of suprachiasmatic nucleus neuronal firing. Biol Psychiatry 2006; 60:896-9. [PMID: 16631132 DOI: 10.1016/j.biopsych.2006.03.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 02/23/2006] [Accepted: 03/06/2006] [Indexed: 02/06/2023]
Abstract
BACKGROUND The documented ability of serotonin (5-HT) to directly modulate circadian rhythms prompted interest in a similar role for therapeutic agents that readily enhance 5-HT neurotransmission, namely the selective serotonin reuptake inhibitors (SSRIs). METHODS Extracellular recordings of unit firing of suprachiasmatic nucleus (SCN) neurons maintained in slice culture enabled determinations of circadian rhythmicity. Shifts in the peak of activity were determined during the next circadian cycle following drug exposure. RESULTS Fluoxetine (10 microm, 60 minutes incubation) produced robust phase advances only in the presence of L-tryptophan (.5 microm), added to maintain serotonergic tone. CONCLUSIONS Actions of SSRIs at the level of the circadian biological clock add to the list of pharmacological effects for this drug class and encourage speculation as to their importance clinically.
Collapse
Affiliation(s)
- Jeffrey Sprouse
- Department of Neuroscience, Pfizer Global Research & Development, Groton, Connecticut 06340, USA.
| | | | | |
Collapse
|
15
|
Sharma VK, Chidambaram R, Yadunandam AK. Melatonin enhances the sensitivity of circadian pacemakers to light in the nocturnal field mouse Mus booduga. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 297:160-8. [PMID: 12945752 DOI: 10.1002/jez.a.10265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effect of exogenous melatonin (1 mg/kg) on light pulse (LP) induced phase shifts of the circadian locomotor activity rhythm was studied in the nocturnal field mouse Mus booduga. Three phase response curves (PRCs: LP, control, and experimental) were constructed to study the effect of co-administration of light and melatonin at various circadian times (CTs). The LP PRC was constructed by exposing animals free-running in constant darkness (DD) to LPs of 100-lux intensity and 15-min duration, at various CTs. The control and experimental PRCs were constructed by using a single injection of either 50% DMSO or melatonin (1 mg/kg dissolved in 50% DMSO), respectively, administered 5 min before LPs, to animals free-running in DD. A single dose of melatonin significantly modified the waveform of the LP PRC. The experimental PRC had significantly larger areas under advance and delay regions of the PRC compared to the control PRC. This was also confirmed when the phase shifts obtained at various CTs were compared between the three PRCs. The phase delays at three phases (CT12, CT14, and CT16) of the experimental PRCs were significantly greater than those of the control and the LP PRCs. Based on these results we conclude that phase shifting effects of melatonin and light add up to produce larger responses.
Collapse
Affiliation(s)
- Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064, Karnataka, India.
| | | | | |
Collapse
|
16
|
Kräuchi K, Cajochen C, Werth E, Wirz-Justice A. Alteration of internal circadian phase relationships after morning versus evening carbohydrate-rich meals in humans. J Biol Rhythms 2002; 17:364-76. [PMID: 12164252 DOI: 10.1177/074873040201700409] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of a single morning and evening carbohydrate-rich meal for 3 consecutive days on circadian phase of core body temperature (CBT), heart rate, and salivary melatonin rhythms were compared under controlled constant routine conditions. In 10 healthy young men entrained to a natural light-dark cycle with regular sleep timing, CBT and heart rate were significantly elevated for approximately 8 h after the last evening carbohydrate-rich meal (EM), and nocturnal melatonin secretion (as measured by salivary melatonin and urinary 6-sulphatoxymelatonin levels) was reduced, compared to the morning carbohydrate-rich meal (MM) condition. Thus, circadian phase could not be measured until the following day due to this acute masking effect. The day after the last meal intervention, MM showed a significant advanced circadian phase position in CBT (+59+/-12 min) and heart rate (+43+/-18 min) compared to EM. However, dim-light melatonin onset was not significantly changed (+15+/-13 min). The results are discussed with respect to central (light-entrainable) and peripheral (food-entrainable) oscillators. Food may be a zeitgeber in humans for the food-entrainable peripheral oscillators, but melatonin data do not support such a conclusion for the light-entrainable oscillator in the suprachiasmatic nucleus.
Collapse
Affiliation(s)
- Kurt Kräuchi
- Centre for Chronobiology, Psychiatric University Clinic, Basel, Switzerland.
| | | | | | | |
Collapse
|
17
|
Takahashi S, Yoshinobu Y, Aida R, Shimomura H, Akiyama M, Moriya T, Shibata S. Extended action of MKC-242, a selective 5-HT(1A) receptor agonist, on light-induced Per gene expression in the suprachiasmatic nucleus in mice. J Neurosci Res 2002; 68:470-8. [PMID: 11992474 DOI: 10.1002/jnr.10225] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We reported previously that (S)-5-[3-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole hydrochloride (MKC-242) (3 mg kg(-1), i.p.), a selective 5-HT(1A) receptor agonist, accelerated the re-entrainment of hamster wheel-running rhythms to a new 8 hr delayed or advanced light-dark cycle, and also potentiated the phase advance of the wheel-running rhythm produced by light pulses. The molecular mechanism underlying MKC-242-induced potentiation of this phase shift, however, has not yet been elucidated. We examined the effects of MKC-242 on light-induced mPer1 and mPer2 mRNA expression in the suprachiasmatic nucleus (SCN) of mice. MKC-242 (5 mg kg(-1), i.p.) potentiated light-induced mPer1 and mPer2 expression in the SCN of mice housed in constant darkness for 2 days, when mRNA levels were observed 3 hr after light-exposure. More potentiating action of MKC-242 on mPer2 expression in the SCN was observed in mice housed in constant darkness for 9-10 days. This facilitatory action of MKC-242 on mPer1 expression was antagonized by WAY100635, a selective 5-HT(1A) receptor blocker, indicating that MKC-242 activated 5-HT(1A) receptors. Other drugs such as 8-hydroxy-dipropylaminotetralin (10 mg kg(-1), i.p.), paroxetine (10 mg kg(-1), i.p.), buspirone (10 mg kg(-1), i.p.), and diazepam (10 mg kg(-1), i.p.) did not display a potentiating action on light-induced mPer1 and mPer2 expression in the SCN. In the behavioral experiments, we found that MKC-242 (5 mg kg(-1), i.p.) potentiated light-induced phase delays of free-running rhythm in mice. The present results suggest that prolonged increase of mPer1 or mPer2 expression in the SCN by MKC-242 may be involved in the potentiation of photic entrainment by MKC-242 in mice.
