1
|
Al-Griw MA, Alghazeer R, Ratemi HW, Ben-Othman ME, Tabagah R, Shamlan G, Habibullah MM, Alnajeebi AM, Babteen NA, Eskandrani AA, Al-Farga A, Alansari WS. Blockade of L-Type Ca 2+ Channel Activity Alleviates Oligodendrocyte Pathology following Brain Injury in Male Rats. Curr Issues Mol Biol 2023; 45:3953-3964. [PMID: 37232721 DOI: 10.3390/cimb45050252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/27/2023] Open
Abstract
A growing body of studies suggests that Ca2+ signaling controls a variety of biological processes in brain elements. Activation of L-type voltage-operated Ca2+ channels (VOCCs) plays a role in the development of oligodendrocyte (OL) lineage loss, and indicates that the blocking of these channels may be an effective way to inhibit OL lineage cell loss. For this study, 10.5-day-old male Sprague-Dawley rats were used to generate cerebellar tissue slices. The slice tissues were cultured and randomly allocated to one of four groups (six each) and treated as follows: Group I, (sham control); Group II, 0.1% dimethyl sulfoxide (DMSO) only (vehicle control); Group III, injury (INJ); Group IV, (INJ and treatment with NIF). The injury was simulated by exposing the slice tissues to 20 min of oxygen-glucose deprivation (OGD). At 3 days post-treatment, the survival, apoptosis, and proliferation of the OL lineages were measured and compared. Results: In the INJ group, there was a decrease in mature myelin basic protein+ OLs (MBP+ OLs) and their precursors, NG2+ OPCs (Nerve-glia antigen 2+ oligodendrocyte precursor cell), compared with controls. A significant elevation was observed in the NG2+ OPCs and apoptotic MBP+ OLs as confirmed by a TUNEL assay. However, the cell proliferation rate was decreased in NG2+ OPCs. NIF increased OL survival as measured by apoptosis rate in both OL lineages and preserved the rate of proliferation in the NG2+ OPCs. Conclusions: Activation of L-type VOCCs may contribute to OL pathology in association with reduced mitosis of OPCs following brain injury as a strategy to treat demyelinating diseases.
Collapse
Affiliation(s)
- Mohamed A Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli 13203, Libya
| | - Rabia Alghazeer
- Department of Chemistry, Faculty of Science, University of Tripoli, Tripoli 50676, Libya
| | - Haithm W Ratemi
- Department of Genetic Engineering, Biotechnology Research Center (BTRC), Tripoli 30313, Libya
| | - Mohamed E Ben-Othman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli 13662, Libya
| | - Refaat Tabagah
- Division Developmental Biology, Zoology Department, Faculty of Sciences, University of Tripoli, Tripoli 13662, Libya
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Mahmmoud M Habibullah
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Afnan M Alnajeebi
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Nouf A Babteen
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Areej A Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ammar Al-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| |
Collapse
|
2
|
Abiramalatha T, Ramaswamy VV, Ponnala AK, Kallem VR, Murkunde YV, Punnoose AM, Vivekanandhan A, Pullattayil AK, Amboiram P. Emerging neuroprotective interventions in periventricular leukomalacia: A systematic review of preclinical studies. Expert Opin Investig Drugs 2022; 31:305-330. [PMID: 35143732 DOI: 10.1080/13543784.2022.2040479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Periventricular leukomalacia (PVL) is a result of various antenatal, intrapartum, or postnatal insults to the developing brain and is an important harbinger of cerebral palsy in preterm neonates. There is no proven therapy for PVL. This calls for appraisal of targeted therapies that have been investigated in animal models to evaluate their relevance in clinical research context. AREAS COVERED This systematic review identifies interventions that were evaluated in preclinical studies for neuroprotective efficacy against PVL. We identified 142 studies evaluating various interventions in PVL animal models. (Search method is detailed in section 2). EXPERT OPINION Interventions that have yielded significant results in preclinical research, and that have been evaluated in a limited number of clinical trials include stem cells, erythropoietin, and melatonin. Many other therapeutic modalities evaluated in preclinical studies have been identified, but more data on their neuroprotective potential in PVL must be garnered before they can be considered for clinical trials. Because most of the tested interventions had only a partial efficacy, a combination of interventions that could be synergistic should be investigated in future preclinical studies. Furthermore, since the nature and pattern of perinatal insults to preterm brain predisposing it to PVL are substantially variable, individualised approaches for the choice of appropriate neuroprotective interventions tailored to different sub-groups of preterm neonates should be explored.
Collapse
Affiliation(s)
- Thangaraj Abiramalatha
- Consultant Neonatologist, Kovai Medical Center and Hospital (KMCH).,Department of Pediatrics and Neonatology, KMCH Institute of Health Sciences and Research, Coimbatore, India
| | | | - Andelsivj Kumar Ponnala
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Yogeshkumar V Murkunde
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Alan Mathew Punnoose
- Department of Stem Cell Research and Regenerative Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | | | - Prakash Amboiram
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
3
|
Al-Griw MA, Salter MG, Wood IC. Inhibition of ionotropic GluR signaling preserves oligodendrocyte lineage and myelination in an ex vivo rat model of white matter ischemic injury. Acta Neurobiol Exp (Wars) 2021; 81:233-248. [PMID: 34672294 DOI: 10.21307/ane-2021-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Preterm infants have a high risk of neonatal white matter injury (WMI). WMI leads to reduced myelination, inflammation, and clinical neurodevelopmental deficits for which there are no effective treatments. Ionotropic glutamate receptor (iGluR) induced excitotoxicity contributes to oligodendrocyte (OL) lineage cell loss and demyelination in brain models of neonatal and adult WMI. Here, we hypothesized that simulated ischemia (oxygen‑glucose deprivation) damages white matter via activation of iGluR signaling, and that iGluR inhibition shortly after WMI could mitigate OL loss, enhance myelination, and suppress inflammation in an ex vivo cerebellar slice model of developing WMI. Inhibition of iGluR signaling by a combined block of AMPA and NMDA receptors, shortly after simulated ischemia, restored myelination, reduced apoptotic OLs, and enhanced OL precursor cell proliferation and maturation as well as upregulated expression of transcription factors regulating OL development and remyelination. Our findings demonstrate that iGluR inhibition post‑injury alleviates OL lineage cell loss and inflammation and promotes myelination upon developing WMI. The findings may help to develop therapeutic interventions for the WMI treatment.
