1
|
Zheng Y, Chen Z. Targeting Histamine and Histamine Receptors for the Precise Regulation of Feeding. Curr Top Behav Neurosci 2021; 59:355-387. [PMID: 34622397 DOI: 10.1007/7854_2021_258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Histamine has long been accepted as an anorexigenic agent. However, lines of evidence have suggested that the roles of histamine in feeding behaviors are much more complex than previously thought, being involved in satiety, satiation, feeding motivation, feeding circadian rhythm, and taste perception and memory. The functional diversity of histamine makes it a viable target for clinical management of obesity and other feeding-related disorders. Here, we update the current knowledge about the functions of histamine in feeding and summarize the underlying molecular and neural circuit mechanisms. Finally, we review the main clinical studies about the impacts of histamine-related compounds on weight control and discuss insights into future research on the roles of histamine in feeding. Despite the recent progress in histamine research, the histaminergic feeding circuits are poorly understood, and it is also worth verifying the functions of histamine receptors in a more spatiotemporally specific manner.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Whittaker DS, Wang H, Loh DH, Cachope R, Colwell CS. Possible use of a H3R antagonist for the management of nonmotor symptoms in the Q175 mouse model of Huntington's disease. Pharmacol Res Perspect 2017; 5:e00344. [PMID: 28971617 PMCID: PMC5625154 DOI: 10.1002/prp2.344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant, neurodegenerative disorder characterized by motor as well as nonmotor symptoms for which there is currently no cure. The Q175 mouse model of HD recapitulates many of the symptoms identified in HD patients including disruptions of the sleep/wake cycle. In this study, we sought to determine if the daily administration of the histamine-3 receptor (H3R) antagonist/inverse agonist 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) would improve nonmotor symptoms in the Q175 line. This class of drugs acts on autoreceptors found at histaminergic synapses and results in increased levels of histamine (HA). HA is a neuromodulator whose levels vary with a daily rhythm with peak release during the active cycle and relatively lower levels during sleep. H3Rs are widely expressed in brain regions involved in cognitive processes and activation of these receptors promotes wakefulness. We administered GSK189254 nightly to homozygote and heterozygote Q175 mice for 4 weeks and confirmed that the plasma levels of the drug were elevated to a therapeutic range. We demonstrate that daily treatment with GSK189254 improved several behavioral measures in the Q175 mice including strengthening activity rhythms, cognitive performance and mood as measured by the tail suspension test. The treatment also reduced inappropriate activity during the normal sleep time. The drug treatment did not alter motor performance and coordination as measured by the challenging beam test. Our findings suggest that drugs targeting the H3R system may show benefits as cognitive enhancers in the management of HD.
Collapse
Affiliation(s)
- Daniel S. Whittaker
- Department of Psychiatry & Biobehavioral SciencesUniversity of CaliforniaLos AngelesCalifornia90095‐1751
| | - Huei‐Bin Wang
- Department of Psychiatry & Biobehavioral SciencesUniversity of CaliforniaLos AngelesCalifornia90095‐1751
| | - Dawn H. Loh
- Department of Psychiatry & Biobehavioral SciencesUniversity of CaliforniaLos AngelesCalifornia90095‐1751
| | - Roger Cachope
- CHDI Foundation6080 Center DriveSuite 100Los AngelesCalifornia90045
| | - Christopher S. Colwell
- Department of Psychiatry & Biobehavioral SciencesUniversity of CaliforniaLos AngelesCalifornia90095‐1751
| |
Collapse
|
3
|
Kim YS, Kim YB, Kim WB, Lee SW, Oh SB, Han HC, Lee CJ, Colwell CS, Kim YI. Histamine 1 receptor-Gβγ-cAMP/PKA-CFTR pathway mediates the histamine-induced resetting of the suprachiasmatic circadian clock. Mol Brain 2016; 9:49. [PMID: 27153809 PMCID: PMC4858891 DOI: 10.1186/s13041-016-0227-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/15/2016] [Indexed: 11/29/2022] Open
Abstract
Background Recent evidence indicates that histamine, acting on histamine 1 receptor (H1R), resets the circadian clock in the mouse suprachiasmatic nucleus (SCN) by increasing intracellular Ca2+ concentration ([Ca2+]i) through the activation of CaV1.3 L-type Ca2+ channels and Ca2+-induced Ca2+ release from ryanodine receptor-mediated internal stores. Results In the current study, we explored the underlying mechanisms with various techniques including Ca2+- and Cl−-imaging and extracellular single-unit recording. Our hypothesis was that histamine causes Cl− efflux through cystic fibrosis transmembrane conductance regulator (CFTR) to elicit membrane depolarization needed for the activation of CaV1.3 Ca2+ channels in SCN neurons. We found that histamine elicited Cl− efflux and increased [Ca2+]i in dissociated mouse SCN cells. Both of these events were suppressed by bumetanide [Na+-K+-2Cl− cotransporter isotype 1 (NKCC1) blocker], CFTRinh-172 (CFTR inhibitor), gallein (Gβγ protein inhibitor) and H89 [protein kinase A (PKA) inhibitor]. By itself, H1R activation with 2-pyridylethylamine increased the level of cAMP in the SCN and this regulation was prevented by gallein. Finally, histamine-evoked phase shifts of the circadian neural activity rhythm in the mouse SCN slice were blocked by bumetanide, CFTRinh-172, gallein or H89 and were not observed in NKCC1 or CFTR KO mice. Conclusions Taken together, these results indicate that histamine recruits the H1R-Gβγ-cAMP/PKA pathway in the SCN neurons to activate CaV1.3 channels through CFTR-mediated Cl− efflux and ultimately to phase-shift the circadian clock. This pathway and NKCC1 may well be potential targets for agents designed to treat problems resulting from the disturbance of the circadian system.