Collapse
Affiliation(s)
- Satomi Takahashi
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Cauter E, Turek FW. Roles of Sleep‐Wake and Dark‐Light Cycles in the Control of Endocrine, Metabolic, Cardiovascular, and Cognitive Function. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Hayashi S, Ueda M, Amaya F, Matusda T, Tamada Y, Ibata Y, Tanaka M. Serotonin modulates expression of VIP and GRP mRNA via the 5-HT(1B) receptor in the suprachiasmatic nucleus of the rat. Exp Neurol 2001; 171:285-92. [PMID: 11573980 DOI: 10.1006/exnr.2001.7759] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of vasoactive intestinal peptide (VIP) and gastrin-releasing peptide (GRP) in the suprachiasmatic nucleus (SCN) changes depending on light. VIP mRNA increases and GRP mRNA decreases in the light phase, while they do not show change without light. In the present study we investigated the involvement of serotonin (5-HT) in the expression of VIP and GRP messenger RNA in the SCN of the rat. The decrease in VIP mRNA and the increase in GRP mRNA in the light phase were amplified by 5-HT depletion using 5,6-dihydroxytryptamine injected into the lateral ventricle. These enhancements due to 5-HT depletion were reversed to control levels by applying 5-HT(1B) agonists TFMPP and CGS12066A, but not a 5-HT(1A)/5-HT(7) agonist, 8-OH-DPAT. The 5-HT(1B) receptor is known to exist on the terminals of the retinohypothalamic tract (RHT). Therefore, next we investigated the morphological relationship of RHT and 5-HT terminals by double-labeling immunocytochemistry and demonstrated that 5-HT-immunoreactive fibers and cholera toxin B subunit-labeled RHT terminals were intermingled in the ventrolateral SCN, and 5-HT axon processes had close contact with RHT terminals. Collectively, these pharmacological and morphological results suggest that 5-HT afferents from raphe nuclei modulate VIP and GRP expression in neurons of the ventrolateral SCN by activating the 5-HT(1B) receptor in the RHT.
Collapse
Affiliation(s)
- S Hayashi
- Department of Anatomy & Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji Kamikyo-ku, Kyoto, 602-0841, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
van Esseveldt KE, Lehman MN, Boer GJ. The suprachiasmatic nucleus and the circadian time-keeping system revisited. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:34-77. [PMID: 10967353 DOI: 10.1016/s0165-0173(00)00025-4] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many physiological and behavioral processes show circadian rhythms which are generated by an internal time-keeping system, the biological clock. In rodents, evidence from a variety of studies has shown the suprachiasmatic nucleus (SCN) to be the site of the master pacemaker controlling circadian rhythms. The clock of the SCN oscillates with a near 24-h period but is entrained to solar day/night rhythm by light. Much progress has been made recently in understanding the mechanisms of the circadian system of the SCN, its inputs for entrainment and its outputs for transfer of the rhythm to the rest of the brain. The present review summarizes these new developments concerning the properties of the SCN and the mechanisms of circadian time-keeping. First, we will summarize data concerning the anatomical and physiological organization of the SCN, including the roles of SCN neuropeptide/neurotransmitter systems, and our current knowledge of SCN input and output pathways. Second, we will discuss SCN transplantation studies and how they have contributed to knowledge of the intrinsic properties of the SCN, communication between the SCN and its targets, and age-related changes in the circadian system. Third, recent findings concerning the genes and molecules involved in the intrinsic pacemaker mechanisms of insect and mammalian clocks will be reviewed. Finally, we will discuss exciting new possibilities concerning the use of viral vector-mediated gene transfer as an approach to investigate mechanisms of circadian time-keeping.
Collapse
Affiliation(s)
- K E van Esseveldt
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ ZO, Amsterdam, The Netherlands
| | | | | |
Collapse
|
21
|
Duncan MJ, Jennes L, Jefferson JB, Brownfield MS. Localization of serotonin(5A) receptors in discrete regions of the circadian timing system in the Syrian hamster. Brain Res 2000; 869:178-85. [PMID: 10865072 DOI: 10.1016/s0006-8993(00)02383-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endogenous serotonin and serotonergic drugs influence many aspects of circadian rhythms, including phase shifts, onset of locomotor activity, and period length and integrity of rhythms during exposure to constant light. The receptor subtype(s) mediating all of these circadian effects of serotonin has (have) not been identified. Immunoreactivity for the serotonin(5A) (5-HT(5A)) receptor has recently been identified in the rat suprachiasmatic nucleus (SCN). In this study, we investigated the distribution of the 5-HT(5A) receptors in four neural components of the circadian timing system (the SCN, the intergeniculate leaflet, and the median and dorsal raphe nuclei), in the Syrian hamster. Single and dual immunohistochemistry were conducted using an affinity-purified rabbit antibody generated against a peptide sequence unique to the 5-HT(5A) receptor, guinea pig anti-5-HT antisera and guinea pig anti-GABA antisera. For single labeling, immunoreactivity was visualized using DAB-nickel as the chromagen. All four regions showed strong, yet distinct, immunoreactivity for the 5-HT(5A) receptor. No specific labeling was present in the absorption or omission controls. For double labeling, immunoreactivity was visualized using immunofluorescence with Cy5- and FITC-labeled second antibodies followed by confocal microscopy. In the raphe nuclei, 5-HT-immunoreactivity and 5-HT(5A)-immunoreactivity were co-localized in cell bodies and axons. GABA-immunoreactive fibers surrounded some of the 5-HT(5A) receptor-immunoreactive cell bodies in the raphe nuclei. In conclusion, the 5-HT(5A) receptors are localized within several important neuroanatomical substrates of the circadian timekeeping system, and within the raphe nuclei, appear to be present on serotonin neurons. These findings suggest that some of the circadian effects of 5-HT may be mediated by the 5-HT(5A) receptor, which may function as a presynaptic autoreceptor.
