1
|
Mastrangelo M, Manti F, Ricciardi G, Cinnante EMC, Cameli N, Beatrice A, Tolve M, Pisani F. The diagnostic and prognostic role of cerebrospinal fluid biomarkers in glucose transporter 1 deficiency: a systematic review. Eur J Pediatr 2024; 183:3665-3678. [PMID: 38954008 PMCID: PMC11322378 DOI: 10.1007/s00431-024-05657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
The purpose of this study is to investigate the diagnostic and prognostic role of cerebrospinal fluid (CSF) biomarkers in the diagnostic work-up of glucose transporter 1 (GLUT1) deficiency. Reported here is a systematic review according to PRISMA guidelines collecting clinical and biochemical data about all published patients who underwent CSF analysis. Clinical phenotypes were compared between groups defined by the levels of CSF glucose (≤ 2.2 mmol/L versus > 2.2 mmol/L), CSF/blood glucose ratio (≤ 0.45 versus > 0.45), and CSF lactate (≤ 1 mmol/L versus > 1 mmol/L). Five hundred sixty-two patients fulfilled the inclusion criteria with a mean age at the diagnosis of 8.6 ± 6.7 years. Patients with CSF glucose ≤ 2.2 mmol/L and CSF/blood glucose ratio ≤ 0.45 presented with an earlier onset of symptoms (16.4 ± 22.0 versus 54.4 ± 45.9 months, p < 0.01; 15.7 ± 23.8 versus 40.9 ± 38.0 months, p < 0.01) and received an earlier molecular genetic confirmation (92.1 ± 72.8 versus 157.1 ± 106.2 months, p < 0.01). CSF glucose ≤ 2.2 mmol/L was consistently associated with response to ketogenic diet (p = 0.018) and antiseizure medications (p = 0.025). CSF/blood glucose ratio ≤ 0.45 was significantly associated with absence seizures (p = 0.048), paroxysmal exercise-induced dyskinesia (p = 0.046), and intellectual disability (p = 0.016) while CSF lactate > 1 mmol/L was associated with a response to antiseizure medications (p = 0.026) but not to ketogenic diet.Conclusions:This systematic review supported the diagnostic usefulness of lumbar puncture for the early identification of patients with GLUT1 deficiency responsive to treatments especially if they present with co-occurring epilepsy, movement, and neurodevelopmental disorders. What is Known: • Phenotypes of GLUT1 deficiency syndrome range between early epileptic and developmental encephalopathy to paroxysmal movement disorders and developmental impairment What is New: • CSF blood/glucose ratio may predict better than CSF glucose the diagnosis in children presenting with early onset absences • CSF blood/glucose ratio may predict better than CSF glucose the diagnosis in children presenting with paroxysmal exercise induced dyskinesia and intellectual disability. • CSF glucose may predict better than CSF blood/glucose and lactate the response to ketogenic diet and antiseizure medications.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Woman/Child Health and Urological Sciences Department, Sapienza University of Rome, Via dei Sabelli 108, 00185, Rome, Italy.
- Unit of Child Neurology and Psychiatry, Department of Neuroscience/Mental Health, Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy.
| | - Filippo Manti
- Unit of Child Neurology and Psychiatry, Department of Neuroscience/Mental Health, Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | - Noemi Cameli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Manuela Tolve
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Francesco Pisani
- Unit of Child Neurology and Psychiatry, Department of Neuroscience/Mental Health, Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Zovi A, Cifani C, Confalonieri C, Lasala R, Sabbatucci M, Vitiello A, Vittori S. Dietary management and access to treatment for patients with glucose deficiency syndrome type 1: an overview review with focus on the European regulatory framework. Eur J Clin Nutr 2024:10.1038/s41430-024-01490-0. [PMID: 39127841 DOI: 10.1038/s41430-024-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Glut-1 deficiency Syndrome (GLUT-1 DS) is a rare disease caused by a mutation in the SLC2A1 gene that codes for the glucose transporter protein GLUT-1 DS. Currently, there is no indicated drug therapy for this condition and ketogenic diet (KD) is the most effective remedy to treat it. OBJECTIVE The objective of this study was to review the published literature that evaluated the effectiveness of KD in the dietary management of GLUT-1 DS syndrome, describing the state-of-the-art the treatment pathway for patients with GLUT-1 DS syndrome in light of the current European regulatory framework within the National Health Services. METHODS The literature search was carried out on September 10, 2023, and all studies conducted in humans diagnosed with GLUT-1 deficiency syndrome and treated with KD were included. RESULTS A total of 156 scientific papers have been extracted. Applying the exclusion criteria, 38 articles have been considered eligible. In 29 out of 38 studies, the main outcome for determining the efficacy of KD was the measurement of the number of epileptic seizures, demonstrating that patients treated with KD experienced improvements with a clear reduction in the number of epileptic attacks. Currently, in the European Union, only one country provides full reimbursement by the national health system for KD. DISCUSSION Although they are crucial for the treatment of GLUT-1 DS, according with current food regulations, KD are not evaluated on the basis of an unambiguous efficacy result, but only on the basis of safety. As a result, it is desirable to carry out clinical studies in the coming years based on the determination of efficacy in target populations, also in view of the marketing of these products on the European market.