Collapse
Affiliation(s)
- Yoon Sik Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea.,Department of Psychiatry & Biobehavioral Sciences, University of California-Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Young-Beom Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea
| | - Woong Bin Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea
| | - Seung Won Lee
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea
| | - Seog Bae Oh
- Pain Cognitive Function Research Center, Dental Research Institute and Department of Neurobiology and Physiology, Seoul National University, Seoul, 110-749, Republic of Korea
| | - Hee-Chul Han
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea.
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California-Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Yang In Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea.
| |
Collapse
|
4
|
Kim YS, Kim YB, Kim WB, Yoon BE, Shen FY, Lee SW, Soong TW, Han HC, Colwell CS, Lee CJ, Kim YI. Histamine resets the circadian clock in the suprachiasmatic nucleus through the H1R-CaV1.3-RyR pathway in the mouse. Eur J Neurosci 2015. [DOI: 10.1111/ejn.13030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoon Sik Kim
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| | - Young-Beom Kim
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| | - Woong Bin Kim
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| | - Bo-Eun Yoon
- Center for Neural Science and Center for Functional Connectomics; Korea Institute of Science and Technology; Seoul 136-791 Korea
- Department of Nanobiomedical Science; Dankook University; Chungnam Korea
| | - Feng-Yan Shen
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| | - Seung Won Lee
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| | - Tuck-Wah Soong
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore Bik MD9; Singapore Singapore
| | - Hee-Chul Han
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| | - Christopher S. Colwell
- Department of Psychiatry & Biobehavioral Sciences; University of California-Los Angeles; Los Angeles CA USA
| | - C. Justin Lee
- Center for Neural Science and Center for Functional Connectomics; Korea Institute of Science and Technology; Seoul 136-791 Korea
| | - Yang In Kim
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| |
Collapse
|
5
|
Burban A, Faucard R, Armand V, Bayard C, Vorobjev V, Arrang JM. Histamine Potentiates N-Methyl-d-aspartate Receptors by Interacting with an Allosteric Site Distinct from the Polyamine Binding Site. J Pharmacol Exp Ther 2009; 332:912-21. [DOI: 10.1124/jpet.109.158543] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Biello SM. Circadian clock resetting in the mouse changes with age. AGE (DORDRECHT, NETHERLANDS) 2009; 31:293-303. [PMID: 19557547 PMCID: PMC2813053 DOI: 10.1007/s11357-009-9102-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 06/08/2009] [Indexed: 05/28/2023]
Abstract
The most widely recognised consequence of normal age-related changes in biological timing is the sleep disruption that appears in old age and diminishes the quality of life. These sleep disorders are part of the normal ageing process and consist primarily of increased amounts of wakefulness and reduced amounts of deep sleep. Changes in the amplitude and timing of the sleep-wake cycle appear to represent, at least in part, a loss of effective circadian regulation of sleep. Understanding alterations in the characteristics of stimuli that help to consolidate internal rhythms will lead to recommendations to improve synchronisation in old age. Converging evidence from both human and animal studies indicate that senescence is associated with alterations in the neural structure thought to be primarily responsible for the generation of the circadian oscillation, the suprachiasmatic nuclei (SCN). Work has shown that there are changes in the anatomy, physiology and ability of the clock to reset in response to stimuli with age. Therefore it is possible that at least some of the observed age-related changes in sleep and circadian timing could be mediated at the level of the SCN. The SCN contain a circadian clock whose activity can be recorded in vitro for several days. We have tested the response of the circadian clock to a number of neurochemicals that reset the clock in a manner similar to light, including glutamate, N-methyl-D-aspartate (NMDA), gastrin-releasing peptide (GRP) and histamine (HA). In addition, we have also tested agents which phase shift in a pattern similar to behavioural 'non-photic' signals, including neuropeptide Y (NPY), serotonin (5HT) and gamma-aminobutyric acid (GABA). These were tested on the circadian clock in young and older mice (approximately 4 and 15 months old). We found deficits in the response to specific neurochemicals but not to others in our older mice. These results indicate that some changes seen in the responsiveness of the circadian clock to light with age may be mediated at the level of the SCN. Further, the responsiveness of the circadian clock with age is attenuated to some, but not all stimuli. This suggests that not all clock stimuli lose their effectiveness with age, and that it may be possible to compensate for deficits in clock performance by enhancing the strength of those stimulus pathways which are intact.