Collapse
Affiliation(s)
- Mohamed A Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya;
| | | | - Ian C Wood
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Zhou J, Butler EE, Rose J. Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment. Front Hum Neurosci 2017; 11:103. [PMID: 28367118 PMCID: PMC5355477 DOI: 10.3389/fnhum.2017.00103] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/20/2017] [Indexed: 01/17/2023] Open
Abstract
Cerebral palsy (CP) is the most common movement disorder in children. A diagnosis of CP is often made based on abnormal muscle tone or posture, a delay in reaching motor milestones, or the presence of gait abnormalities in young children. Neuroimaging of high-risk neonates and of children diagnosed with CP have identified patterns of neurologic injury associated with CP, however, the neural underpinnings of common gait abnormalities remain largely uncharacterized. Here, we review the nature of the brain injury in CP, as well as the neuromuscular deficits and subsequent gait abnormalities common among children with CP. We first discuss brain injury in terms of mechanism, pattern, and time of injury during the prenatal, perinatal, or postnatal period in preterm and term-born children. Second, we outline neuromuscular deficits of CP with a focus on spastic CP, characterized by muscle weakness, shortened muscle-tendon unit, spasticity, and impaired selective motor control, on both a microscopic and functional level. Third, we examine the influence of neuromuscular deficits on gait abnormalities in CP, while considering emerging information on neural correlates of gait abnormalities and the implications for strategic treatment. This review of the neural basis of gait abnormalities in CP discusses what is known about links between the location and extent of brain injury and the type and severity of CP, in relation to the associated neuromuscular deficits, and subsequent gait abnormalities. Targeted treatment opportunities are identified that may improve functional outcomes for children with CP. By providing this context on the neural basis of gait abnormalities in CP, we hope to highlight areas of further research that can reduce the long-term, debilitating effects of CP.
Collapse
Affiliation(s)
- Joanne Zhou
- Department of Orthopaedic Surgery, Stanford UniversityStanford, CA, USA; Motion and Gait Analysis Lab, Lucile Packard Children's HospitalPalo Alto, CA, USA
| | - Erin E Butler
- Thayer School of Engineering, Dartmouth CollegeHanover, NH, USA; Neukom Institute for Computational Sciences, Dartmouth CollegeHanover, NH, USA
| | - Jessica Rose
- Department of Orthopaedic Surgery, Stanford UniversityStanford, CA, USA; Motion and Gait Analysis Lab, Lucile Packard Children's HospitalPalo Alto, CA, USA
| |
Collapse
|
5
|
Rajatileka S, Odd D, Robinson MT, Spittle AC, Dwomoh L, Williams M, Harding D, Wagstaff M, Owen M, Crosby C, Ching J, Molnár E, Luyt K, Váradi A. Variants of the EAAT2 Glutamate Transporter Gene Promoter Are Associated with Cerebral Palsy in Preterm Infants. Mol Neurobiol 2017; 55:2013-2024. [PMID: 28271401 PMCID: PMC5840247 DOI: 10.1007/s12035-017-0462-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/16/2017] [Indexed: 11/26/2022]
Abstract
Preterm delivery is associated with neurodevelopmental impairment caused by environmental and genetic factors. Dysfunction of the excitatory amino acid transporter 2 (EAAT2) and the resultant impaired glutamate uptake can lead to neurological disorders. In this study, we investigated the role of single nucleotide polymorphisms (SNPs; g.-200C>A and g.-181A>C) in the EAAT2 promoter in susceptibility to brain injury and neurodisability in very preterm infants born at or before 32-week gestation. DNA isolated from newborns’ dried blood spots were used for pyrosequencing to detect both SNPs. Association between EAAT2 genotypes and cerebral palsy, cystic periventricular leukomalacia and a low developmental score was then assessed. The two SNPs were concordant in 89.4% of infants resulting in three common genotypes all carrying two C and two A alleles in different combinations. However, in 10.6% of cases, non-concordance was found, generating six additional rare genotypes. The A alleles at both loci appeared to be detrimental and consequently, the risk of developing cerebral palsy increased four- and sixfold for each additional detrimental allele at -200 and -181 bp, respectively. The two SNPs altered the regulation of the EAAT2 promoter activity and glutamate homeostasis. This study highlights the significance of glutamate in the pathogenesis of preterm brain injury and subsequent development of cerebral palsy and neurodevelopmental disabilities. Furthermore, the described EAAT2 SNPs may be an early biomarker of vulnerability to neurodisability and may aid the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Shavanthi Rajatileka
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - David Odd
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
- Neonatal Intensive Care Unit, Southmead Hospital, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - Matthew T Robinson
- College of Life & Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Alexandra C Spittle
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Louis Dwomoh
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Maggie Williams
- Bristol Genetics Laboratory, Pathology Sciences, Blood Sciences and Bristol Genetics, Southmead Hospital, Bristol, BS10 5NB, UK
| | - David Harding
- Regional Neonatal Intensive Care Unit, St Michael's Hospital, University Hospital NHS Trust, Bristol, BS2 8EG, UK
| | - Miles Wagstaff
- Neonatal Intensive Care Unit, Gloucestershire Royal Hospital, Gloucestershire NHS Trust, Gloucester, GL1 3NN, UK
| | - Marie Owen
- Neonatal Intensive Care Unit, Gloucestershire Royal Hospital, Gloucestershire NHS Trust, Gloucester, GL1 3NN, UK
| | - Charlene Crosby
- Bristol Genetics Laboratory, Pathology Sciences, Blood Sciences and Bristol Genetics, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Jared Ching
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
| | - Elek Molnár
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Karen Luyt
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
- Regional Neonatal Intensive Care Unit, St Michael's Hospital, University Hospital NHS Trust, Bristol, BS2 8EG, UK
| | - Anikó Váradi
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| |
Collapse
|
6
|
AMPA-Kainate Receptor Inhibition Promotes Neurologic Recovery in Premature Rabbits with Intraventricular Hemorrhage. J Neurosci 2016; 36:3363-77. [PMID: 26985043 DOI: 10.1523/jneurosci.4329-15.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Intraventricular hemorrhage (IVH) in preterm infants leads to cerebral inflammation, reduced myelination of the white matter, and neurological deficits. No therapeutic strategy exists against the IVH-induced white matter injury. AMPA-kainate receptor induced excitotoxicity contributes to oligodendrocyte precursor cell (OPC) damage and hypomyelination in both neonatal and adult models of brain injury. Here, we hypothesized that IVH damages white matter via AMPA receptor activation, and that AMPA-kainate receptor inhibition suppresses inflammation and restores OPC maturation, myelination, and neurologic recovery in preterm newborns with IVH. We tested these hypotheses in a rabbit model of glycerol-induced IVH and evaluated the expression of AMPA receptors in autopsy samples from human preterm infants. GluR1-GluR4 expressions were comparable between preterm humans and rabbits with and without IVH. However, GluR1 and GluR2 levels were significantly lower in the embryonic white matter and germinal matrix relative to the neocortex in both infants with and without IVH. Pharmacological blockade of AMPA-kainate receptors with systemic NBQX, or selective AMPA receptor inhibition by intramuscular perampanel restored myelination and neurologic recovery in rabbits with IVH. NBQX administration also reduced the population of apoptotic OPCs, levels of several cytokines (TNFα, IL-β, IL-6, LIF), and the density of Iba1(+) microglia in pups with IVH. Additionally, NBQX treatment inhibited STAT-3 phosphorylation, but not astrogliosis or transcription factors regulating gliosis. Our data suggest that AMPA-kainate receptor inhibition alleviates OPC loss and IVH-induced inflammation and restores myelination and neurologic recovery in preterm rabbits with IVH. Therapeutic use of FDA-approved perampanel treatment might enhance neurologic outcome in premature infants with IVH. SIGNIFICANCE STATEMENT Intraventricular hemorrhage (IVH) is a major complication of prematurity and a large number of survivors with IVH develop cerebral palsy and cognitive deficits. The development of IVH leads to inflammation of the periventricular white matter, apoptosis and arrested maturation of oligodendrocyte precursor cells, and hypomyelination. Here, we show that AMPA-kainate receptor inhibition by NBQX suppresses inflammation, attenuates apoptosis of oligodendrocyte precursor cells, and promotes myelination as well as clinical recovery in preterm rabbits with IVH. Importantly, AMPA-specific inhibition by the FDA-approved perampanel, which unlike NBQX has a low side-effect profile, also enhances myelination and neurological recovery in rabbits with IVH. Hence, the present study highlights the role of AMPA-kainate receptor in IVH-induced white matter injury and identifies a novel strategy of neuroprotection, which might improve the neurological outcome for premature infants with IVH.