Collapse
Affiliation(s)
- Andrea Zovi
- Department of Human Health, Animal Health and Ecosystem (One Health) and International Relations, Ministry of Health, Rome, Italy.
- School of Pharmacy, University of Camerino, Camerino, Italy.
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Ruggero Lasala
- Hospital Pharmacy of Corato, Local Health Authority of Bari, Corato, Italy
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Rome, Italy
| | - Antonio Vitiello
- Department of Prevention, Research and Health Emergencies, Ministry of Health, Rome, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
3
|
Gan Y, Wei Z, Liu C, Li G, Feng Y, Deng Y. Solute carrier transporter disease and developmental and epileptic encephalopathy. Front Neurol 2022; 13:1013903. [PMID: 36419532 PMCID: PMC9676364 DOI: 10.3389/fneur.2022.1013903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 09/14/2023] Open
Abstract
The International League Against Epilepsy officially revised its classification in 2017, which amended "epileptic encephalopathy" to "developmental and epileptic encephalopathy". With the development of genetic testing technology, an increasing number of genes that cause developmental and epileptic encephalopathies are being identified. Among these, solute transporter dysfunction is part of the etiology of developmental and epileptic encephalopathies. Solute carrier transporters play an essential physiological function in the human body, and their dysfunction is associated with various human diseases. Therefore, in-depth studies of developmental and epileptic encephalopathies caused by solute carrier transporter dysfunction can help develop new therapeutic modalities to facilitate the treatment of refractory epilepsy and improve patient prognosis. In this article, the concept of transporter protein disorders is first proposed, and nine developmental and epileptic encephalopathies caused by solute carrier transporter dysfunction are described in detail in terms of pathogenesis, clinical manifestations, ancillary tests, and precise treatment to provide ideas for the precise treatment of epilepsy.
Collapse
Affiliation(s)
- Yajing Gan
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zihan Wei
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Liu
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guoyan Li
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Feng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanchun Deng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Xijing Institute of Epilepsy and Encephalopathy, Xi'an, China
| |
Collapse
|
4
|
Genetic paroxysmal neurological disorders featuring episodic ataxia and epilepsy. Eur J Med Genet 2022; 65:104450. [DOI: 10.1016/j.ejmg.2022.104450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 01/25/2023]
|
5
|
Pavón S, Lázaro E, Martínez O, Amayra I, López-Paz JF, Caballero P, Al-Rashaida M, Luna PM, García M, Pérez M, Berrocoso S, Rodríguez AA, Pérez-Núñez P. Ketogenic diet and cognition in neurological diseases: a systematic review. Nutr Rev 2020; 79:802-813. [PMID: 33354711 DOI: 10.1093/nutrit/nuaa113] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CONTEXT In recent years, the ketogenic diet has gained special relevance as a possible therapeutic alternative to some neurological and chronic diseases. OBJECTIVE The aim of this systematic review was to answer the following question: Does a ketogenic diet improve cognitive skills in patients with Alzheimer's disease, Parkinson's disease, refractory epilepsy, and type 1 glucose deficiency syndrome? To define the research question, the PICOS criteria were used, following the guidelines of the PRISMA method. DATA SOURCES Medline/PubMed, Elsevier Science Direct, Dialnet, EBSCOhost, Mediagraphic, Sage Journals, ProQuest, and Wiley Online Library databases were used. DATA EXTRACTION After applying inclusion and exclusion criteria in accordance with the PRISMA method, a total of 63 entries published between 2004 and 2019 were used. DATA ANALYSIS The records extracted were analyzed from a qualitative approach, so no statistical analysis was carried out. CONCLUSION Although scientific literature on the subject is scarce and there has tended to be a lack of scientific rigor, the studies reviewed confirmed the effectiveness of this diet in improving the cognitive symptomatology of the aforementioned diseases.
