1
|
Pro S, Tozzi AE, D'Amico A, Catteruccia M, Cherchi C, De Luca M, Nicita F, Diodato D, Cutrera R, Bertini E, Valeriani M. Age-related sensory neuropathy in patients with spinal muscular atrophy type 1. Muscle Nerve 2021; 64:599-603. [PMID: 34368972 DOI: 10.1002/mus.27389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION/AIMS Spinal muscular atrophy type 1 (SMA 1) is a devastating motor neuron disorder that leads to progressive muscle weakness, respiratory failure and premature death. Although sensory electrophysiological changes have been anecdotally found in pediatric SMA 1 patients, the age of onset of sensory neuropathy remains unknown. METHODS Sensory nerve conduction studies of the median and sural nerves were performed in 28 consecutive SMA 1 patients of different ages. Sensory nerve conduction velocities and sensory nerve action potential (SNAP) amplitudes recorded in these patients were compared with those obtained from 93 healthy subjects stratified by age. RESULTS SNAP amplitudes decreased with increasing age in the sural and median nerves, without any significant difference between upper and lower limbs. DISCUSSION Our data suggest that sural and median nerve SNAP amplitudes are normal in younger patients, while an axonal neuropathy appears in older ones.
Collapse
Affiliation(s)
- Stefano Pro
- Neurophysiology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alberto Eugenio Tozzi
- Predictive and Preventive Medicine Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Catteruccia
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudio Cherchi
- Bronchopneumology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daria Diodato
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Renato Cutrera
- Bronchopneumology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Massimiliano Valeriani
- Neurology Ward Unit, Bambino Gesù Hospital, Rome, Italy.,Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Cung S, Ritz ML, Masaracchia MM. Regional anesthesia in pediatric patients with preexisting neurological disease. Paediatr Anaesth 2021; 31:522-530. [PMID: 33590927 DOI: 10.1111/pan.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/01/2022]
Abstract
Preexisting neurological disease in pediatric patients presents unique challenges to the anesthesiologist. In-depth knowledge of the disease processes and awareness of sequalae that uniquely influence the risks and benefits of anesthetics are needed to make informed decisions. Because these vulnerable populations are often susceptible to perioperative airway or cardiopulmonary complications, the use of regional anesthesia can be advantageous. However, these clinical conditions already involve compromised neural tissue and, as such, create additional concern that regional anesthesia may result in new or worsened deficits. The following discussion is not intended to be a full review of each disease process, but rather provides a concise, yet thorough, discussion of the available literature on regional anesthesia in the more common, but still rare, pediatric neurological disorders. We aim to provide a framework for pediatric anesthesiologists to reengage in a healthy discussion about the risks and benefits of utilizing regional anesthesia in this vulnerable population.
Collapse
Affiliation(s)
- Stephanie Cung
- University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew L Ritz
- Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | - Melissa M Masaracchia
- University of Colorado School of Medicine, Aurora, CO, USA.,Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| |
Collapse
|
3
|
Glial cells involvement in spinal muscular atrophy: Could SMA be a neuroinflammatory disease? Neurobiol Dis 2020; 140:104870. [PMID: 32294521 DOI: 10.1016/j.nbd.2020.104870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/16/2020] [Accepted: 04/10/2020] [Indexed: 01/11/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, inherited disease characterized by the progressive degeneration and death of motor neurons of the anterior horns of the spinal cord, which results in muscular atrophy and weakness of variable severity. Its early-onset form is invariably fatal in early childhood, while milder forms lead to permanent disability, physical deformities and respiratory complications. Recently, two novel revolutionary therapies, antisense oligonucleotides and gene therapy, have been approved, and might prove successful in making long-term survival of these patients likely. In this perspective, a deep understanding of the pathogenic mechanisms and of their impact on the interactions between motor neurons and other cell types within the central nervous system (CNS) is crucial. Studies using SMA animal and cellular models have taught us that the survival and functionality of motor neurons is highly dependent on a whole range of other cell types, namely glial cells, which are responsible for a variety of different functions, such as neuronal trophic support, synaptic remodeling, and immune surveillance. Thus, it emerges that SMA is likely a non-cell autonomous, multifactorial disease in which the interaction of different cell types and disease mechanisms leads to motor neurons failure and loss. This review will introduce the different glial cell types in the CNS and provide an overview of the role of glial cells in motor neuron degeneration in SMA. Furthermore, we will discuss the relevance of these findings so far and the potential impact on the success of available therapies and on the development of novel ones.