Collapse
|
7
|
Lechpammer M, Wintermark P, Merry KM, Jackson MC, Jantzie LL, Jensen FE. Dysregulation of FMRP/mTOR Signaling Cascade in Hypoxic-Ischemic Injury of Premature Human Brain. J Child Neurol 2016; 31:426-32. [PMID: 26239490 PMCID: PMC4740274 DOI: 10.1177/0883073815596617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 06/26/2015] [Indexed: 12/25/2022]
Abstract
In this study the authors investigated whether dysregulation of the fragile X mental retardation protein and mammalian target of rapamycin signaling cascade can have a role in the pathogenesis of encephalopathy of prematurity following perinatal hypoxia-ischemia. The authors examined the brain tissue of newborns with encephalopathy and compared it to age-matched controls with normal brain development and adults. In normal controls, the fragile X mental retardation protein expression in cortical gray matter spiked 4-fold during 36-39 gestational weeks compared to the adult, with a concomitant suppression of p70S6K and S6. In encephalopathy cases, the developmental spike of fragile X mental retardation protein was not observed, and fragile X mental retardation protein levels remained significantly lower than in normal controls. Importantly, this fragile X mental retardation protein downregulation was followed by a significant overexpression of p70S6K and S6. These novel findings thus suggest that premature hypoxic-ischemic brain injury can affect the fragile X mental retardation protein/mammalian target of rapamycin pathway, as otherwise observed in inherited syndromes of cognitive disability and autism spectrum disorders.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA Department of Pathology, Division of Neuropathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pia Wintermark
- Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montréal, QC, Canada
| | - Katherine M Merry
- Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michele C Jackson
- Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren L Jantzie
- Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA Department of Pediatrics, Office of Pediatric Research, University of New Mexico, Albuquerque, NM, USA
| | - Frances E Jensen
- Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Jensen FE. Developmental factors in the pathogenesis of neonatal seizures. JOURNAL OF PEDIATRIC NEUROLOGY 2015; 7:5-12. [PMID: 20191097 DOI: 10.3233/jpn-2009-0270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neonatal seizures are inherently different from seizures in the child and the adult. The phenotype, often exhibiting electroclinical dissociation, is unique: neonatal seizures can be refractory to antiepileptic drugs otherwise effect for older patients. Recent experimental and human-based research reveals that the mechanism of neonatal seizures, as well as their long-term sequelae on later brain development, appears to involve a large number of age-specific factors. These observations help explain the resistance of neonatal seizures to conventional therapy as well as identify potential areas of risk for later neurocognitive development. Emerging targets from this research may suggest new therapies for this unique population of patients.
Collapse
Affiliation(s)
- Frances E Jensen
- Department of Neurology, Children's Hospital, and Program in Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Weaver-Mikaere L, Gunn AJ, Mitchell MD, Bennet L, Fraser M. LPS and TNF alpha modulate AMPA/NMDA receptor subunit expression and induce PGE2 and glutamate release in preterm fetal ovine mixed glial cultures. J Neuroinflammation 2013; 10:153. [PMID: 24344780 PMCID: PMC3878505 DOI: 10.1186/1742-2094-10-153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/02/2013] [Indexed: 02/03/2023] Open
Abstract
Background White matter injury (WMI) is the major antecedent of cerebral palsy in premature infants, and is often associated with maternal infection and the fetal inflammatory response. The current study explores the therapeutic potential of glutamate receptor blockade or cyclooxygenase-2 (COX-2) inhibition for inflammatory WMI. Methods Using fetal ovine derived mixed glia cultures exposed to tumour necrosis factor-α (TNF-α) or lipopolysaccharide (LPS), the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) and N-methyl D-aspartate (NMDA) glutamate receptors and their contribution to inflammation mediated pre-oligodendrocyte (OL) death was evaluated. The functional significance of TNF-α and COX-2 signalling in glutamate release in association with TNF-α and LPS exposure was also assessed. Results AMPA and NMDA receptors were expressed in primary mixed glial cultures on developing OLs, the main cell-type present in fetal white matter at a period of high risk for WMI. We show that glutamate receptor expression and configuration are regulated by TNF-α and LPS exposure, but AMPA and NMDA blockade, either alone or in combination, did not reduce pre-OL death. Furthermore, we demonstrate that glutamate and prostaglandin E2 (PGE2) release following TNF-α or LPS are mediated by a TNF-α-COX-2 dependent mechanism. Conclusions Overall, these findings suggest that glial-localised glutamate receptors likely play a limited role in OL demise associated with chronic inflammation, but supports the COX-2 pathway as a potential therapeutic target for infection/inflammatory-mediated WMI.