Collapse
Affiliation(s)
- M J Duncan
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | | | | | | |
Collapse
|
22
|
Quintero JE, McMahon DG. Serotonin modulates glutamate responses in isolated suprachiasmatic nucleus neurons. J Neurophysiol 1999; 82:533-9. [PMID: 10444653 DOI: 10.1152/jn.1999.82.2.533] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two input pathways to the suprachiasmatic nucleus (SCN) of the hypothalamus are the glutamatergic retinohypothalamic tract and the serotonergic afferent from the midbrain raphe nucleus. To determine whether these two temporal signaling pathways can converge at the cellular level, we have investigated the effects of serotonin on glutamate-induced calcium responses of individual SCN neurons isolated in cell culture. Dispersed cultures were formed from the SCN of neonatal rats. The calcium indicator Fura-2 acetoxymethyl ester was used to assess the changes in [Ca(2+)](i) by recording the 340-nm/380-nm excitation ratio. Application of glutamate (5 microM) to the culture caused a rapid (within 10 s) increase in the fluorescence ratio of neurons indicating a marked increase in the concentration of intracellular free calcium. However, when 5-hydroxytryptamine (5-HT; 5 microM) was coapplied with glutamate, 31% of neurons showed an overall 61% reduction in the peak of the glutamate-induced calcium increase. Application of the 5-HT(7/1A) receptor agonist, (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin [(+/-)-8-OH-DPAT] (1 microM), also reduced the calcium elevation this time by 80% in 18% of the neurons tested. When the 5-HT(7/2/1C) receptor antagonist, ritanserin (800 nM), was coapplied with serotonin, it blocked modulation of the glutamate responses. Further support for the involvement of the 5-HT(7) receptor was provided by the ability of the adenylate cyclase activator, forskolin (10 microM), and the cAMP analogue, 8-Br cAMP (0.5 mM), to mimic the suppressive effect of serotonin. Blocking spike-mediated cell communication with tetrodotoxin (1 microM) did not prevent the serotonergic suppression of glutamate-induced responses. These results support the hypothesis that the serotonergic modulation of photic entraining signals can occur in SCN neurons.
Collapse
Affiliation(s)
- J E Quintero
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
23
|
Benloucif S, Masana MI, Yun K, Dubocovich ML. Interactions between light and melatonin on the circadian clock of mice. J Biol Rhythms 1999; 14:281-9. [PMID: 10447308 DOI: 10.1177/074873099129000696] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Melatonin and light synchronize the biological clock and are used to treat sleep/wake disturbances in humans. However, the two treatments affect circadian rhythms differently when they are combined than when they are administered individually. To elucidate the nature of the interaction between melatonin and light, the present study assessed the effect of melatonin on circadian timing and immediate-early gene expression in the suprachiasmatic nucleus (SCN) when administered in the presence of light. Male C3H/HeN mice, housed in constant dark in cages equipped with running wheels, were treated with either melatonin (90 microg, s.c.) or vehicle (3% ethanol-saline) 5 min prior to exposure to light (15 min, 300 lux) at various times in the circadian cycle. Combined treatment resulted in lower magnitude phase delays of circadian activity rhythms than those obtained with light alone during the early subjective night and advances in phase when melatonin and light were administered during the subjective day (p < .001). The reduction in phase delays with combined treatment at Circadian Time (CT) 14 was significant when light exposure measured 300 lux but not at lower light levels (p < .05). When light preceded melatonin administration, the inhibition of phase delays attained significance only when the light exposure reached 1000 lux (p < .05). Neither basal nor light-induced expression of c-fos mRNA in the SCN was modified by melatonin administration at CT 14 or CT 22. Together, these results suggest that combined administration of melatonin and light affect circadian timing in a manner not predicted by summing the two treatments given individually. Furthermore, the interaction is not likely to be due to inhibition of photic input to the clock by melatonin but might arise from a photically induced enhancement of melatonin's actions on circadian timing.
Collapse
Affiliation(s)
- S Benloucif
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
24
|
Meyer-Bernstein EL, Morin LP. Electrical stimulation of the median or dorsal raphe nuclei reduces light-induced FOS protein in the suprachiasmatic nucleus and causes circadian activity rhythm phase shifts. Neuroscience 1999; 92:267-79. [PMID: 10392849 DOI: 10.1016/s0306-4522(98)00733-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several pharmacological studies have suggested that the large median raphe serotonergic projection to the circadian clock in the suprachiasmatic nucleus may modulate circadian rhythm phase. The present experiments studied the role of dorsal and median raphe nuclei as regulators of circadian rhythmicity by evaluating the ability of electrical stimulation to shift rhythm phase or to alter photic induction of FOS protein synthesis. Male hamsters implanted with bipolar electrodes in either the median or dorsal raphe nucleus were stimulated during the early subjective night coincident with exposure to a saturating light pulse. About 90 min later, animals were anesthetized, perfused and the brains processed for FOS protein immunoreactivity. As previously demonstrated, light alone induces FOS immunoreactivity in nuclei of suprachiasmatic nucleus neurons. This was significantly attenuated by stimulation of either the median or dorsal raphe nucleus, with the extent of attenuation proportional to the intensity of stimulation. Electrical stimulation without light exposure had no effect on FOS expression. The effect of light on FOS expression in the suprachiasmatic nucleus was not modified by pre-treatment with the 5-HT1/2 serotonin receptor antagonist, metergoline, although it greatly reduced electrical stimulation-induced FOS expression in the hippocampus. In a second experiment, hamsters housed with running wheels in constant light were electrically stimulated in the median or dorsal raphe nucleus 6 h prior to (CT6) or 2 h after (CT14) expected activity onset. Regardless of which raphe nucleus was electrically stimulated, approximately 22 min phase advances were elicited at CT6 and 36 min phase delays were elicited at CT14. Despite the fact that the sole direct projection from the raphe complex to the suprachiasmatic nucleus is from the median nucleus, the present data do not distinguish between the median and dorsal raphe with respect to their impact on circadian rhythm regulation. Instead, two possible roles for each raphe nucleus are demonstrated. One main effect is that both raphe nuclei modulate rhythm phase. The second is an interaction between raphe efferent activity and light which, in the present studies, is demonstrated by the ability of raphe stimulation to modulate the action of light on the circadian system. While serotonin is a likely neurotransmitter mediating one or both effects, alternatives such as GABA, must be considered.