Collapse
|
4
|
Shorrock HK, Gillingwater TH, Groen EJN. Molecular Mechanisms Underlying Sensory-Motor Circuit Dysfunction in SMA. Front Mol Neurosci 2019; 12:59. [PMID: 30886572 PMCID: PMC6409332 DOI: 10.3389/fnmol.2019.00059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
Activation of skeletal muscle in response to acetylcholine release from the neuromuscular junction triggered by motor neuron firing forms the basis of all mammalian locomotion. Intricate feedback and control mechanisms, both from within the central nervous system and from sensory organs in the periphery, provide essential inputs that regulate and finetune motor neuron activity. Interestingly, in motor neuron diseases, such as spinal muscular atrophy (SMA), pathological studies in patients have identified alterations in multiple parts of the sensory-motor system. This has stimulated significant research efforts across a range of different animal models of SMA in order to understand these defects and their contribution to disease pathogenesis. Several recent studies have demonstrated that defects in sensory components of the sensory-motor system contribute to dysfunction of motor neurons early in the pathogenic process. In this review, we provide an overview of these findings, with a specific focus on studies that have provided mechanistic insights into the molecular processes that underlie dysfunction of the sensory-motor system in SMA. These findings highlight the role that cell types other than motor neurons play in SMA pathogenesis, and reinforce the need for therapeutic interventions that target and rescue the wide array of defects that occur in SMA.
Collapse
Affiliation(s)
- Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ewout J N Groen
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Schäfer MK, Bellouze S, Jacquier A, Schaller S, Richard L, Mathis S, Vallat JM, Haase G. Sensory neuropathy in progressive motor neuronopathy (pmn) mice is associated with defects in microtubule polymerization and axonal transport. Brain Pathol 2016; 27:459-471. [PMID: 27488538 DOI: 10.1111/bpa.12422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases such as amyotrophic lateral sclerosis (ALS) are now recognized as multi-system disorders also involving various non-motor neuronal cell types. The precise extent and mechanistic basis of non-motor neuron damage in human ALS and ALS animal models remain however unclear. To address this, we here studied progressive motor neuronopathy (pmn) mice carrying a missense loss-of-function mutation in tubulin binding cofactor E (TBCE). These mice manifest a particularly aggressive form of motor axon dying back and display a microtubule loss, similar to that induced by human ALS-linked TUBA4A mutations. Using whole nerve confocal imaging of pmn × thy1.2-YFP16 fluorescent reporter mice and electron microscopy, we demonstrate axonal discontinuities, bead-like spheroids and ovoids in pmn suralis nerves indicating prominent sensory neuropathy. The axonal alterations qualitatively resemble those in phrenic motor nerves but do not culminate in the loss of myelinated fibers. We further show that the pmn mutation decreases the level of TBCE, impedes microtubule polymerization in dorsal root ganglion (DRG) neurons and causes progressive loss of microtubules in large and small caliber suralis axons. Live imaging of axonal transport using GFP-tagged tetanus toxin C-fragment (GFP-TTC) demonstrates defects in microtubule-based transport in pmn DRG neurons, providing a potential explanation for the axonal alterations in sensory nerves. This study unravels sensory neuropathy as a pathological feature of mouse pmn, and discusses the potential contribution of cytoskeletal defects to sensory neuropathy in human motor neuron disease.