Collapse
Affiliation(s)
| | | | | | | | - Mhoyra Fraser
- The Liggins Institute, The University of Auckland, 85 Park Rd, Grafton, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
10
|
Jantzie LL, Talos DM, Jackson MC, Park HK, Graham DA, Lechpammer M, Folkerth RD, Volpe JJ, Jensen FE. Developmental expression of N-methyl-D-aspartate (NMDA) receptor subunits in human white and gray matter: potential mechanism of increased vulnerability in the immature brain. ACTA ACUST UNITED AC 2013; 25:482-95. [PMID: 24046081 DOI: 10.1093/cercor/bht246] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The pathophysiology of perinatal brain injury is multifactorial and involves hypoxia-ischemia (HI) and inflammation. N-methyl-d-aspartate receptors (NMDAR) are present on neurons and glia in immature rodents, and NMDAR antagonists are protective in HI models. To enhance clinical translation of rodent data, we examined protein expression of 6 NMDAR subunits in postmortem human brains without injury from 20 postconceptional weeks through adulthood and in cases of periventricular leukomalacia (PVL). We hypothesized that the developing brain is intrinsically vulnerable to excitotoxicity via maturation-specific NMDAR levels and subunit composition. In normal white matter, NR1 and NR2B levels were highest in the preterm period compared with adult. In gray matter, NR2A and NR3A expression were highest near term. NR2A was significantly elevated in PVL white matter, with reduced NR1 and NR3A in gray matter compared with uninjured controls. These data suggest increased NMDAR-mediated vulnerability during early brain development due to an overall upregulation of individual receptors subunits, in particular, the presence of highly calcium permeable NR2B-containing and magnesium-insensitive NR3A NMDARs. These data improve understanding of molecular diversity and heterogeneity of NMDAR subunit expression in human brain development and supports an intrinsic prenatal vulnerability to glutamate-mediated injury; validating NMDAR subunit-specific targeted therapies for PVL.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA
| | - Delia M Talos
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA Current address: Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele C Jackson
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA
| | - Hyun-Kyung Park
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA
| | - Dionne A Graham
- Harvard Medical School, Boston, MA 02115, USA Clinical Research Center
| | - Mirna Lechpammer
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA Department of Pathology (Neuropathology), Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebecca D Folkerth
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA Department of Pathology (Neuropathology), Boston Children's Hospital, Boston, MA 02115, USA
| | - Joseph J Volpe
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA
| | - Frances E Jensen
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA Current address: Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Sanches E, Arteni N, Scherer E, Kolling J, Nicola F, Willborn S, Wyse A, Netto C. Are the consequences of neonatal hypoxia–ischemia dependent on animals' sex and brain lateralization? Brain Res 2013; 1507:105-14. [DOI: 10.1016/j.brainres.2013.02.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 11/29/2022]
|
12
|
Sivakumar V, Foulds WS, Luu CD, Ling EA, Kaur C. Hypoxia-induced retinal ganglion cell damage through activation of AMPA receptors and the neuroprotective effects of DNQX. Exp Eye Res 2013; 109:83-97. [PMID: 23375774 DOI: 10.1016/j.exer.2013.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/04/2013] [Accepted: 01/06/2013] [Indexed: 11/19/2022]
Abstract
Hypoxia-induced glutamate accumulation in neural tissues results in damage to neurons through excitotoxic mechanisms via activation of glutamate receptors (GluRs). Here we examine whether hypoxia in the developing retina would cause activation of the ionotropic α-amino-3-hydroxy-5-methylisoxazole-4-propioate (AMPA) GluRs and increase in Ca(2+) influx into retinal ganglion cells (RGCs) that might ultimately lead to their death. Neonatal Wistar rats were subjected to hypoxia for 2h and then sacrificed at various time points after the exposure together with normal age matched control rats. Primary cultures of RGCs were also prepared and subjected to hypoxia. Expression of AMPA glutamate receptor (GluR) 1-4 was examined in the retina. Additionally, expression of GluRs, intracellular Ca(2+) influx, reactive oxygen species (ROS) generation and cell death were investigated in cultured RGCs. GluR1-4 mRNA and protein expression showed a significant increase (P < 0.01) over control values after the hypoxic exposure both in vivo and in vitro. Cells expressing GluR1-4 in the retina were identified as RGCs by double immunofluorescence labeling with Thy1.1. Increased intracellular Ca(2+) in cultured RGCs following hypoxic exposure was reduced (P < 0.01) by 10 μM AMPA antagonist 6, 7-dinitroquinoxaline-2,3-dione (DNQX). Our results suggest that following a hypoxic insult, an increased amount of glutamate accumulates in the neonatal retina. This would then activate AMPA receptors which may damage RGCs through increased Ca(2+) accumulation and ROS generation. The involvement of AMPA receptors in damaging the RGCs is evidenced by suppression of intracellular Ca(2+) influx by DNQX which also decreased ROS generation and cell death by 50%.
Collapse
Affiliation(s)
- V Sivakumar
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | |
Collapse
|
13
|
Guo K, Yang Y, Qiu J, Kan Q, Zhou XG, Zhou XY. The expression profile of microRNAs in wistar rats with lipopolysaccharide-induced periventricular leukomalacia. J Mol Neurosci 2013; 51:941-9. [PMID: 23354881 DOI: 10.1007/s12031-013-9958-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
Over the recent decades, with numbers of premature infants being cured, clinical diseases on brain damage like periventricular leukomalacia (PVL) have become much more common. Meanwhile, since the discovery of first miRNA lin-4, an increasing number of important studies about this small RNA have been performed not only in the normal organ development but also in the pathogenic mechanism of diseases. However, throughout the past several years, there have been rare miRNA researches discussing the connection between the PVL and miRNA. In view of this situation, we constructed an animal model of PVL induced by lipopolysaccharide (LPS) and performed a miRNA microarray which was repeated three times to profile the expression of microRNAs (miRNAs) between two groups (PVL group versus control group). Then, miRNAs with notable fold changes (fold change >1.5) were found; some of them were further validated by real-time PCR. As a result, 104 differentially expressed miRNAs were identified using the microarray, including 64 upregulated and 40 downregulated miRNAs. Then, five miRNAs of them were selected, characterized by consistent trend in expression in all three microarrays. Among these five miRNAs (miRNA-451, miRNA-200b, miRNA-29a, miRNA-21, and miRNA-138), we subsequently selected miRNA-451 and miRNA-200b for real-time PCR because they possess the highest fold changes. Finally, the results of PCR are basically in accord with the microarray. We guess these new identified miRNAs may play an important role in the pathogenesis of PVL and may provide certain pathophysiological basis for the future research of related diseases in preterm infants.