Collapse
Affiliation(s)
- E L Meyer-Bernstein
- Graduate Program in Neurobiology and Behavior, State University of New York, Stony Brook 11794, USA
| | | |
Collapse
|
25
|
Duncan WC, Johnson KA, Wehr TA. 5-HT agonist-induced phase-advances of the circadian pacemaker are diminished by chronic antidepressant drug treatment. Brain Res 1999; 815:126-30. [PMID: 9974132 DOI: 10.1016/s0006-8993(98)01057-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serotonin (5-HT) and its agonists alter the timing of the circadian pacemaker. Previous research has shown that when they are injected 4 h before or after the onset of wheel-running, they phase-advance or delay, respectively, the timing of the pacemaker. Because serotonergic interventions alter 5-HT receptor number in the hypothalamus, we asked whether chronic treatment with an antidepressant drug (AD) that modifies serotonergic function could alter the phase-shifting effects of the 5-HT agonist 8-hydroxydipropylaminotetralin (8-OH-DPAT). Hamsters were treated chronically with the monoamine oxidase inhibitor (MAOI), clorgyline, and then injected with 8-OH-DPAT or vehicle (VEH) either 4 h before or after the onset of wheel-running. MAOI treatment decreased the magnitude of both 8-OH-DPAT- and VEH-induced phase advances, but not the magnitude of 8-OH-DPAT-induced phase-delays. The results indicate that 8-OH-DPAT-induced phase-advances and delays are functionally distinct with regard to adaptive changes during chronic AD treatment.
Collapse
Affiliation(s)
- W C Duncan
- Section on Biological Rhythms, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
26
|
Moriya T, Yoshinobu Y, Ikeda M, Yokota S, Akiyama M, Shibata S. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters. Br J Pharmacol 1998; 125:1281-7. [PMID: 9863658 PMCID: PMC1565688 DOI: 10.1038/sj.bjp.0702176] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-¿3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]-propoxy¿-1,3-b enzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters. MKC-242 (3 mg kg(-1), i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle. MKC-242 (3 mg kg(-1), i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxydipropylaminotetralin (8-OH-DPAT)(5 mg kg(-1), i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances. The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure. The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors. Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg(-1), i.p.). HPLC analysis demonstrated that MKC-242 (3 mg kg(-1), i.p.) decreased the 5-HIAA content in the SCN. The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters.
Collapse
Affiliation(s)
- T Moriya
- Advanced Research Center for Human Sciences, School of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Prosser RA. Neuropeptide Y blocks serotonergic phase shifts of the suprachiasmatic circadian clock in vitro. Brain Res 1998; 808:31-41. [PMID: 9795117 DOI: 10.1016/s0006-8993(98)00808-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammalian circadian pacemaker in the suprachiasmatic nuclei (SCN) can be reset in vitro by various neurochemical stimuli. This study investigated the phase-shifting properties of neuropeptide Y (NPY) and serotonin (5-HT) agonists when applied alone, as well as their combined effects on clock resetting. These neurotransmitters have both been shown to advance the SCN clock in vitro when applied during the daytime. By monitoring the SCN neuronal activity rhythm in vitro, I first confirm that the 5HT1A/5HT7 agonist (+)DPAT maximally advances the SCN clock when applied at zeitgeber time 6 (ZT6). Conversely, NPY only phase advances the neuronal activity rhythm when applied at ZT 10. This effect occurs through stimulation of Y2 receptors. NPY, again acting through Y2 receptors, blocks (+)DPAT-induced phase shifts at ZT 6, while neither (+)DPAT nor 5-HT affect NPY-induced phase shifts at ZT 10. NPY appears to block (+)DPAT-induced phase shifts by preventing increases in cyclic AMP. These data are the first to demonstrate in vitro interactions between daytime resetting stimuli in the rat, and provide critical insights into mechanisms controlling circadian clock phase.
Collapse
Affiliation(s)
- R A Prosser
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walter's Life Science Building, Knoxville, TN 37996, USA.
| |
Collapse
|
28
|
Abstract
Photic entrainment of circadian rhythms occurs as a consequence of daily, light-induced adjustments in the phase and period of the suprachiasmatic nuclei (SCN) circadian clock. Photic information is acquired by a unique population of retinal photoreceptors, processed by a distinct subset of retinal ganglion cells, and conveyed to the SCN through the retinohypothalamic tract (RHT). RHT neurotransmission is mediated by the release of the excitatory amino acid glutamate and appears to require the activation of both NMDA- and non-NMDA-type glutamate receptors, the expression of immediate early genes (IEGs), and the synthesis and release of nitric oxide. In addition, serotonin appears to regulate the response of the SCN circadian clock to light through postsynaptic 5-HT1A or 5-ht7 receptors, as well as presynaptic 5-HT1B heteroreceptors on RHT terminals.