Collapse
|
7
|
Functional neuroanatomy of sleep and circadian rhythms. ACTA ACUST UNITED AC 2009; 61:281-306. [PMID: 19695288 DOI: 10.1016/j.brainresrev.2009.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/02/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022]
Abstract
The daily sleep-wake cycle is perhaps the most dramatic overt manifestation of the circadian timing system, and this is especially true for the monophasic sleep-wake cycle of humans. Considerable recent progress has been made in elucidating the neurobiological mechanisms underlying sleep and arousal, and more generally, of circadian rhythmicity in behavioral and physiological systems. This paper broadly reviews these mechanisms from a functional neuroanatomical and neurochemical perspective, highlighting both historical and recent advances. In particular, I focus on the neural pathways underlying reciprocal interactions between the sleep-regulatory and circadian timing systems, and the functional implications of these interactions. While these two regulatory systems have often been considered in isolation, sleep-wake and circadian regulation are closely intertwined processes controlled by extensively integrated neurobiological mechanisms.
Collapse
|
8
|
García-Faroldi G, Sánchez-Jiménez F, Fajardo I. The polyamine and histamine metabolic interplay in cancer and chronic inflammation. Curr Opin Clin Nutr Metab Care 2009; 12:59-65. [PMID: 19057189 DOI: 10.1097/mco.0b013e328314b9ac] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW To provide an update on the major research contributing to deciphering the metabolic interplay of polyamines/histamine and its impact in cancer and chronic inflammation. RECENT FINDINGS The most recent and relevant findings that might reflect a link between the polyamines/histamine metabolic interplay and the development of cancer and chronic inflammation-related diseases include: the observation that histamine catabolism is downregulated in the colonic mucosa of patients with colonic adenoma; the finding that some polyamine and histamine-related metabolites are different between a breast cancer cell line and a reference mammary epithelial cell line; and the demonstration of the critical role that mast cells (a cell type in which the polyamine/histamine metabolic interplay has been confirmed) play in the development of pancreatic tumors. There is still, however, a lack of specific studies elucidating the exact contribution of the polyamine/histamine metabolic interplay in these clinical settings. SUMMARY In mammalian cells, a polyamine/histamine metabolic interplay has been extensively proven; however, its ultimate effect on human health largely depends on the cell type and environment. Information on this topic is currently fragmented in the literature. In order to develop efficient intervention strategies, it will be necessary to establish an integrated and holistic view of the role of the polyamine/histamine metabolic interplay in each pathological state.
Collapse
Affiliation(s)
- Gianni García-Faroldi
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, and CIBER de Enfermedades Raras, Campus de Teatinos s/n, Málaga, Spain
| | | | | |
Collapse
|
9
|
Abstract
Histamine is a transmitter in the nervous system and a signaling molecule in the gut, the skin, and the immune system. Histaminergic neurons in mammalian brain are located exclusively in the tuberomamillary nucleus of the posterior hypothalamus and send their axons all over the central nervous system. Active solely during waking, they maintain wakefulness and attention. Three of the four known histamine receptors and binding to glutamate NMDA receptors serve multiple functions in the brain, particularly control of excitability and plasticity. H1 and H2 receptor-mediated actions are mostly excitatory; H3 receptors act as inhibitory auto- and heteroreceptors. Mutual interactions with other transmitter systems form a network that links basic homeostatic and higher brain functions, including sleep-wake regulation, circadian and feeding rhythms, immunity, learning, and memory in health and disease.