Collapse
Affiliation(s)
- Kai Guo
- Institute of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | | | | | | | | | | |
Collapse
|
14
|
Volpe JJ. Systemic inflammation, oligodendroglial maturation, and the encephalopathy of prematurity. Ann Neurol 2012; 70:525-9. [PMID: 22028217 DOI: 10.1002/ana.22533] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Dean JM, Moravec MD, Grafe M, Abend N, Ren J, Gong X, Volpe JJ, Jensen FE, Hohimer AR, Back SA. Strain-specific differences in perinatal rodent oligodendrocyte lineage progression and its correlation with human. Dev Neurosci 2011; 33:251-60. [PMID: 21865655 DOI: 10.1159/000327242] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/04/2010] [Indexed: 01/28/2023] Open
Abstract
Progress in the development of rat models of human periventricular white matter injury (WMI) has been hampered by uncertainty about the developmental window in different rodent strains that coincides with cerebral white matter development in human premature infants. To define strain-specific differences in rat cerebral white matter maturation, we analyzed oligodendrocyte (OL) lineage maturation between postnatal days (P)2 and P14 in three widely studied strains of rat: Sprague-Dawley, Long-Evans and Wistar (W). We previously reported that late OL progenitors (preOL) are the major vulnerable cell type in human periventricular WMI. Strain-specific differences in preOL maturation were found at P2, such that the W rat had the highest percentage and density of preOL relative to the other strains. Overall, at P2, the state of OL maturation was similar to preterm human cerebral white matter. However, by P5, all three strains displayed a similar magnitude and extent of OL maturation that persisted with progressive myelination between P7 and P14. PreOL were the predominant OL lineage stage present in the cerebral cortex through P14, and thus OL lineage maturation occurred latter than in white matter. The hippocampus also displayed a later onset of preOL maturation in all three strains, such that OL lineage maturation and early myelination was not observed to occur until about P14. This timing of preOL maturation in rat cortical gray matter coincided with a similar timing in human cerebral cortex, where preOL also predominated until at least 8 months after full-term birth. These studies support that strain-specific differences in OL lineage immaturity were present in the early perinatal period at about P2, and they define a narrow window of preterm equivalence with human that diminishes by P5. Later developmental onset of preOL maturation in both cerebral cortex and hippocampus coincides with an extended window of potential vulnerability of the OL lineage to hypoxia-ischemia in these gray matter regions.
Collapse
Affiliation(s)
- Justin M Dean
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. Reprint of "The developing oligodendrocyte: key cellular target in brain injury in the premature infant". Int J Dev Neurosci 2011; 29:565-82. [PMID: 21802506 DOI: 10.1016/j.ijdevneu.2011.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
17
|
Holopainen IE, Laurén HB. Glutamate signaling in the pathophysiology and therapy of prenatal insults. Pharmacol Biochem Behav 2011; 100:825-34. [PMID: 21443898 DOI: 10.1016/j.pbb.2011.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/25/2011] [Accepted: 03/16/2011] [Indexed: 01/18/2023]
Abstract
Birth asphyxia and hypoxia-ischemia (HI) are important factors affecting the normal development and maturation of the central nervous system (CNS). Depending on the maturity of the brain, HI-induced damage at different ages is region-selective, the white matter (WM) peripheral to the lateral ventricles being selectively vulnerable to damage in premature infants. As a squeal of primary or secondary HI in the preterm infant, the brain injury comprises periventricular leukomalasia (PVL), accompanied by neuronal and axonal damage, which affects several brain regions. Premature delivery and improved neonatal intensive care have led to a survival rate of about 75% to 90% of infants weighting under 1500g both in Europe and in the United States. However, about 5-10% of these survivors exhibit cerebral palsy (CP), and many have cognitive, behavioral, attentional or socialization deficits. In this review, we first shortly discuss developmental changes in the expression of the excitatory glutamate receptors (GluRs), and then in more detail elucidate the contribution of GluRs to oligodendrocyte (OL) damage both in experimental models and in preterm human infants. Finally, therapeutic interventions targeted at GluRs at the young age are discussed in the light of results obtained from recent experimental HI animal models and from humans.
Collapse
Affiliation(s)
- Irma E Holopainen
- Department of Pharmacology, Drug Development and Therapeutics, and Medicity Research Laboratory, Institute of Biomedicine University of Turku, Tykistökatu 6A, 4th floor, FIN-20014 Turku, Finland.
| | | |
Collapse
|
18
|
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 2011; 29:423-40. [PMID: 21382469 DOI: 10.1016/j.ijdevneu.2011.02.012] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/10/2011] [Accepted: 02/27/2011] [Indexed: 01/16/2023] Open
Abstract
Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
19
|
Adler I, Batton D, Betz B, Bezinque S, Ecklund K, Junewick J, McCauley R, Miller C, Seibert J, Specter B, Westra S, Leviton A. Mechanisms of injury to white matter adjacent to a large intraventricular hemorrhage in the preterm brain. JOURNAL OF CLINICAL ULTRASOUND : JCU 2010; 38:254-258. [PMID: 20232402 PMCID: PMC2989674 DOI: 10.1002/jcu.20683] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The purpose of this article is to investigate the hyperechoic lesion seen adjacent to a lateral ventricle that contains blood but is not distended. The literature on ependymal barrier dysfunction was reviewed in search of mechanisms of injury to the white matter adjacent to an intraventricular hemorrhage. The clinical literature on the clinical diagnosis of periventricular hemorrhagic infarction was also reviewed to find out how frequently this diagnosis was made. Support was found for the possibility that the ventricular wall does not always function as an efficient barrier, allowing ventricular contents to gain access to the white matter where they cause damage. Hemorrhagic infarction may not be the only or the most frequent mechanism of white matter damage adjacent to a large intraventricular hemorrhage.
Collapse
Affiliation(s)
- Ira Adler
- Eastern Radiologists, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Epileptogenesis is defined as the process of developing epilepsy-a disorder characterized by recurrent seizures-following an initial insult. Seizure incidence during the human lifespan is at its highest in infancy and childhood. Animal models of epilepsy and human tissue studies suggest that epileptogenesis involves a cascade of molecular, cellular and neuronal network alterations. Within minutes to days following the initial insult, there are acute early changes in neuronal networks, which include rapid alterations to ion channel kinetics as a result of membrane depolarization, post-translational modifications to existing functional proteins, and activation of immediate early genes. Subacute changes occur over hours to weeks, and include transcriptional events, neuronal death and activation of inflammatory cascades. The chronic changes that follow over weeks to months include anatomical changes, such as neurogenesis, mossy fiber sprouting, network reorganization, and gliosis. These epileptogenic processes are developmentally regulated and might contribute to differences in epileptogenesis between adult and developing brains. Here we review the factors responsible for enhanced seizure susceptibility in the developing brain, and consider age-specific mechanisms of epileptogenesis. An understanding of these factors could yield potential therapeutic targets for the prevention of epileptogenesis and also provide biomarkers for identifying patients at risk of developing epilepsy or for monitoring disease progression.