Collapse
Affiliation(s)
- Michael K Schäfer
- Department of Anesthesiology and Research Center Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Sarah Bellouze
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université UMR 7289, Marseille, France
| | - Arnaud Jacquier
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université UMR 7289, Marseille, France
| | - Sébastien Schaller
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université UMR 7289, Marseille, France
| | - Laurence Richard
- Laboratoire de Neurologie, Centre de référence national "Neuropathies périphériques rares", Centre Hospitalo-Universitaire (CHU), Limoges, France
| | - Stéphane Mathis
- Department of Neurology, Centre Hospitalo-Universitaire (CHU) Poitiers, University of Poitiers, Poitiers, France
| | - Jean-Michel Vallat
- Laboratoire de Neurologie, Centre de référence national "Neuropathies périphériques rares", Centre Hospitalo-Universitaire (CHU), Limoges, France
| | - Georg Haase
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université UMR 7289, Marseille, France
| |
Collapse
|
6
|
Simone C, Ramirez A, Bucchia M, Rinchetti P, Rideout H, Papadimitriou D, Re DB, Corti S. Is spinal muscular atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications? Cell Mol Life Sci 2016; 73:1003-20. [PMID: 26681261 PMCID: PMC4756905 DOI: 10.1007/s00018-015-2106-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/16/2023]
Abstract
Spinal muscular atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the survival motor neuron 1 gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. Even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It has been demonstrated that non-motor neuronal cells are also involved in disease pathogenesis and could have important therapeutic implications. For these reasons it will be crucial to take this evidence into account for the clinical translation of the novel therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Simone
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Agnese Ramirez
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Bucchia
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Paola Rinchetti
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Hardy Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, 115 27, Athens, Greece
| | - Dimitra Papadimitriou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, 115 27, Athens, Greece
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Stefania Corti
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
7
|
Rudnik-Schöneborn S, Barisić N, Eggermann K, Ortiz Brüchle N, Grđan P, Zerres K. Distally pronounced infantile spinal muscular atrophy with severe axonal and demyelinating neuropathy associated with the S230L mutation of SMN1. Neuromuscul Disord 2015; 26:132-5. [PMID: 26794302 DOI: 10.1016/j.nmd.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 01/17/2023]
Abstract
Two Croatian siblings with atypical clinical findings in the presence of SMN1 gene mutations are reported. The girl presented with delayed motor development and weakness in hands and feet in her first year of life. She never stood or walked and developed scoliosis and joint contractures during childhood. Her hands and feet were non-functional when last seen at age 14 years. Her 4-year-old brother was more severely affected and had a clinical picture resembling infantile spinal muscular atrophy (SMA) type 1. He also showed unusual distally pronounced weakness and facial weakness. Both patients had no sensory deficits but gave evidence of a mixed axonal and demyelinating neuropathy with pronounced slowing in the distal nerve segments. Unexpectedly, both siblings showed a compound heterozygous SMN1 mutation (heterozygous deletion and missense mutation c.689C > T; p.S230L), thus confirming infantile SMA. In addition, next generation sequencing of 52 genes for hereditary neuropathies revealed a heterozygous missense mutation c.505T > C; p.Y169H in the SH3TC2 gene that was transmitted by the healthy father. Our observations widen the phenotypic consequences of SMN1 gene mutations and support the notion to look for additional genetic factors which may modify the clinical picture in atypical cases.
Collapse
Affiliation(s)
- Sabine Rudnik-Schöneborn
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany; Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria.
| | - Nina Barisić
- Department of Pediatrics, Zagreb Medical School, University Hospital Center, Zagreb, Croatia
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany
| | - Nadina Ortiz Brüchle
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany
| | - Petra Grđan
- Department of Pediatrics, Zagreb Medical School, University Hospital Center, Zagreb, Croatia
| | - Klaus Zerres
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany
| |
Collapse
|
8
|
Abstract
Neuropathologic findings within the central and peripheral nervous systems in patients with spinal muscular atrophy type I (SMA-I) were examined in relation to genetic, clinical, and electrophysiologic features. Five infants representing the full clinical spectrum of SMA-I were examined clinically for compound motor action potential amplitude and SMN2 gene copy number; morphologic analyses of postmortem central nervous system, neuromuscular junction, and muscle tissue samples were performed and SMN protein was assessed in muscle samples. The 2 clinically most severely affected patients had a single copy of the SMN2 gene; in addition to anterior horn cells, dorsal root ganglia, and thalamus, neuronal degeneration in them was widespread in the cerebral cortex, basal ganglia, pigmented nuclei, brainstem, and cerebellum. Two typical SMA-I patients and a milder case each had 2 copies of the SMN2 gene and more restricted neuropathologic abnormalities. Maturation of acetylcholine receptor subunits was delayed and the neuromuscular junctions were abnormally formed in the SMA-I patients. Thus, the neuropathologic findings in human SMA-I are similar to many findings in animal models; factors other than SMN2 copy number modify disease severity. We present a pathophysiologic model for SMA-I as a protein deficiency disease affecting a neuronal network with variable clinical thresholds. Because new treatment strategies improve survival of infants with SMA-I, a better understanding of these factors will guide future treatments.