Collapse
Affiliation(s)
- M A Rea
- Biological Rhythms and Integrative Neuroscience Institute, Air Force Research Laboratory, Brooks AFB, Texas, USA.
| |
Collapse
|
29
|
Duncan WC, Johnson KA, Wehr TA. Decreased sensitivity to light of the photic entrainment pathway during chronic clorgyline and lithium treatments. J Biol Rhythms 1998; 13:330-46. [PMID: 9711508 DOI: 10.1177/074873098129000165] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Certain antidepressant drugs (ADs) cause disturbances in sleep that could result from their capacity to alter the timing of circadian rhythms. Effects on the timing of rhythms could be due to the drugs' known capacity to alter the frequency of the intrinsic rhythm of the circadian pacemaker, or to a capacity to modify the pacemaker's response to external stimuli that serve as time cues (Zeitgebers) that regulate the timing (phase) of its rhythm. To examine the possibility that ADs alter the sensitivity of the system that mediates the phase-shifting effects of light, hamsters were treated chronically with the MAOI, clorgyline, and lithium. Each hamster was then exposed to a single 5-min light pulse (intensity range = 0.00137 to 137 microW/cm2) at circadian phases known to elicit phase advances (CT18) and phase delays (CT13.5) in the daily onset of wheel running. The half-saturation constant (sigma), photic sensitivity (1/sigma), and maximum phase-shifting response to light were estimated from the best-fit stimulus response curves. In addition, threshold sensitivity, the light intensity required to produce a threshold phase-shifting response, was determined. Clorgyline decreased the magnitude of light-induced phase advances at each of the light intensities tested. Clorgyline also decreased the magnitude of light-induced phase delays at low light intensities, but increased the magnitude of phase delays at higher light intensities. Clorgyline decreased the sensitivity of the photic phase-shifting system, as indicated both by the threshold sensitivities at CT13.5 and CT18, and by 1/sigma at CT13.5. Lithium decreased the threshold sensitivity at CT18, and 1/sigma at CT13.5. Lithium decreased the magnitude of phase delays, but not phase advances. Clorgyline's effects on the photic entrainment pathway may be mediated by its effects on serotonin, which has been shown to modulate the pacemaker's response to morning and evening light, and by tolerance to this effect of serotonin. The fact that both clorgyline and lithium decrease the photic sensitivity of the entrainment pathway suggests that other psychoactive drugs might also share this property. It is possible that the decreased sensitivity to light of the entrainment pathway affects the clinical response to these and other psychoactive medications.
Collapse
Affiliation(s)
- W C Duncan
- Section on Biological Rhythms, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
30
|
Abstract
Serotonin (5-HT) has been strongly implicated in the regulation of the mammalian circadian clock located in the suprachiasmatic nuclei (SCN). However, little is known of the pattern of neuronal 5-HT release in the SCN or of the factors involved in regulating its release. Using in vivo microdialysis, we demonstrated the existence of a daily rhythm in the output of 5-HT in the SCN of freely behaving hamsters. This rhythm was characterized by a sharp increase in release from a nadir during late midday to peak levels at the light/dark transition. Output declined to basal levels throughout the remainder of the night. A similar pattern also was evident under constant darkness, with increased 5-HT output occurring at the onset of subjective night. Locomotor activity induced by exposure to a novel running wheel had a pronounced phase-dependent effect on 5-HT release in the SCN, with stimulation during the light phase and suppression during the late dark phase. Systemic application of the somatodendritic 5-HT1A agonist BMY 7378 had a significantly greater suppressive effect on 5-HT release in the SCN during the late dark phase compared with mid light phase, indicating that a variation in raphe autoreceptor response may underlie the time-dependent effects of wheel running on 5-HT release. Collectively, these results show that the daily rhythm in output of 5-HT in the SCN is generated endogenously, and that behavioral state can strongly influence serotonergic activity in the circadian clock in a phase-dependent manner.
Collapse
|
31
|
Partonen T. Dependence of the variation in alertness on the pineal gland. Med Hypotheses 1998; 50:479-80. [PMID: 9710319 DOI: 10.1016/s0306-9877(98)90266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a diurnal variation in the pineal serotonin content, with a maximum at 7-8 h after the onset of light and a minimum at 3-4 h after the onset of darkness in rats. The levels of serotonin and melatonin can rapidly be altered by changing the level of ambient light. The diurnal changes in serotonergic activity are hypothesized to counteract two phenomena. First, the increased levels of serotonin would decrease the high propensity to drowsiness in the afternoon. Second, the decreased levels of serotonin would also decrease the high propensity to waking up at night, which occurs because of decreased melatonin secretion.
Collapse
Affiliation(s)
- T Partonen
- Department of Psychiatry, University of Helsinki, Finland
| |
Collapse
|
32
|
Yannielli PC, Cutrera RA, Cardinali DP, Golombek DA. Neonatal clomipramine treatment of Syrian hamsters: effect on the circadian system. Eur J Pharmacol 1998; 349:143-50. [PMID: 9671091 DOI: 10.1016/s0014-2999(98)00208-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The circadian behavior of male Syrian hamsters injected with the serotonin/norepinephrine reuptake inhibitor clomipramine (15 mg/kg from postnatal days 8 to 21) was examined. Clomipramine treatment significantly augmented mean activity values of wheel running rhythm, as well as delayed its acrophase. After a 6-h phase advance of the light-dark cycle, reentrainment of clomipramine-treated hamsters took significantly longer than controls. Clomipramine-treated hamsters exhibited a shorter circadian period than controls in constant light conditions, but no differences were found in constant darkness. Light pulses applied at late subjective night to clomipramine-treated hamsters caused significantly reduced phase advances as compared to controls, while no differences were found in phase delay magnitudes when light pulses were applied during early subjective night. Administration of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) at circadian time 8 significantly advanced the onset of activity to a greater extent in clomipramine-treated hamsters than in controls. The results indicate that neonatal clomipramine treatment of hamsters causes long-lasting changes in the circadian system, by increasing activity levels and by partially inhibiting light-evoked responses. An enhancement of a non-photic, serotonergic-induced response was also unveiled.