Collapse
|
21
|
Nandhu M, Paul J, Mathew J, Peeyush Kumar T, Paulose C. GYKI-52466: A potential therapeutic agent for glutamate-mediated excitotoxic injury in Cerebral Palsy. Med Hypotheses 2010; 74:619-20. [DOI: 10.1016/j.mehy.2009.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 10/16/2009] [Accepted: 10/18/2009] [Indexed: 10/20/2022]
|
22
|
Sivakumar V, Ling EA, Lu J, Kaur C. Role of glutamate and its receptors and insulin-like growth factors in hypoxia induced periventricular white matter injury. Glia 2009; 58:507-23. [DOI: 10.1002/glia.20940] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Salmina AB, Okuneva OS, Malinovskaya NA, Zykova LD, Fursov AA, Morgun AV, Mikhutkina SV, Taranushenko TE. Changes in expression and activity of CD38 in astroglial cells after impairment of the neuron-glia relationship in the brain induced by perinatal hypoxia-ischemia. NEUROCHEM J+ 2009. [DOI: 10.1134/s181971240903009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Gerstner B, Lee J, DeSilva TM, Jensen FE, Volpe JJ, Rosenberg PA. 17beta-estradiol protects against hypoxic/ischemic white matter damage in the neonatal rat brain. J Neurosci Res 2009; 87:2078-86. [PMID: 19224575 DOI: 10.1002/jnr.22023] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Developing oligodendrocytes (pre-OLs) are highly vulnerable to hypoxic-ischemic injury and associated excitotoxicity and oxidative stress. 17beta-Estradiol plays an important role in the development and function of the CNS and is neuroprotective. The sudden drop in circulating estrogen after birth may enhance the susceptibility of developing OLs to injury. Estrogen receptor (ER)-alpha and ER-beta are both expressed in OLs. We examined the effect of 17beta-estradiol on oxygen-glucose deprivation and oxidative stress-induced cell death in rat pre-OLs in vitro and on hypoxic-ischemic brain injury in vivo. Pre-OLs in culture were subjected to oxygen-glucose deprivation (OGD) or glutathione depletion in the presence or absence of 17beta-estradiol. LDH release, the Alamar blue assay, and phase-contrast microscopy were used to assess cell viability. Hypoxic-ischemic injury was generated in 6-day-old rats (P6) by unilateral carotid ligation and hypoxia (6% O(2) for 1 hr). Rat pups received one intraperitoneal injection of 300 or 600 microg/kg 17beta-estradiol or vehicle 12 hr prior to the surgical procedure. Injury was assessed by myelin basic protein (MBP) immunocytochemistry at P10. 17beta-Estradiol produced significant protection against OGD-induced cell death in primary OLs (EC(50) = 1.3 +/- 0.46 x 10(-9) M) and against oxidative stress. Moreover, 17beta-estradiol attenuated the loss of MBP labeling in P10 pups ipsilateral to the carotid ligation. These results suggest a potential role for estrogens in attenuation of hypoxic-ischemic and oxidative injury to developing OLs and in the prevention of periventricular leukomalacia.
Collapse
Affiliation(s)
- Bettina Gerstner
- Department of Neurology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
25
|
Griesmaier E, Keller M. Neuroprotective strategies in excitotoxic brain injury: potential applications to the preterm brain. FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuronal and oligodendroglial cell death owing to increased glutamate levels plays an important role in the pathophysiology of hypoxic-, ischemic- and inflammation-mediated brain injury as well as in disorders such as epilepsy, Alzheimer’s, Parkinson’s or Huntington’s disease. In addition, excitotoxic brain injury is known to be a major contributing factor to brain injury in preterm infants. Excitotoxicity is characterized as excessive glutamatergic activation of postsynaptic receptors that consequently leads to cell injury and cell death. The major excitatory amino acid neurotransmitter is glutamate. Glutamate plays a key role in brain development, affecting progenitor cell differentiation, proliferation, migration and survival. In physiological conditions the presence of glutamate in the synapse is regulated by ATP-dependent glutamate transporters in neurons and glial cells, with astrocytes being responsible for a major part of glutamate uptake in the brain. In pathologic circumstances the function of the transporters is impaired, leading to glutamate accumulation in the synaptic cleft and in turn excessive activation of postsynaptic glutamate receptors with subsequent massive Ca2+ influx, activation of neuronal nitric oxide synthase, translocation of proapoptotic genes to the mitochondria, mitochondrial dysfunction, release of cytochrome C into the cytosol, activation of caspases and subsequent cell death. Based on the pathogenic concept of an overactivation of the excitatory pathways, glutamate receptors have been a longstanding therapeutic target for rational drug design. This article reviews the pathophysiology of excitotoxic brain injury in the example of preterm brain injury, as well as current research on therapeutic antiexcitotoxic strategies.
Collapse
Affiliation(s)
- Elke Griesmaier
- Department of Pediatrics IV, Medical University Innsbruck, Austria, Anichstr. 35, 6020 Innsbruck, Austria
| | - Matthias Keller
- Department of Pediatrics I University Hospital Essen, Hufelandstraße 55, 45147 Essen Germany
| |
Collapse
|
26
|
Verkerk AJMH, Schot R, Dumee B, Schellekens K, Swagemakers S, Bertoli-Avella AM, Lequin MH, Dudink J, Govaert P, van Zwol AL, Hirst J, Wessels MW, Catsman-Berrevoets C, Verheijen FW, de Graaff E, de Coo IFM, Kros JM, Willemsen R, Willems PJ, van der Spek PJ, Mancini GMS. Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. Am J Hum Genet 2009; 85:40-52. [PMID: 19559397 DOI: 10.1016/j.ajhg.2009.06.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 05/28/2009] [Accepted: 06/10/2009] [Indexed: 12/14/2022] Open
Abstract
Cerebral palsy due to perinatal injury to cerebral white matter is usually not caused by genetic mutations, but by ischemia and/or inflammation. Here, we describe an autosomal-recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship. The phenotype was recorded and evolution followed for over 20 years. Brain lesions were studied by diffusion tensor MR tractography. Homozygosity mapping with SNPs was performed for identification of the chromosomal locus for the disease. In the 14 Mb candidate region on chromosome 7q22, RNA expression profiling was used for selecting among the 203 genes in the area. In postmortem brain tissue available from one patient, histology and immunohistochemistry were performed. Disease course and imaging were mostly reminiscent of hypoxic-ischemic tetraplegic cerebral palsy, with neuroaxonal degeneration and white matter loss. In all five patients, a donor splice site pathogenic mutation in intron 14 of the AP4M1 gene (c.1137+1G-->T), was identified. AP4M1, encoding for the mu subunit of the adaptor protein complex-4, is involved in intracellular trafficking of glutamate receptors. Aberrant GluRdelta2 glutamate receptor localization and dendritic spine morphology were observed in the postmortem brain specimen. This disease entity, which we refer to as congenital spastic tetraplegia (CST), is therefore a genetic model for congenital cerebral palsy with evidence for neuroaxonal damage and glutamate receptor abnormality, mimicking perinatally acquired hypoxic-ischemic white matter injury.