Collapse
|
9
|
Schwab AJ, Ebert AD. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy. PLoS One 2014; 9:e103112. [PMID: 25054590 PMCID: PMC4108398 DOI: 10.1371/journal.pone.0103112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.
Collapse
Affiliation(s)
- Andrew J. Schwab
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Locatelli D, d'Errico P, Capra S, Finardi A, Colciaghi F, Setola V, Terao M, Garattini E, Battaglia G. Spinal muscular atrophy pathogenic mutations impair the axonogenic properties of axonal-survival of motor neuron. J Neurochem 2012; 121:465-74. [PMID: 22324632 DOI: 10.1111/j.1471-4159.2012.07689.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The axonal survival of motor neuron (a-SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a-SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a-SMN in SMA is unknown. As a first step to verify a link between a-SMN and SMA, we investigated by means of over-expression experiments in neuroblastoma-spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N-terminal part of the protein affected a-SMN function. We demonstrated here that either SMN1 missense mutations or small intragenic re-arrangements located in the Tudor domain consistently altered the a-SMN capability of inducing axonal elongation in vitro. Mutated human a-SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a-SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL-SMN but also for a-SMN, raising the possibility that also a-SMN loss of function may contribute to the pathogenic steps leading to SMA.
Collapse
Affiliation(s)
- Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, Neurological Institute 'C. Besta', Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sleigh JN, Gillingwater TH, Talbot K. The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. Dis Model Mech 2011; 4:457-67. [PMID: 21708901 PMCID: PMC3124050 DOI: 10.1242/dmm.007245] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA), which is caused by inactivating mutations in the survival motor neuron 1 (SMN1) gene, is characterized by loss of lower motor neurons in the spinal cord. The gene encoding SMN is very highly conserved in evolution, allowing the disease to be modeled in a range of species. The similarities in anatomy and physiology to the human neuromuscular system, coupled with the ease of genetic manipulation, make the mouse the most suitable model for exploring the basic pathogenesis of motor neuron loss and for testing potential treatments. Therapies that increase SMN levels, either through direct viral delivery or by enhancing full-length SMN protein expression from the SMN1 paralog, SMN2, are approaching the translational stage of development. It is therefore timely to consider the role of mouse models in addressing aspects of disease pathogenesis that are most relevant to SMA therapy. Here, we review evidence suggesting that the apparent selective vulnerability of motor neurons to SMN deficiency is relative rather than absolute, signifying that therapies will need to be delivered systemically. We also consider evidence from mouse models suggesting that SMN has its predominant action on the neuromuscular system in early postnatal life, during a discrete phase of development. Data from these experiments suggest that the timing of therapy to increase SMN levels might be crucial. The extent to which SMN is required for the maintenance of motor neurons in later life and whether augmenting its levels could treat degenerative motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), requires further exploration.
Collapse
Affiliation(s)
- James N Sleigh
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | | | | |
Collapse
|
12
|
Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS One 2010; 5:e15457. [PMID: 21085654 PMCID: PMC2978709 DOI: 10.1371/journal.pone.0015457] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/29/2010] [Indexed: 11/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7). In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs) in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ∼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3–5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1)-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy.
Collapse
|
13
|
Fernández-Torre JL, Teja JL, Castellanos A, Figols J, Obeso T, Arteaga R. Spinal muscular atrophy type I mimicking critical illness neuropathy in a paediatric intensive care neonate: electrophysiological features. Brain Dev 2008; 30:599-602. [PMID: 18384992 DOI: 10.1016/j.braindev.2008.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 02/14/2008] [Accepted: 02/20/2008] [Indexed: 11/29/2022]
Abstract
We report the case of a neonate with spinal muscular atrophy type I (SMA type I or Werdnig-Hoffman disease) who was initially misdiagnosis as having critical illness neuropathy. Electromyography (EMG) showed a moderate loss of voluntary and motor unit potentials of both neurogenic and myopathic appearance. Nerve conduction studies revealed the presence of a severe sensory-motor axonal neuropathy. Finally, a biopsy of quadriceps was compatible with the diagnosis of SMA type I. A genetic study confirmed the existence of a homozygous absence of exons 7 and 8 of the telomeric supervival motoneuron gene (SMN1 gene).