Collapse
Affiliation(s)
- S Pavón
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - E Lázaro
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - O Martínez
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - I Amayra
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - J F López-Paz
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - P Caballero
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - M Al-Rashaida
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - P M Luna
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - M García
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - M Pérez
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - S Berrocoso
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - A A Rodríguez
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - P Pérez-Núñez
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| |
Collapse
|
6
|
Giunti P, Mantuano E, Frontali M. Episodic Ataxias: Faux or Real? Int J Mol Sci 2020; 21:ijms21186472. [PMID: 32899446 PMCID: PMC7555854 DOI: 10.3390/ijms21186472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
The term Episodic Ataxias (EA) was originally used for a few autosomal dominant diseases, characterized by attacks of cerebellar dysfunction of variable duration and frequency, often accompanied by other ictal and interictal signs. The original group subsequently grew to include other very rare EAs, frequently reported in single families, for some of which no responsible gene was found. The clinical spectrum of these diseases has been enormously amplified over time. In addition, episodes of ataxia have been described as phenotypic variants in the context of several different disorders. The whole group is somewhat confused, since a strong evidence linking the mutation to a given phenotype has not always been established. In this review we will collect and examine all instances of ataxia episodes reported so far, emphasizing those for which the pathophysiology and the clinical spectrum is best defined.
Collapse
Affiliation(s)
- Paola Giunti
- Laboratory of Neurogenetics, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC2N 5DU, UK
- Correspondence: (P.G.); (M.F.)
| | - Elide Mantuano
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
| | - Marina Frontali
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
- Correspondence: (P.G.); (M.F.)
| |
Collapse
|
7
|
Winczewska-Wiktor A, Hoffman-Zacharska D, Starczewska M, Kaczmarek I, Badura-Stronka M, Steinborn B. Variety of symptoms of GLUT1 deficiency syndrome in three-generation family. Epilepsy Behav 2020; 106:107036. [PMID: 32247176 DOI: 10.1016/j.yebeh.2020.107036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Glucose transporter type 1 deficiency (G1D) syndrome is generally a genetic disorder because of a mutation of the SLC2A1 gene. The clinical picture of G1D is heterogeneous. The aim of this paper was to present the case of G1D, recognized in a three-generation family, caused by missense mutation p.Arg92Trp in SLC2A1 gene, and showing high clinical heterogeneity and evolution of symptoms over time. METHODS Three-generation family members, showing symptoms suggesting G1D, have been characterized in terms of the clinical picture, electroencephalogram (EEG) recordings, brain neuroimaging, and the psychological assessment data. All subjects were offered genetic testing of the SLC2A1 gene. RESULTS We sequenced the SLC2A1 gene in the proband of the family and identified the c.274C > T variant (p.Arg92Trp). The presence of the same mutation was confirmed in all affected family members; however, significant variations in the clinical picture among them were observed. In addition to the typical symptoms for G1D (e.g., epilepsy, intellectual disability), patients presented movement disorders, stiffness, and dysarthria, as well as psychiatric symptoms. After using the ketogenic diet, epileptic seizures disappeared, but the rest of the symptoms were resistant to treatment. CONCLUSIONS Despite the same underlying mutation, clinical symptoms may vary among members of one family. Different clinical symptoms are observed depending on the patient's age. Not all symptoms occur in all patients within one family despite the same genetic background. However, the importance of early therapy for the clinical course of the disease requires further study.