Collapse
Affiliation(s)
- P C Yannielli
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
33
|
Duncan WC, Johnson KA, Sutin E, Wehr TA. Disruption of the activity-rest cycle by MAOI treatment: dependence on light and a secondary visual pathway to the circadian pacemaker. Brain Res Bull 1998; 45:457-65. [PMID: 9570715 DOI: 10.1016/s0361-9230(97)00383-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The disruptive effects on the activity-rest cycle of the monoamine oxidase inhibitor (MAOI) clorgyline and of continuous light were examined in Syrian hamsters. When administered in dim and moderate light intensities, clorgyline delayed the daily onset of wheel-running. When administered in bright light, it dissociated the circadian rhythm of wheel-running. This dissociation was prevented by lesions of the intergeniculate leaflet of the ventral lateral geniculate nucleus. Constant darkness restored the circadian rhythm of wheel-running in hamsters with disrupted circadian rhythms. The phase of the restored rhythm of wheel-running was shifted 6-12 h later than the phase of wheel-running prior to dissociation. Our results suggest that MAOI treatment weakens the coupling between oscillators that comprise the circadian pacemaker, and augments the disruptive effects of continuous light acting via the intergeniculate leaflet region of the ventral lateral geniculate nucleus. These effects on the circadian pacemaker may be responsible for disruptions of the sleep-wake cycle that occur as side effects when MAOIs are used clinically to treat depression and might play a role in the induction of mania and rapid cycling by antidepressants.
Collapse
Affiliation(s)
- W C Duncan
- Clinical Psychobiology Branch, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
34
|
Mistlberger RE, Antle MC. Behavioral inhibition of light-induced circadian phase resetting is phase and serotonin dependent. Brain Res 1998; 786:31-8. [PMID: 9554942 DOI: 10.1016/s0006-8993(97)01269-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circadian rhythms in Syrian hamsters can be phase shifted by light exposure during the subjective night and by a bout of wheel running induced during the subjective day. Interactions between photic and behavioral stimuli were examined by comparing phase shifts to 15 min, 50 lux light pulses with and without a bout of running induced by confinement to a novel wheel 30 min prior to and extending through light exposure. Light pulses 6 h after dark onset on the first night of constant dark induced phase advance shifts averaging 80 min. Wheel running attenuated these shifts by 45% on average (p<0.01). Light pulses 1 h or 2.25 h after dark onset induced phase delay shifts averaging 50 min and 20 min, respectively, that were not affected by stimulated running. A significant running response to the novel wheel was evident at all 3 time points, but was greater to wheel confinement at both times early in the night. Stimulated running alone early or late in the night did not produce significant phase shifts. Behavioral attenuation of phase advances to light late in the night was prevented by pretreatment with the general 5HT1 antagonist metergoline (2 mg/kg i.p.). Metergoline did not significantly attenuate running in novel wheels. These results indicate that modulation of light-induced phase shifts by behavior is phase dependent and may involve direct or indirect actions of serotonin within the circadian system.
Collapse
Affiliation(s)
- R E Mistlberger
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada.
| | | |
Collapse
|
35
|
Maura G, Marcoli M, Tortarolo M, Andrioli GC, Raiteri M. Glutamate release in human cerebral cortex and its modulation by 5-hydroxytryptamine acting at h 5-HT1D receptors. Br J Pharmacol 1998; 123:45-50. [PMID: 9484853 PMCID: PMC1565139 DOI: 10.1038/sj.bjp.0701581] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The release of glutamic acid and its modulation by 5-hydroxytryptamine (5-HT) in the human brain has been investigated in synaptosomal preparations from fresh neocortical samples obtained from patients undergoing neurosurgery to reach deeply sited tumours. 2. The Ca2+-dependent K+ (15 mM)-evoked overflow of glutamate was inhibited by 5-HT in a concentration-dependent manner (EC50 = 2.9 nM; maximal effect approximately 50%). The inhibition caused by 5-HT was antagonized by the 5-HT1/5-HT2 receptor antagonist methiothepin. The 5-HT1B/5-HT1D receptor agonist sumatriptan mimicked 5-HT (EC50 = 6.4 nM; maximal effect approximately 50%); the effect of sumatriptan was also methiothepin-sensitive. Selective 5-HT1A receptor antagonists could not prevent the inhibition of glutamate release by 5-HT. 3. The 5-HT1B/5-HT1D receptor ligand GR 127935 and the 5-HT2C/5-HT1B/5-HT1D receptor ligand metergoline were unable to prevent the 5-HT effect; instead they inhibited glutamate release, their effects being abolished by methiothepin. Some 5-HT1A receptor antagonists also displayed intrinsic agonist activity. 4. The effect of sumatriptan was prevented by ketanserin, a drug known to display much higher affinity for recombinant h 5-HT1D than for h 5-HT1B receptors. 5. We propose that neocortical glutamatergic nerve terminals in human brain cortex possess release-inhibiting presynaptic heteroreceptors that appear to belong to the h 5-HT1D subtype.
Collapse
Affiliation(s)
- G Maura
- Institute of Pharmacology and Toxicology, University of Genova, Italy
| | | | | | | | | |
Collapse
|
36
|
Duncan WC, Johnson KA, Wehr TA. Increase of 5HT and VIP immunoreactivity within the hamster (Mesocricetus auratus) SCN during chronic MAOI treatment. Neurosci Lett 1997; 236:159-62. [PMID: 9406761 DOI: 10.1016/s0304-3940(97)00787-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of chronic treatment with the monoamine oxidase inhibitor (MAOI), clorgyline (CLG; 2 mg/kg per day) on serotonin (5HT) and vasoactive intestinal peptide (VIP) immunoreactivity (IR) within the hamster suprachiasmatic nucleus (SCN) were examined. Optical densities of 5HT IR and VIP IR were increased by MAOI treatment. VIP IR was increased in both the ventrolateral and dorsal regions of the SCN, suggesting that VIP content was increased within both perikarya and terminals of VIP neurons. The results suggest that previously described effects of MAOIs on the mammalian circadian system may be mediated in part, by their effects on serotonergic input to VIP neurons within the SCN.