Collapse
Affiliation(s)
- José L Fernández-Torre
- Department of Clinical Neurophysiology, University Hospital Marqués de Valdecilla (IFIMAV), Avenida Valdecilla, s/n, 39008 Santander, Cantabria, Spain.
| | | | | | | | | | | |
Collapse
|
14
|
Shabo G, Pasman JW, van Alfen N, Willemsen MAAP. The spectrum of polyneuropathies in childhood detected with electromyography. Pediatr Neurol 2007; 36:393-6. [PMID: 17560501 DOI: 10.1016/j.pediatrneurol.2007.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/23/2006] [Accepted: 02/27/2007] [Indexed: 12/01/2022]
Abstract
Only a few studies have been reported describing polyneuropathies in a series of children. To study the clinical and neurophysiological spectrum of polyneuropathies in a large series of children and obtain an overview of their etiologies, this retrospective study reevaluated all electromyograms and electrophysiologic studies performed between 1995 and 2004 in children under 17 years of age at the Radboud University Nijmegen Medical Center, a tertiary neuromuscular reference center. Electromyograms revealing polyneuropathy were selected for further analysis (n = 118), and the medical records were reviewed to supplement electromyographic findings with the clinical diagnosis. Hereditary polyneuropathies made up 68% of the total, and 54% of these were isolated polyneuropathies; in the remaining 46%, polyneuropathy was part of a more complex disorder. The acquired polyneuropathies were primarily inflammatory. Nerve biopsies had been performed in 22 of the 118 cases (19%) and led to a diagnosis in 4 cases. Despite sophisticated investigation, 11 cases (9%) remained unclassified for underlying cause. Hereditary motor and sensory neuropathies are the most common type of polyneuropathy in childhood, followed by polyneuropathies as part of an inborn error of metabolism and inflammatory polyneuropathies (in patients in whom electromyography was used to diagnose the neuropathy). In the full series of patients, nerve biopsy did not play a prominent role in the diagnostic work-up of childhood polyneuropathies, due to the increasing availability of other laboratory (genetic and metabolic) diagnostic tools. Nerve biopsy nonetheless proved to have an important diagnostic yield in selected, complex cases.
Collapse
Affiliation(s)
- George Shabo
- Department of Pediatric Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
15
|
Jablonka S, Karle K, Sandner B, Andreassi C, von Au K, Sendtner M. Distinct and overlapping alterations in motor and sensory neurons in a mouse model of spinal muscular atrophy. Hum Mol Genet 2006; 15:511-8. [PMID: 16396995 DOI: 10.1093/hmg/ddi467] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Motor neuron degeneration is the predominant pathological feature of spinal muscular atrophy (SMA). In patients with severe forms of the disease, additional sensory abnormalities have been reported. However, it is not clear whether the loss of sensory neurons is a common feature in severe forms of the disease, how many neurons are lost and how loss of sensory neurons compares with motor neuron degeneration. We have analysed dorsal root ganglionic sensory neurons in Smn-/-;SMN2 mice, a model of type I SMA. In contrast to lumbar motor neurons, no loss of sensory neurons in the L5 dorsal root ganglia is found at post-natal days 3-5 when these mice are severely paralyzed and die from motor defects. Survival of cultured sensory neurons in the presence of NGF and other neurotrophic factors is not reduced in comparison to wild-type controls. However, isolated sensory neurons have shorter neurites and smaller growth cones, and beta-actin protein and beta-actin mRNA are reduced in sensory neurite terminals. In footpads of Smn-deficient mouse embryos, sensory nerve terminals are smaller, suggesting that Smn deficiency reduces neurite outgrowth during embryogenesis. These data indicate that pathological alterations in severe forms of SMA are not restricted to motor neurons, but the defects in the sensory neurons are milder than those in the motor neurons.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Cell Survival
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/deficiency
- Cyclic AMP Response Element-Binding Protein/metabolism
- Disease Models, Animal
- Embryo, Mammalian/metabolism
- Foot/pathology
- Ganglia, Spinal/pathology
- Growth Cones/metabolism
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Mice