Collapse
|
27
|
Conde-Agudelo A, Romero R. Antenatal magnesium sulfate for the prevention of cerebral palsy in preterm infants less than 34 weeks' gestation: a systematic review and metaanalysis. Am J Obstet Gynecol 2009; 200:595-609. [PMID: 19482113 PMCID: PMC3459676 DOI: 10.1016/j.ajog.2009.04.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/02/2009] [Accepted: 04/15/2009] [Indexed: 11/27/2022]
Abstract
We conducted a systematic review and metaanalysis of randomized controlled trials to determine whether magnesium sulfate administered to women at risk of preterm delivery before 34 weeks of gestation may reduce the risk of cerebral palsy in their children. Six trials involving 4796 women and 5357 infants were included. Antenatal magnesium sulfate was associated with a significant reduction in the risk of cerebral palsy (relative risk [RR], 0.69; 95% confidence interval [CI], 0.55-0.88), moderate or severe cerebral palsy (RR, 0.64; 95% CI, 0.44-0.92), and substantial gross motor dysfunction (RR, 0.60; 95% CI, 0.43-0.83). There was no overall difference in the risk of total pediatric mortality (RR, 1.01; 95% CI, 0.89-1.14). Minor side effects were more frequent among women receiving magnesium sulfate. In conclusion, magnesium sulfate administered to women at risk of delivery before 34 weeks of gestation reduces the risk of cerebral palsy.
Collapse
Affiliation(s)
- Agustín Conde-Agudelo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, MD and Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, MD and Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| |
Collapse
|
28
|
Kaur C, Ling E. Periventricular white matter damage in the hypoxic neonatal brain: Role of microglial cells. Prog Neurobiol 2009; 87:264-80. [DOI: 10.1016/j.pneurobio.2009.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 11/12/2008] [Accepted: 01/08/2009] [Indexed: 01/22/2023]
|
29
|
Kuluz J, Huang T, Watson B, Vannucci S. Stroke in the immature brain: review of pathophysiology and animal models of pediatric stroke. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pediatric stroke research presents many challenges. Relatively low incidence, need for age stratification, diverse etiologies, delays in diagnosis, lack of an established age-based stroke severity scale and outcome measures are only some of the issues that have prevented the implementation of clinical trials in infants and children with stroke. Experimental animal models of pediatric stroke, therefore, are critical to understanding the pathophysiology and management of ischemic brain damage in the immature brain, and provide the necessary platform for future clinical trials. In this review we discuss the pertinent clinical aspects of pediatric stroke, the pathophysiology of stroke in the developing brain and the animal models established to study basic mechanisms as well as translational issues in pediatric stroke.
Collapse
Affiliation(s)
- John Kuluz
- Associate Professor of Pediatrics, University of Miami, Department of Pediatrics (R-131), Miller School of Medicine, PO Box 016960, Miami, FL 33101, USA
| | - Tingting Huang
- Post-Doctoral Research Associate, University of Miami, Department of Pediatrics (R-131), Miller School of Medicine, PO Box 016960 Miami, FL 33101, USA
| | - Brant Watson
- Professor of Neurology, University of Miami, Department of Neurology (D4–5), Miller School of Medicine, PO Box 016960, Miami, FL 33136, USA
| | - Susan Vannucci
- Research Professor of Neuroscience in Pediatrics/Newborn Medicine, Weill Cornell Medical College, 525 East 68th Street, N-506, NY 10065, USA
| |
Collapse
|
30
|
Abstract
Cerebral white matter injury, characterised by loss of premyelinating oligodendrocytes (pre-OLs), is the most common form of injury to the preterm brain and is associated with a high risk of neurodevelopmental impairment. The unique cerebrovascular anatomy and physiology of the premature baby underlies the exquisite sensitivity of white matter to the abnormal milieu of preterm extrauterine life, in particular ischaemia and inflammation. These two upstream mechanisms can coexist and amplify their effects, leading to activation of two principal downstream mechanisms: excitotoxicity and free radical attack. Upstream mechanisms trigger generation of reactive oxygen and nitrogen species. The pre-OL is intrinsically vulnerable to free radical attack due to immaturity of antioxidant enzyme systems and iron accumulation. Ischaemia and inflammation trigger glutamate receptor-mediated injury leading to maturation-dependent cell death and loss of cellular processes. This review looks at recent evidence for pathogenetic mechanisms in white matter injury with emphasis on targets for prevention and treatment of injury.
Collapse
Affiliation(s)
- O Khwaja
- Department of Neurology, Children's Hospital Boston, 300 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
31
|
Lechpammer M, Manning SM, Samonte F, Nelligan J, Sabo E, Talos DM, Volpe JJ, Jensen FE. Minocycline treatment following hypoxic/ischaemic injury attenuates white matter injury in a rodent model of periventricular leucomalacia. Neuropathol Appl Neurobiol 2008; 34:379-93. [PMID: 18221261 DOI: 10.1111/j.1365-2990.2007.00925.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Periventricular white matter injury in premature infants occurs following hypoxia/ischaemia and systemic infection, and results in hypomyelination, as well as neuromotor and cognitive deficits later in life. Inflammatory infiltrates are seen within human cerebral white matter from periventricular leucomalacia (PVL) cases. METHODS In this study, we examine the time course of CD-68+ microglial cell responses relative to cell death within white matter following hypoxia/ischaemia in a rat model of PVL. We also tested the efficacy of the minocycline, an agent that suppresses microglial activation, in this model when administered as a post-insult treatment. RESULTS We show that preoligodendrocyte injury in the post-natal day 6 begins within 24 h and continues for 48-96 h after hypoxia/ischaemia, and that microglial responses occur primarily over the first 96 h following hypoxia/ischaemia. Minocycline treatment over this 96 h time window following the insult resulted in significant protection against white matter injury, and this effect was concomitant with a reduction in CD-68+ microglial cell numbers. CONCLUSIONS These results suggest that anti-inflammatory treatments may represent a useful strategy in the treatment of PVL, where clinical conditions would favour a post-insult treatment strategy.