Collapse
Affiliation(s)
- Anna Winczewska-Wiktor
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland.
| | - Dorota Hoffman-Zacharska
- Institute of Mother and Child, Department of Medical Genetics, ul. Kasprzaka 17A, 01-211 Warsaw, Poland.
| | - Monika Starczewska
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland.
| | - Izabela Kaczmarek
- The Neuropsychology Laboratory, Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland.
| | - Magdalena Badura-Stronka
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznań, Poland.
| | - Barbara Steinborn
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland.
| |
Collapse
|
8
|
Yu WH, Chen LW, Wang ST, Tu YF, Huang CC. Developmental outcomes and prevalence of SLC2A1 variants in young infants with hypoglycorrhachia. Brain Dev 2019; 41:854-861. [PMID: 31326153 DOI: 10.1016/j.braindev.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The neurodevelopmental outcomes of young infants with hypoglycorrhachia that is comparable to glucose transporter 1 deficiency syndrome (GLUT1DS), i.e. cerebrospinal fluid (CSF) glucose ≤40 mg/dL and CSF lactate <2.2 mM without causes of secondary hypoglycorrhachia are unknown. This study investigated the developmental outcomes and possibility of GLUT1DS in infants with hypoglycorrhachia, or low CSF glucose concentration. MATERIAL AND METHODS 1655 neurologically asymptomatic infants aged <4 months had CSF examinations for fever workup from 2006 to 2016. Among the infants with normal CSF cell counts and without isolated pathogens, there were hypoglycorrhachia group who had CSF glucose levels that were comparable to GLUT1DS, and age- and gender-matched non-hypoglycorrhachia group. Both groups were at a mean age of 5.9 ± 2.4 years (ranged 1-10 years) at neurodevelopmental evaluation in 2017. Mutational analysis of solute-carrier-family 2, which facilitated the glucose transporter member 1 (SLC2A1) gene was performed. RESULTS Among the 722 infants with normal CSF cell counts and without isolated pathogens, 30 (4.2%) had hypoglycorrhachia that was comparable to GLUT1DS. In the 25 infants with hypoglycorrhachia available for follow-up, 4 (16%) had abnormal outcomes, of which 3 (12%) had the history of mixed-type developmental delay before age 6 and 1 (4%) had type 1 diabetes mellitus. In the non-hypoglycorrhachia control group (n = 50), 2 patients (4%) showed abnormal outcomes, both with the history of pure speech delay. The hypoglycorrhachia group had a higher rate of the history of mixed-type of developmental delay than the control group (12% vs. 0%, P = 0.034). No SLC2A1 pathogenic variants were observed in the hypoglycorrhachia group. CONCLUSION Hypoglycorrhachia may be a potential biomarker for neurodevelopmental delay instead of for GLUT1DS in neurologically asymptomatic young infants.
Collapse
Affiliation(s)
- Wen-Hao Yu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Wen Chen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shan-Tair Wang
- Institute of Gerontology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Fang Tu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Ching Huang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pediatrics, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Acetazolamide-responsive Episodic Ataxia Without Baseline Deficits or Seizures Secondary to GLUT1 Deficiency. Neurologist 2018; 23:17-18. [DOI: 10.1097/nrl.0000000000000168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Abstract
AbstractBackground: Recurrent ataxia is encountered infrequently in clinical pediatric neurology practise and presents with diagnostic challenges. It is caused by several disorders. Our aims were to describe the epidemiology and clinical features in children with recurrent ataxia. Materials and Methods: A retrospective review was undertaken in 185 children with chronic ataxia, who presented during 1991 to 2008. Several databases were searched to ensure optimum ascertainment. Patients with brain tumors or isolated disorders of the peripheral nerves or vestibular system were excluded. Results: Recurrent ataxia was reported in 21 patients. Their age range was between 6 and 32.75 years (males=12). The crude period prevalence rate for the 18-year study period was 7.44/100,000. Eight patients had episodic ataxia and seven had inflammatory and metabolic disorders. In the rest the etiology was unknown. Many patients presented with ataxia, dizziness, and vertigo. The frequency and duration of the ataxic episodes varied from several per day to one every few months. Other clinical features included developmental delay and seizures. Neuroimaging in episodic ataxia was normal and abnormal in inflammatory or metabolic disorders. Acetazolamide provided symptomatic relief in patients with episodic ataxia, while steroids were beneficial in patients with an inflammatory etiology. One child with a metabolic disorder died. Conclusions: Recurrent ataxia is an uncommon presentation in children and mortality is rare. Genetic, metabolic, and inflammatory disorders should be considered in these patients. Neuroimaging is essential. Acetazolamide in selected patients provides good symptomatic relief.