- Mice, Knockout
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/metabolism
- Neurites/metabolism
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Protein Transport
- RNA, Messenger/genetics
- RNA-Binding Proteins/metabolism
- SMN Complex Proteins
- Sensory Receptor Cells/pathology
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute for Clinical Neurobiology, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Diers A, Kaczinski M, Grohmann K, Hübner C, Stoltenburg-Didinger G. The ultrastructure of peripheral nerve, motor end-plate and skeletal muscle in patients suffering from spinal muscular atrophy with respiratory distress type 1 (SMARD1). Acta Neuropathol 2005; 110:289-97. [PMID: 16025284 DOI: 10.1007/s00401-005-1056-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 11/26/2022]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is genetically and clinically distinct from classic spinal muscular atrophy (SMA1). It results from mutations in the gene encoding immunoglobulin mu-binding protein 2 (IGHMBP2) on chromosome 11q13. Patients develop distally pronounced muscular weakness and early involvement of the diaphragm, resulting in respiratory failure. Sensory and autonomic nerves are also affected at later stages of the disease. We investigated peripheral nerves, skeletal muscles and neuromuscular junctions (NMJ) ultrastructurally in five unrelated patients and three siblings with genetically confirmed SMARD1. In mixed motor and sensory nerves we detected Wallerian degeneration and axonal atrophy similar to the ultrastructural findings described in SMA1. Isolated axonal atrophy was evident in purely sensory nerves. All investigated NMJ of patients with SMARD1 were dysmorphic and lacked a terminal axon. Moreover, we also observed characteristics of neuropathies, such as abnormalities in myelination, that have not been described in spinal muscular atrophies so far. Based on these findings we conclude that impairment of IGHMBP2 function leads to axonal degeneration, abnormal myelin formation, and motor end-plate degeneration.
Collapse
MESH Headings
- Axons/pathology
- Axons/ultrastructure
- DNA-Binding Proteins/genetics
- Female
- Humans
- Infant
- Infant, Newborn
- Male
- Microscopy, Electron, Transmission
- Motor Neurons/pathology
- Motor Neurons/ultrastructure
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/ultrastructure
- Muscular Atrophy, Spinal/complications
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/physiopathology
- Mutation/genetics
- Nerve Fibers, Myelinated/pathology
- Nerve Fibers, Myelinated/ultrastructure
- Neuromuscular Junction/pathology
- Neuromuscular Junction/physiopathology
- Neuromuscular Junction/ultrastructure
- Neurons, Afferent/pathology
- Neurons, Afferent/ultrastructure
- Peripheral Nerves/pathology
- Peripheral Nerves/physiopathology
- Peripheral Nerves/ultrastructure
- Respiratory Distress Syndrome, Newborn/etiology
- Respiratory Distress Syndrome, Newborn/pathology
- Respiratory Distress Syndrome, Newborn/physiopathology
- Transcription Factors/genetics
- Wallerian Degeneration/pathology
- Wallerian Degeneration/physiopathology
Collapse
Affiliation(s)
- Alexander Diers
- Department of Paediatric Neurology, Charité, Medical Faculty, Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
17
|
Anagnostou E, Miller SP, Guiot MC, Karpati G, Simard L, Dilenge ME, Shevell MI. Type I spinal muscular atrophy can mimic sensory-motor axonal neuropathy. J Child Neurol 2005; 20:147-50. [PMID: 15794183 DOI: 10.1177/08830738050200022101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Spinal muscular atrophy is a group of allelic autosomal recessive disorders characterized by progressive motoneuron loss, symmetric weakness, and skeletal muscle atrophy. It is traditionally considered a pure lower motoneuron disorder, for which a current definitive diagnosis is now possible by molecular genetic testing. We report two newborns with a clinical phenotype consistent with that of spinal muscular atrophy type I and nerve conduction studies and electromyography suggesting more extensive sensory involvement than classically described with spinal muscular atrophy. Molecular testing confirmed spinal muscular atrophy in patient 1 but not in patient 2. Thus, in the setting of a suspected congenital axonal neuropathy, molecular testing might be necessary to distinguish spinal muscular atrophy type I from infantile polyneuropathy.