Collapse
Affiliation(s)
- M Lechpammer
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Johnston MV, Hoon AH. Cerebral palsy. Neuromolecular Med 2008; 8:435-50. [PMID: 17028368 DOI: 10.1385/nmm:8:4:435] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 11/30/1999] [Accepted: 03/08/2006] [Indexed: 12/28/2022]
Abstract
Cerebral palsy (CP) is a group of disorders of movement and posture resulting from nonprogressive disturbances of the fetal or neonatal brain. More than 80% of cases of CP in term infants originate in the prenatal period; in premature infants, both prenatal or postnatal causes contribute. The most prevalent pathological lesion seen in CP is periventricular white matter injury (PWMI) resulting from vulnerability of the immature oligodendrocytes (pre-OLs) before 32 wk of gestation. PWMI is responsible for the spastic diplegia form of CP and a spectrum of cognitive and behavioral disorders. Oxidative stress and excitotoxicity resulting from excessive stimulation of ionotropic glutamate receptors on preOLs are the most prominent molecular mechanisms for PWMI. Asphyxia around the time of birth in term infants accounts for less than 15% of CP in developed countries but the incidence is higher in underdeveloped areas. Asphyxia causes a different pattern of brain injury and CP than is seen after preterm injuries. This type of CP is associated with the clinical syndrome of hypoxic-ischemic encephalopathy shortly after the insult, and the cortex, basal ganglia, and brainstem are selectively vulnerable to injury. Experimental models indicate that neurons in the neonatal brain are more likely to die by delayed apoptosis extending over days to weeks than those in the adult brain. Neurons die by glutamate-mediated excitotoxicity involving downstream caspase-dependent and caspase-independent cell death pathways. Recent reports indicate that males and females preferentially utilize different pathways. Clinical trials indicate that mild hypothermia reduces death or disability in term infants following asphyxia and basic research suggests that this approach might be combined with pharmacological strategies in the future.
Collapse
Affiliation(s)
- Michael V Johnston
- Kennedy Krieger Institute and Department of Neurology, Johns Hopkins University School of Medicine, 707 North Broadway, Baltimore, MD 21205, USA.
| | | |
Collapse
|
33
|
Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, Rothstein JD. Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 2007; 27:6607-19. [PMID: 17581948 PMCID: PMC6672708 DOI: 10.1523/jneurosci.0790-07.2007] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Glutamate transporters regulate excitatory neurotransmission and prevent glutamate-mediated excitotoxicity in the CNS. To better study the cellular and temporal dynamics of the expression of these transporters, we generated bacterial artificial chromosome promoter Discosoma red [glutamate-aspartate transporter (GLAST)] and green fluorescent protein [glutamate transporter-1 (GLT-1)] reporter transgenic mice. Analysis of these mice revealed a differential activation of the transporter promoters not previously appreciated. GLT-1 promoter activity in the adult CNS is almost completely restricted to astrocytes, often and unexpectedly in a nonoverlapping pattern with GLAST. Spinal cord GLT-1 promoter reporter, protein density, and physiology were 10-fold lower than in brain, suggesting a possible mechanism for regional sensitivity seen in disease. The GLAST promoter is active in both radial glia and many astrocytes in the developing CNS but is downregulated in most astrocytes as the mice mature. In the adult CNS, the highest GLAST promoter activity was observed in radial glia, such as those located in the subgranular layer of the dentate gyrus. The continued expression of GLAST by these neural progenitors raises the possibility that GLAST may have an unanticipated role in regulating their behavior. In addition, GLAST promoter activation was observed in oligodendrocytes in white matter throughout many (e.g., spinal cord and corpus callosum), but not all (e.g., cerebellum), CNS fiber tracts. Overall, these studies of GLT-1 and GLAST promoter activity, protein expression, and glutamate uptake revealed a close correlation between transgenic reporter signals and uptake capacity, indicating that these mice provide the means to monitor the expression and regulation of glutamate transporters in situ.
Collapse
Affiliation(s)
| | - Yanhua H. Huang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21287
| | - Yu Shin Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21287
| | | | | | | | - Dwight E. Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21287
| | - Jeffrey D. Rothstein
- Department of Neurology and
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21287
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To review the unique pattern of developmentally regulated factors that govern the susceptibility of the brain during the preterm and term windows of development. RECENT FINDINGS The neonatal brain shows unique regional differences in susceptibility to injury. In response to the common insult of hypoxia/ischemia, the preterm brain exhibits regional white matter susceptibility, while gray matter is affected in the term brain. Developmental regulation of specific cellular factors is likely to underlie these age-specific differences. SUMMARY A better understanding of these factors could contribute to the development of new age-specific therapeutic strategies with clinical potential for disorders such as periventricular leukomalacia in the preterm and neonatal seizures in the term infant.
Collapse
Affiliation(s)
- Frances E Jensen
- Department of Neurology, Children's Hospital, Program in Neurobiology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
35
|
Luyt K, Váradi A, Durant CF, Molnár E. Oligodendroglial metabotropic glutamate receptors are developmentally regulated and involved in the prevention of apoptosis. J Neurochem 2006; 99:641-56. [PMID: 16836654 DOI: 10.1111/j.1471-4159.2006.04103.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oligodendrocytes (OLs) are responsible for axon myelination and are the principal cells targeted in preterm white matter injury. The cellular and molecular mechanisms involved in white matter development and immature OL injury are incompletely understood. Metabotropic glutamate receptors (mGluRs) modulate neuronal development and survival, and have recently been identified in oligodendrocyte progenitor cells (OPCs). Using the highly homogeneous CG-4 OPC line and O4 marker-immunoselected primary OLs, we established the differentiation stage-specific expression profile of mGluR3 and mGluR5 mRNAs and proteins in the oligodendroglial lineage and type-2-astrocytes (ASTs). Our quantitative analysis indicated no changes in mGluR3, but a significant down-regulation of mGluR5a mRNA and protein expression during differentiation of OPCs into OLs or ASTs. The down-regulation of mGluR5a had functional consequences, with significantly fewer OLs and ASTs than OPCs responding to the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine with intracellular Ca(2+) concentration oscillations. Neither stimulation nor inhibition of mGluR3 or mGluR5 altered OPC migration, suggesting that these receptors do not play prominent roles in the regulation of OPC motility. The activation of mGluR5 completely protected OPCs and substantially reduced staurosporine-induced apoptosis in OLs. This suggests that the down-regulation of mGluR5 in premyelinating OLs is likely to contribute to their increased vulnerability, and that the targeting of mGluR5 may be a potential therapeutic strategy for future development.
Collapse
Affiliation(s)
- Karen Luyt
- Department of Anatomy, MRC Centre for Synaptic Plasticity, University of Bristol, School of Medical Sciences, Bristol, UK
| | | | | | | |
Collapse
|