Collapse
Affiliation(s)
- W C Duncan
- Clinical Psychobiology Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
37
|
Abstract
Microdialysis has become a frequently used method to study extracellular levels of GABA and glutamate in the central nervous system. However, the fact that the major part of GABA and glutamate as measured by microdialysis does not fulfill the classical criteria for exocytotic release questions the vesicular origin of the amino acids in dialysates. Glial metabolism or reversal of the (re)uptake sites has been suggested to be responsible for the pool of nonexocytotically released amino-acid transmitters that seem to predominate over the neuronal exocytotic pool. The origin of extracellular GABA and glutamate levels and, as a consequence, the implications of changes in these levels upon manipulations are therefore obscure. This review critically analyzes what microdialysis data signify, i.e., whether amino-acid neurotransmitters sampled by microdialysis represent synaptic release, carrier-mediated release, or glial metabolism. The basal levels of GABA and glutamate are virtually tetrodotoxin- and calcium-independent. Given the fact that evidence for nonexocytotic release mediated by reversal of the uptake sites as a release mechanism relevant for normal neurotransmission is so far limited to conditions of "excessive stimulation," basal levels most likely reflect a nonneuronal pool of amino acids. Extracellular GABA and glutamate concentrations can be enhanced by a wide variety of pharmacological and physiological manipulations. However, it is presently impossible to ascertain that the stimulated GABA and glutamate in dialysates are of neuronal origin. On the other hand, under certain stimulatory conditions, increases in amino-acid transmitters can be obtained in the presence of tetrodotoxin, again suggesting that aspecific factors not directly related to neurotransmission underlie these changes in extracellular levels. It is concluded that synaptic transmission of GABA and glutamate is strictly compartmentalized and as a result, these amino acids can hardly leak out of the synaptic cleft and reach the extracellular space where the dialysis probe samples.
Collapse
Affiliation(s)
- W Timmerman
- University Center for Pharmacy, Department of Medicinal Chemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
38
|
Krajnak K, Dickenson L, Lee TM. The induction of Fos-like proteins in the suprachiasmatic nuclei and intergeniculate leaflet by light pulses in degus (Octodon degus) and rats. J Biol Rhythms 1997; 12:401-12. [PMID: 9376639 DOI: 10.1177/074873049701200502] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In nocturnal rodents, exposure to light results in an increase in Fos expression in two regions that receive direct retinal input: the suprachiasmatic nuclei (SCN) of the hypothalamus and the intergeniculate leaflet (IGL) of the thalamus. The induction of Fos within the SCN of nocturnal rodents is phase dependent, with light presented during the subjective night increasing Fos expression and light presented during the subjective day having little effect. By contrast, Fos expression increases in the IGL when light is presented during the subjective day or night. It is unclear whether Fos is part of the pathway mediating light-induced phase shifts in diurnal rodents. In the present study, the ability of light to induce immunostaining for Fos in the SCN and IGL was compared in diurnal rodents, Octodon degus (degus), and nocturnal rats. Degus and rats were either maintained in constant darkness or exposed to a 1-h light pulse at circadian time (CT) 4 or 16. Degus exhibit robust phase shifts at each of those circadian hours, whereas rats demonstrate phase shifts only at CT 16. In degus, exposure to a 1-h light pulse at CT 16 resulted in an increase in the number of Fos-immunopositive (Fos+) cells in the ventrolateral SCN. By contrast, a 1-h light pulse at CT 4 resulted in a decrease in the number of Fos+ cells in the dorsomedial portion of the SCN. In rats, a light pulse presented at CT 16 resulted in an increase in Fos+ cells throughout the SCN, and a pulse at CT 4 had no effect on Fos staining. Both degus and rats showed increases in Fos expression in the IGL after light exposure at CTs 4 and 16. The authors conclude that light pulses presented at times that produce phase shifts in activity rhythms also alter Fos expression in the SCN and IGL of degus. Although these effects of light exposure on Fos expression are not identical in diurnal and nocturnal rodents, it is likely that Fos and other immediate early genes are part of the pathway mediating the effects of light in both diurnal and nocturnal rodents.
Collapse
Affiliation(s)
- K Krajnak
- Department of Psychology, University of Michigan, Ann Arbor 48109-1109, USA
| | | | | |
Collapse
|
39
|
Bradbury MJ, Dement WC, Edgar DM. Serotonin-containing fibers in the suprachiasmatic hypothalamus attenuate light-induced phase delays in mice. Brain Res 1997; 768:125-34. [PMID: 9369309 DOI: 10.1016/s0006-8993(97)00629-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Photic and non-photic stimuli phase shift and entrain circadian rhythms through distinct but interacting mechanisms which impinge on the suprachiasmatic nucleus (SCN), the circadian pacemaker. Our understanding of this mechanism is incomplete. Serotonin (5-HT) injected locally at the SCN reduces light-induced glutamate release and decreases the expression of c-fos, a marker of photic transduction. Furthermore, in SCN slices, 5-HT application reduces field potentials after optic nerve stimulation. We therefore predicted that 5-HT-terminal destruction restricted to the SCN would augment phase shifts of circadian rhythms induced by light exposure. To investigate this possibility, we compared photic phase delays and Fos-like immunoreactivity in mice which had previously received bilateral infusions directed at the SCN containing either the selective 5-HT neurotoxin 5,7-dihydroxytryptamine (DHT, n = 16) or vehicle (VEH, n = 12). Phase delays after a light pulse given during the mid-subjective night (30 lux, 30 min starting at circadian time (CT) 12-20) in DHT-mice were 50% greater than in VEH-mice (P = 0.017). DHT mice (n = 5) had 76% larger Fos responses to a mid-subjective night light pulse than VEH-mice (n = 5) (P = 0.029). We conclude that 5-HT at or near the SCN in mice reduces photic phase shifts and modulates the magnitude of the photic phase response in the mouse.