Collapse
Affiliation(s)
- Evdokia Anagnostou
- Division of Pediatric Neurology, Montreal Children's Hospital, Department of Neurology, McGill University, Montreal, Quebec
| | | | | | | | | | | | | |
Collapse
|
18
|
Grohmann K, Varon R, Stolz P, Schuelke M, Janetzki C, Bertini E, Bushby K, Muntoni F, Ouvrier R, Van Maldergem L, Goemans NMLA, Lochmüller H, Eichholz S, Adams C, Bosch F, Grattan-Smith P, Navarro C, Neitzel H, Polster T, Topaloğlu H, Steglich C, Guenther UP, Zerres K, Rudnik-Schöneborn S, Hübner C. Infantile spinal muscular atrophy with respiratory distress type 1 (SMARD1). Ann Neurol 2003; 54:719-24. [PMID: 14681881 DOI: 10.1002/ana.10755] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Autosomal recessive spinal muscular atrophy with respiratory distress type 1 (SMARD1) is the second anterior horn cell disease in infants in which the genetic defect has been defined. SMARD1 results from mutations in the gene encoding the immunoglobulin micro-binding protein 2 (IGHMBP2) on chromosome 11q13. Our aim was to review the clinical features of 29 infants affected with SMARD1 and report on 26 novel IGHMBP2 mutations. Intrauterine growth retardation, weak cry, and foot deformities were the earliest symptoms of SMARD1. Most patients presented at the age of 1 to 6 months with respiratory distress due to diaphragmatic paralysis and progressive muscle weakness with predominantly distal lower limb muscle involvement. Sensory and autonomic nerves are also affected. Because of the poor prognosis, there is a demand for prenatal diagnosis, and clear diagnostic criteria for infantile SMARD1 are needed. The diagnosis of SMARD1 should be considered in infants with non-5q spinal muscular atrophy, neuropathy, and muscle weakness and/or respiratory distress of unclear cause. Furthermore, consanguineous parents of a child with sudden infant death syndrome should be examined for IGHMBP2 mutations.
Collapse
Affiliation(s)
- Katja Grohmann
- Department of Neuropediatrics, Charité, Campus Virchow-Klinikum, Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Two patients with acute generalized weakness and areflexia are presented. The electrophysiologic studies in both revealed evidence of decreased conduction velocity and mixed axonal and demyelinating neuropathy, suggestive of the diagnosis of Guillain-Barré syndrome. The young ages of the patients and their failure to respond to immunoglobulin therapy were the major clues to the final diagnosis of spinal muscular atrophy type I. Blood for DNA study revealed homozygous deletion mutation in exons 7 and 8 of the survival motor neuron gene. This diagnosis should be considered in every child under 1 year of age who presents with acute weakness because Guillain-Barré syndrome in this age group is rare.
Collapse
Affiliation(s)
- S Ravid
- Division of Pediatric Neurology, Schneider Children's Hospital, New Hyde Park, NY 11040, USA
| | | | | |
Collapse
|
20
|
Kelter AR, Herchenbach J, Wirth B. The transcription factor-like nuclear regulator (TFNR) contains a novel 55-amino-acid motif repeated nine times and maps closely to SMN1. Genomics 2000; 70:315-26. [PMID: 11161782 DOI: 10.1006/geno.2000.6396] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcription factor-like nuclear regulator (TFNR) is a novel human gene that maps on 5q13, distal to the duplicated region that includes SMN1, the spinal muscular atrophy (SMA) determining gene. The location of TFNR allowed us to design an evolutionary model of the SMA region. The 9.5-kb TFNR transcript is highly expressed in cerebellum and weakly in all other tissues tested. TFNR encodes a protein of 2254 amino acids (aa) and contains nine repeats of a novel 55-aa motif, of yet unknown function. The coding region is organized in 32 exons. Alternative splicing of exon 15 results in a truncated protein of 796 aa. TFNR comprises a series of polypeptides that range from 55 to 250 kDa. Immunocytological studies showed that the TFNR protein is present exclusively in the nucleus, where it is concentrated in several nuclear structures. Amino acids 155-474 show significant homology to TFC5, a subunit of the yeast transcription factor TFIIIB, suggesting that TFNR is a putative transcription factor. Based on its proximity to SMN1 and its expression pattern, TFNR may be a candidate gene for atypical forms of SMA with cerebral atrophy and axonal neuropathy that have been shown to carry large deletions in the SMA region.