Collapse
|
11
|
Tzadok M, Nissenkorn A, Porper K, Matot I, Marcu S, Anikster Y, Menascu S, Bercovich D, Ben Zeev B. The many faces of Glut1 deficiency syndrome. J Child Neurol 2014; 29:349-59. [PMID: 23340081 DOI: 10.1177/0883073812471718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucose transporter protein type 1 deficiency syndrome is a metabolic disorder manifesting as cognitive impairment, acquired microcephaly, epilepsy, and/or movement disorder caused by mutations in the SLC2A1 gene. We describe a cohort of isolated and familial cases of glucose transporter protein type 1 deficiency syndrome, emphasizing seizure semiology, electroencephalographic (EEG) features, treatment response and mutation pathogenicity. SLC2A1 mutations were detected in 3 sporadic and 4 familial cases. In addition, mutations were identified in 9 clinically unaffected family members in 2 families. The phenotypic spectrum of glucose transporter protein type 1 deficiency is wider than previously recognized, with considerable intra-familial variation. Diagnosis requires either hypoglycorrachia followed by SLC2A1 sequencing or direct gene sequencing. A ketogenic diet should be the first line of treatment, but more flexible diets, like the Atkins modified diet, can also be followed. Carbonic anhydrase inhibitors, such as acetazolamide or zonisamide, can be effective for seizure control.
Collapse
Affiliation(s)
- Michal Tzadok
- 1Pediatric Neurology Unit, Edmond and Lily Safra Childern's Hospital, Sheba Medical Center, Tel Hashomer, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ohshiro-Sasaki A, Shimbo H, Takano K, Wada T, Osaka H. A three-year-old boy with glucose transporter type 1 deficiency syndrome presenting with episodic ataxia. Pediatr Neurol 2014; 50:99-100. [PMID: 24200040 DOI: 10.1016/j.pediatrneurol.2013.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 08/26/2013] [Accepted: 09/01/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Glucose transporter type 1 deficiency syndrome is a metabolic encephalopathy that results from impaired glucose transport into the brain as the result of a mutation of the SLC2A1 gene. It has been recognized recently that these patients can present with a much broader clinical spectrum than previously thought. We describe a 3-year-old boy presenting with episodic ataxia. CASE REPORT Our patient exhibited periodic abnormal eye movements, including opsoclonus, since he was 4 months of age. At 2 years of age, he experienced acute cerebellar ataxia after a vaccination. Since then, he has had periodic attacks of ataxic gait, repeated vomiting, and abnormal eye movement. He was diagnosed as having episodic ataxia type 2 because the administration of acetazolamide seemed effective. By 3 years and 10 months of age, he exhibited mild mental retardation and mild trunk ataxia. The attacks were more likely to occur when he was hungry. Molecular analysis revealed that the SLC2A1 gene had a de novo mutation of heterozygous seven nucleotide insertion within exon 7, resulting in a frameshift. He has recently begun a modified Atkins diet; the frequency of attacks has been reduced, and his psychomotor and language skills have begun to develop. DISCUSSION Glucose transporter type 1 deficiency syndrome should be considered in the differential diagnosis in children with episodic ataxia, even if acetazolamide is effective.
Collapse
Affiliation(s)
| | - Hiroko Shimbo
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kyoko Takano
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takahito Wada
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan.
| | - Hitoshi Osaka
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
13
|
Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep 2013; 13:342. [PMID: 23443458 DOI: 10.1007/s11910-013-0342-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glut1 deficiency syndrome (Glut1 DS) was originally described in 1991 as a developmental encephalopathy characterized by infantile onset refractory epilepsy, cognitive impairment, and mixed motor abnormalities including spasticity, ataxia, and dystonia. The clinical condition is caused by impaired glucose transport across the blood brain barrier. The past 5 years have seen a dramatic expansion in the range of clinical syndromes that are recognized to occur with Glut1 DS. In particular, there has been greater recognition of milder phenotypes. Absence epilepsy and other idiopathic generalized epilepsy syndromes may occur with seizure onset in childhood or adulthood. A number of patients present predominantly with movement disorders, sometimes without any accompanying seizures. In particular, paroxysmal exertional dyskinesia is now a well-documented clinical feature that occurs in individuals with Glut1 DS. A clue to the diagnosis in patients with paroxysmal symptoms may be the triggering of episodes during fasting or exercise. Intellectual impairment may range from severe to very mild. Awareness of the broad range of potential clinical phenotypes associated with Glut1 DS will facilitate earlier diagnosis of this treatable neurologic condition. The ketogenic diet is the mainstay of treatment and nourishes the starving symptomatic brain during development.