Collapse
Affiliation(s)
- Helmut L Haas
- Institute of Neurophysiology, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | |
Collapse
|
10
|
Michelsen KA, Lozada A, Kaslin J, Karlstedt K, Kukko-Lukjanov TK, Holopainen I, Ohtsu H, Panula P. Histamine-immunoreactive neurons in the mouse and rat suprachiasmatic nucleus. Eur J Neurosci 2005; 22:1997-2004. [PMID: 16262638 DOI: 10.1111/j.1460-9568.2005.04387.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among the well-established roles of the neurotransmitter histamine (HA) is that as a regulator of the sleep-wake cycle, which early gained HA a reputation as a 'waking substance'. The tuberomammillary nucleus (TMN) of the posterior hypothalamus, which contains the sole source of neuronal HA in the brain, is reciprocally connected to the suprachiasmatic nucleus (SCN) which, in turn, is best known as the pacemaker of circadian rhythms in mammals. We report HA-immunoreactive (-ir) neurons in the mouse and rat SCN that neither display immunoreactivity (-iry) for the HA-synthesizing enzyme histidine decarboxylase (HDC) nor contain HDC mRNA. Further, HA-iry was absent in the SCN of HDC knockout mice, but present in appropriate control animals, indicating that the observed HA-iry is HDC dependent. Experiments with hypothalamic slice cultures and i.c.v. injection of HA suggest that HA in the SCN neurons originates in the TMN and is transported from the TMN along histaminergic fibres known to innervate the SCN. These results could indicate the existence of a hitherto unknown uptake mechanism for HA into neurons. Through HA uptake and, putatively, re-release of the captured HA, these neurons could participate in the HA-mediated effects on the circadian system in concert with direct histaminergic inputs from the TMN to the SCN. The innervation of the SCN by several neurotransmitter systems could provide a way for other systems to affect the HA-containing neuronal cell bodies in the SCN.
Collapse
Affiliation(s)
- Kimmo A Michelsen
- Department of Biology, Abo Akademi University, Tykistökatu 6 A, FIN-20520, Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Medina MA, Urdiales JL, Rodríguez-Caso C, Ramírez FJ, Sánchez-Jiménez F. Biogenic amines and polyamines: similar biochemistry for different physiological missions and biomedical applications. Crit Rev Biochem Mol Biol 2003; 38:23-59. [PMID: 12641342 DOI: 10.1080/713609209] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Biogenic amines are organic polycations derived from aromatic or cationic amino acids. All of them have one or more positive charges and a hydrophobic skeleton. Nature has evolved these molecules to play different physiological roles in mammals, but maintains similar patterns for their metabolic and intracellular handling. As deduced from this review, many questions still remain to be solved around their biochemistry and molecular biology, blocking our aims to control the relevant pathologies in which they are involved (cancer and immunological, neurological, and gastrointestinal diseases). Advances in this knowledge are dispersed among groups working on different biomedical areas. In these pages, we put together the most relevant information to remark how fruitful it can be to learn from Nature and to take advantage of the biochemical similarities (key protein structures and their regulation data on metabolic interplays and binding properties) to generate new hypothesis and develop different biomedical strategies based on biochemistry and molecular biology of these compounds.
Collapse
|
12
|
Meijer JH, Schwartz WJ. In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythms 2003; 18:235-49. [PMID: 12828281 DOI: 10.1177/0748730403018003006] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Within the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is a circadian pacemaker that functions as a clock. Its endogenous period is adjusted to the external 24-h light-dark cycle, primarily by light-induced phase shifts that reset the pacemaker's oscillation. Evidence using a wide variety of neurobiological and molecular genetic tools has elucidated key elements that comprise the visual input pathway for SCN photoentrainment in rodents. Important questions remain regarding the intracellular signals that reset the autoregulatory molecular loop within photoresponsive cells in the SCN's retino-recipient subdivision, as well as the intercellular coupling mechanisms that enable SCN tissue to generate phase shifts of overt behavioral and physiological circadian rhythms such as locomotion and SCN neuronal firing rate. Multiple neurotransmitters, protein kinases, and photoinducible genes add to system complexity, and we still do not fully understand how dawn and dusk light pulses ultimately produce bidirectional, advancing and delaying phase shifts for pacemaker entrainment.