Collapse
Affiliation(s)
- M J Bradbury
- Sleep Research Center, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA 94305, USA
| | | | | |
Collapse
|
40
|
Challet E, Pévet P, Malan A. Lesion of the serotonergic terminals in the suprachiasmatic nuclei limits the phase advance of body temperature rhythm in food-restricted rats fed during daytime. J Biol Rhythms 1997; 12:235-44. [PMID: 9181435 DOI: 10.1177/074873049701200305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The daily rhythm of body temperature was recorded in control rats fed ad libitum and subsequently fed during daytime 50% of ad libitum food intake. Aside from the expression of a feeding-associated component, body temperature rhythm was phase advanced (7 h) by a timed caloric restriction; the new plateau of the acrophase of the nocturnal peak was close to the light-dark transition. A lesion of serotonergic (5-HTergic) terminals in the suprachiasmatic nuclei (SCN)-the endogenous circadian clock(s)-was performed by microinjection of the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). During the ad libitum-fed state, the acrophase of body temperature rhythm was not modified by the 5,7-DHT treatment. In response to a timed caloric restriction, however, the phase advance of the nocturnal peak of body temperature rhythm was reduced by 2 h in rats with 5,7-DHT lesions as compared to that of sham-operated rats. Magnitude and day-night pattern of wheel-running activity between the two groups of rats also were analyzed. No intergroup difference was found in the amount of wheel-running activity prior to the time of feeding. Moreover, the phase advance of nocturnal component of locomotor activity rhythm observed toward the time of feeding in sham-operated rats was limited by 5,7-DHT treatment. It is concluded that the photic synchronization of body temperature rhythm does not depend on the 5-HTergic projection to SCN under ad libitum conditions. By contrast, the phase-advancing property of a timed caloric restriction on the daily rhythm of body temperature is mediated by a neuronal circuit involving the 5-HTergic projection to SCN. That the phase advance was not fully eliminated by 5,7-DHT treatment suggests that other pathways participate in this mediation.
Collapse
Affiliation(s)
- E Challet
- Neurobiologie des Fonctions Rythmiques et Saisonnières, CNRS-URA 1332, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
41
|
Affiliation(s)
- R M Eglen
- Roche Bioscience, Palo Alto, CA 94304, USA
| | | | | | | |
Collapse
|
42
|
Mistlberger RE, Sinclair SV, Marchant EG, Neil L. Phase shifts to refeeding in the Syrian hamster mediated by running activity. Physiol Behav 1997; 61:273-8. [PMID: 9035258 DOI: 10.1016/s0031-9384(96)00408-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Circadian rhythms in hamsters can be entrained by restricted daily feeding schedules. Phase control may be exerted by feeding per se, or by wheel running in anticipation of food access. Phase modulation by feeding was examined here by depriving hamsters of food for 9-24 h and refeeding at 1 of 7 different zeitgeber times on the first day of constant dim light. Significant group mean phase-advance shifts were observed only following 24 h and 17 h deprivations ending in the mid-subjective day, 7 h before the usual time of lights off (mean shifts 28 min and 66 min, respectively). The largest phase shifts were associated with wheel running during the first 6 h of refeeding. When running wheels were locked during this time in an additional group, no phase shifts were observed. A trend for small phase delays was evident for 14 h deprivations ending at the beginning of the subjective night, but no significant group mean or individual shifts were observed at other refeeding times. Refeeding after food deprivation, thus, appears to have minimal effects on circadian phase in hamsters; wheel running associated with refeeding may account for occasional shifts observed.
Collapse
Affiliation(s)
- R E Mistlberger
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada.
| | | | | | | |
Collapse
|
43
|
Moriya T, Yamanouchi S, Fukushima T, Shimazoe T, Shibata S, Watanabe S. Involvement of 5-HT1A receptor mechanisms in the inhibitory effects of methamphetamine on photic responses in the rodent suprachiasmatic nucleus. Brain Res 1996; 740:261-7. [PMID: 8973823 DOI: 10.1016/s0006-8993(96)00860-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We examined the role of serotonin 1A (5-HT1A) receptors in the inhibitory effects of methamphetamine (MA) on photic entrainment to the circadian pacemaker in the suprachiasmatic nucleus (SCN) of rodents. MA inhibited optic nerve stimulation-evoked field potential in the SCN, light-induced Fos expression in the SCN and light-induced phase shift of hamster wheel-running rhythm. NAN-190, a 5-HT1A receptor antagonist, eliminated the inhibitory effects of MA. NAN-190 has also been reported to antagonize alpha 1 adrenergic receptors. However, prazosin, which selectively antagonizes alpha 1 adrenergic receptors, did not affect the inhibitory action of MA on light-induced Fos expression. In addition, parachloroamphetamine, which is known to be a 5-HT releaser, dose-dependently inhibited light-induced phase shift of wheel-running rhythm. These findings suggest that elevation of endogenous 5-HT levels by MA inhibits the photic entraining responses of the circadian pacemaker in the SCN via 5-HT1A receptor stimulation of the 5-HT released by MA.
Collapse
Affiliation(s)
- T Moriya
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The chronic effects of antidepressant drugs (ADs) on circadian rhythms of behavior, physiology and endocrinology are reviewed. The timekeeping properties of several classes of ADs, including tricyclic antidepressants, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, serotonin agonists and antagonists, benzodiazepines, and melatonin are reviewed. Pharmacological effects on the circadian amplitude and phase, as well as effects on day-night measurements of motor activity, sleep-wake, body temperature (Tb), 3-methoxy-4-hydroxyphenylglycol, cortisol, thyroid hormone, prolactin, growth hormone and melatonin are examined. ADs often lower nocturnal Tb and affect the homeostatic regulation of sleep. ADs often advance the timing and decrease the amount of slow wave sleep, reduce rapid eye movement sleep and increase or decrease arousal. Together, AD effects on nocturnal Tb and sleep may be related to their therapeutic properties. ADs sometimes delay nocturnal cortisol timing and increase nocturnal melatonin, thyroid hormone and prolactin levels; these effects often vary with diagnosis, and clinical state. The effects of ADs on the coupling of the central circadian pacemaker to photic and nonphotic zeitgebers are discussed.
Collapse
Affiliation(s)
- W C Duncan
- Clinical Psychobiology Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| |
Collapse
|