Collapse
|
14
|
Ramm-Pettersen A, Nakken KO, Skogseid IM, Randby H, Skei EB, Bindoff LA, Selmer KK. Good outcome in patients with early dietary treatment of GLUT-1 deficiency syndrome: results from a retrospective Norwegian study. Dev Med Child Neurol 2013; 55:440-7. [PMID: 23448551 DOI: 10.1111/dmcn.12096] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2012] [Indexed: 01/02/2023]
Abstract
AIM The aim of this study was to characterize patients diagnosed with glucose transporter protein-1 deficiency syndrome (GLUT-1 DS) clinically and genetically, and to evaluate the effect of treatment with the classic ketogenic or modified Atkins diet. METHOD We retrospectively studied medical records of 10 patients diagnosed with GLUT-1 DS. Four females and six males with a median age of 15 years were included. RESULTS The study illustrates the genetic and clinical heterogeneity of GLUT-1 DS. Analysis of the SLC2A1 gene disclosed a variety of mutation types. The time between onset of symptoms and diagnosis was more than 11 years on average. The outcome in those with early diagnosis and intervention was surprisingly good. All but one patient with the classic phenotype became seizure free after treatment with the classic ketogenic or modified Atkins diet. Acetazolamide was effective in one patient with paroxysmal exercise-induced dyskinesia. A point prevalence of GLUT-1 DS in Norway was estimated as 2.6 per 1,000,000 inhabitants. INTERPRETATION Although the long-term prognosis in patients with GLUT-1 DS partly depends on the underlying genetics, our study supports the assumption that early initiation of treatment with a ketogenic diet may positively affect the outcome.
Collapse
|
15
|
Arsov T, Mullen SA, Damiano JA, Lawrence KM, Huh LL, Nolan M, Young H, Thouin A, Dahl HHM, Berkovic SF, Crompton DE, Sadleir LG, Scheffer IE. Early onset absence epilepsy: 1 in 10 cases is caused by GLUT1 deficiency. Epilepsia 2012; 53:e204-7. [PMID: 23106342 DOI: 10.1111/epi.12007] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucose transporter 1 (GLUT1) deficiency caused by mutations of SLC2A1 is an increasingly recognized cause of genetic generalized epilepsy. We previously reported that >10% (4 of 34) of a cohort with early onset absence epilepsy (EOAE) had GLUT1 deficiency. This study uses a new cohort of 55 patients with EOAE to confirm that finding. Patients with typical absence seizures beginning before 4 years of age were screened for solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1) mutations or deletions. All had generalized spike-waves on electroencephalography (EEG). Those with tonic and/or atonic seizures were excluded. Mutations were found in 7 (13%) of 55 cases, including five missense mutations, an in-frame deletion leading to loss of a single amino acid, and a deletion spanning two exons. Over both studies, 11 (12%) of 89 probands with EOAE have GLUT1 deficiency. Given the major treatment and genetic counseling implications, this study confirms that SLC2A1 mutational analysis should be strongly considered in EOAE.