Collapse
Affiliation(s)
- Johanna H Meijer
- Department of Physiology, Leiden University Medical Centre, 2300 RC Leiden, the Netherlands
| | | |
Collapse
|
13
|
Abstract
Histamine-releasing neurons are located exclusively in the TM of the hypothalamus, from where they project to practically all brain regions, with ventral areas (hypothalamus, basal forebrain, amygdala) receiving a particularly strong innervation. The intrinsic electrophysiological properties of TM neurons (slow spontaneous firing, broad action potentials, deep after hyperpolarisations, etc.) are extremely similar to other aminergic neurons. Their firing rate varies across the sleep-wake cycle, being highest during waking and lowest during rapid-eye movement sleep. In contrast to other aminergic neurons somatodendritic autoreceptors (H3) do not activate an inwardly rectifying potassium channel but instead control firing by inhibiting voltage-dependent calcium channels. Histamine release is enhanced under extreme conditions such as dehydration or hypoglycemia or by a variety of stressors. Histamine activates four types of receptors. H1 receptors are mainly postsynaptically located and are coupled positively to phospholipase C. High densities are found especially in the hypothalamus and other limbic regions. Activation of these receptors causes large depolarisations via blockade of a leak potassium conductance, activation of a non-specific cation channel or activation of a sodium-calcium exchanger. H2 receptors are also mainly postsynaptically located and are coupled positively to adenylyl cyclase. High densities are found in hippocampus, amygdala and basal ganglia. Activation of these receptors also leads to mainly excitatory effects through blockade of calcium-dependent potassium channels and modulation of the hyperpolarisation-activated cation channel. H3 receptors are exclusively presynaptically located and are negatively coupled to adenylyl cyclase. High densities are found in the basal ganglia. These receptors mediated presynaptic inhibition of histamine release and the release of other neurotransmitters, most likely via inhibition of presynaptic calcium channels. Finally, histamine modulates the glutamate NMDA receptor via an action at the polyamine binding site. The central histamine system is involved in many central nervous system functions: arousal; anxiety; activation of the sympathetic nervous system; the stress-related release of hormones from the pituitary and of central aminergic neurotransmitters; antinociception; water retention and suppression of eating. A role for the neuronal histamine system as a danger response system is proposed.
Collapse
Affiliation(s)
- R E Brown
- Institut für Neurophysiologie, Heinrich-Heine-Universität, D-40001, Düsseldorf, Germany.
| | | | | |
Collapse
|
14
|
Khan AM, Stanley BG, Bozzetti L, Chin C, Stivers C, Curr�s-Collazo MC. N-methyl-D-aspartate receptor subunit NR2B is widely expressed throughout the rat diencephalon: An immunohistochemical study. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001218)428:3<428::aid-cne4>3.0.co;2-b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. J Neurosci 1999. [PMID: 10366645 DOI: 10.1523/jneurosci.19-12-05124.1999] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although there is substantial evidence that glutamate mimics the effects of light on the mammalian circadian clock in vitro, it has been reported that microinjection of glutamate into the suprachiasmatic nucleus of the hypothalamus (SCN) region in vivo does not result in a pattern of phase shifts that mimic those caused by light pulses. The present study was designed to test the hypothesis that microinjection of NMDA into the SCN would induce light-like phase shifts of the circadian clock through activation of the NMDA receptor. Hamsters housed in constant darkness received microinjections of NMDA through guide cannulas aimed at the SCN region at various times throughout the circadian cycle. Wheel running was monitored as a measure of circadian phase. Microinjection of NMDA resulted in circadian phase shifts, the size and direction of which were dependent on the time of injection. The resulting phase-response curve closely resembled that of light. The circadian response showed a clear dose-dependence at circadian time (CT) 13.5 but not at CT19. Both phase delays and advances induced by NMDA were blocked by coinjection of the NMDA antagonist 2-amino-5-phosphopentanoic acid but were slightly attenuated by the non-NMDA antagonist 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione disodium. The ability of NMDA to induce phase shifts was not altered by coinjection with tetrodotoxin. These data are consistent with the hypothesis that activation of NMDA receptors is a critical step in the transmission of photic information to the SCN.
Collapse
|
16
|
Chapter 5. Pharmacological Interventions in the Sleep Process. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1999. [DOI: 10.1016/s0065-7743(08)60567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|