Collapse
Affiliation(s)
- Todor Arsov
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Klepper J. GLUT1 deficiency syndrome in clinical practice. Epilepsy Res 2012; 100:272-7. [DOI: 10.1016/j.eplepsyres.2011.02.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/06/2011] [Indexed: 01/01/2023]
|
17
|
Verrotti A, D'Egidio C, Agostinelli S, Gobbi G. Glut1 deficiency: when to suspect and how to diagnose? Eur J Paediatr Neurol 2012; 16:3-9. [PMID: 21962875 DOI: 10.1016/j.ejpn.2011.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 09/18/2011] [Indexed: 11/19/2022]
Abstract
Impaired glucose transport across the blood-brain barrier results in GLUT1 deficiency syndrome (GLUT1-DS), characterized by infantile seizures, developmental delay, acquired microcephaly, spasticity, ataxia, and hypoglycorrhachia. A part from this classic phenotype, clinical conditions associated with a deficiency of GLUT1 are highly variable and several atypical variants have been described; in particular, patients with movement disorders, but without seizures, with paroxysmal exertion-induced dyskinesia, have been reported. Most patients carry heterozygous de novo mutations in the GLUT1-gene but autosomal dominant and recessive transmission has been identified. Diagnosis is based on low cerebrospinal fluid glucose, in the absence of hypoglycemia, and it is confirmed by molecular analysis of the GLUT1-gene and by glucose uptake studies and immunoreactivity in human erythrocytes. Treatment with a ketogenic diet results in marked improvement of seizures and movement disorders. This review summarizes recent advances in understanding of GLUT1-DS and highlights the diagnostic and therapeutic approach to GLUT1-DS.
Collapse
Affiliation(s)
- A Verrotti
- Department of Paediatrics, University of Chieti, Ospedale policlinico SS. Annunziata, Via dei Vestini 5, 66100 Chieti, Italy.
| | | | | | | |
Collapse
|
18
|
Koy A, Assmann B, Klepper J, Mayatepek E. Glucose transporter type 1 deficiency syndrome with carbohydrate-responsive symptoms but without epilepsy. Dev Med Child Neurol 2011; 53:1154-6. [PMID: 21838819 DOI: 10.1111/j.1469-8749.2011.04082.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glucose transporter type 1 deficiency syndrome (GLUT1-DS) is caused by a defect in glucose transport across the blood-brain barrier. The main symptoms are epilepsy, developmental delay, movement disorders, and deceleration of head circumference. A ketogenic diet has been shown to be effective in controlling epilepsy in GLUT1-DS. We report a female child (3 y 4 mo) who presented with delayed psychomotor development and frequent episodes of staggering, impaired vigilance, and vomiting that resolved promptly after food intake. Electroencephalography was normal. The cerebrospinal fluid-blood glucose ratio was 0.42 (normal ≥ 0.45). GLUT1-DS was confirmed by molecular genetic testing, which showed a novel de novo heterozygous mutation in the SLC2A1 gene (c.497_499delTCG, p.VAL166del). Before starting a ketogenic diet, the child's cognitive development was tested using the Snijders-Oomen Non-Verbal Intelligence Test, which revealed a heterogeneous intelligence profile with deficits in her visuomotor skills and spatial awareness. Her motor development was delayed. Three months after introducing a ketogenic diet, she showed marked improvement in speech and motor development, as tested by the Movement Assessment Battery for Children (manual dexterity 16th centile, ball skills 1st centile, static and dynamic balance 5th centile). This case demonstrates that GLUT1-DS should be investigated in individuals with unexplained developmental delay. Epilepsy is not a mandatory symptom. The ketogenic diet is also beneficial for non-epileptic symptoms in GLUT1-DS.
Collapse
Affiliation(s)
- Anne Koy
- Department of General Paediatrics, University Children's Hospital, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
19
|
Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG, Wevers RA, Arthur T, Bahi-Buisson N, Ballhausen D, Bekhof J, van Bogaert P, Carrilho I, Chabrol B, Champion MP, Coldwell J, Clayton P, Donner E, Evangeliou A, Ebinger F, Farrell K, Forsyth RJ, de Goede CGEL, Gross S, Grunewald S, Holthausen H, Jayawant S, Lachlan K, Laugel V, Leppig K, Lim MJ, Mancini G, Marina AD, Martorell L, McMenamin J, Meuwissen MEC, Mundy H, Nilsson NO, Panzer A, Poll-The BT, Rauscher C, Rouselle CMR, Sandvig I, Scheffner T, Sheridan E, Simpson N, Sykora P, Tomlinson R, Trounce J, Webb D, Weschke B, Scheffer H, Willemsen MA. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain 2010; 133:655-70. [PMID: 20129935 DOI: 10.1093/brain/awp336] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic diet.
Collapse
Affiliation(s)
- Wilhelmina G Leen
- Department of Neurology, Radboud University Nijmegen Medical Centre, 935 Neurology, PO BOX 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|