Collapse
Affiliation(s)
- A R Kelter
- Institute of Human Genetics, Wilhelmstrasse 31, Bonn, D-53111, Germany
| | | | | |
Collapse
|
21
|
Abstract
Polyneuropathies are relatively uncommon in early infancy and the majority of affected children are found to have hypomyelinating neuropathies. Axonal sensorimotor neuropathies have been described in childhood but the majority of affected children present at or after 6 months of age, have nonprogressive courses, and achieve the ability to walk, albeit late. Here we present three infants with infantile progressive axonal polyneuropathy from two families with nonconsanguineous parents. Each child presented shortly after the neonatal period and with rapid progression to quadriplegia. Involvement of the lower cranial nerves, phrenic nerves, or both was present in each child. Electrophysiology was diagnostic in each child. While the diagnosis of spinal muscular atrophy was considered in each case, clinical presentation, biopsies, and genetic testing were inconsistent with this diagnosis. Recognition of this early form of progressive axonal neuropathy is important as respiratory compromise occurred early and the condition showed familial inheritance in two of our patients.
Collapse
Affiliation(s)
- T J Geller
- Department of Neurology, Cardinal Glennon Children's Hospital, Saint Louis University, Health Sciences Center, MO, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Spinal muscular atrophy (SMA) is characterized by degeneration of motor neurons in the spinal cord, causing progressive weakness of the limbs and trunk, followed by muscle atrophy. SMA is one of the most frequent autosomal recessive diseases, with a carrier frequency of 1 in 50 and the most common genetic cause of childhood mortality. The phenotype is extremely variable, and patients have been classified in type I-III SMA based on age at onset and clinical course. All three types of SMA are caused by mutations in the survival motor neuron gene (SMN1). There are two almost identical copies, SMN1 and SMN2, present on chromosome 5q13. Only homozygous absence of SMN1 is responsible for SMA, while homozygous absence of SMN2, found in about 5% of controls, has no clinical phenotype. Ninety-six percent of SMA patients display mutations in SMN1, while 4% are unlinked to 5q13. Of the 5q13-linked SMA patients, 96.4% show homozygous absence of SMN1 exons 7 and 8 or exon 7 only, whereas 3. 6% present a compound heterozygosity with a subtle mutation on one chromosome and a deletion/gene conversion on the other chromosome. Among the 23 different subtle mutations described so far, the Y272C missense mutation is the most frequent one, at 20%. Given this uniform mutation spectrum, direct molecular genetic testing is an easy and rapid analysis for most of the SMA patients. Direct testing of heterozygotes, while not trivial, is compromised by the presence of two SMN1 copies per chromosome in about 4% of individuals. The number of SMN2 copies modulates the SMA phenotype. Nevertheless, it should not be used for prediction of severity of the SMA.
Collapse
Affiliation(s)
- B Wirth
- Institute of Human Genetics, Bonn, Germany.
| |
Collapse
|
23
|
Kelly TE, Amoroso K, Ferre M, Blanco J, Allinson P, Prior TW. Spinal muscular atrophy variant with congenital fractures. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 87:65-8. [PMID: 10528250 DOI: 10.1002/(sici)1096-8628(19991105)87:1<65::aid-ajmg13>3.0.co;2-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A single report of brothers born to first-cousin parents with a form of acute spinal muscular atrophy (SMA) and congenital fractures suggested that this combination represented a distinct form of autosomal recessive SMA. We describe a boy with hypotonia and congenital fractures whose sural nerve and muscle biopsies were consistent with a form of spinal muscular atrophy. Molecular studies identified no abnormality of the SMN(T) gene on chromosome 5. This case serves to validate the suggestion of a distinct and rare form of spinal muscular atrophy while not excluding possible X-linked inheritance.
Collapse
Affiliation(s)
- T E Kelly
- University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA. TEK8S@Virginia,edu
| | | | | | | | | | | |
Collapse
|
24
|
Zerres K, Davies KE. 59th ENMC International Workshop: Spinal Muscular Atrophies: recent progress and revised diagnostic criteria 17-19 April 1998, Soestduinen, The Netherlands. Neuromuscul Disord 1999; 9:272-8. [PMID: 10399757 DOI: 10.1016/s0960-8966(99)00016-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- K Zerres
- Institute for Human Genetics, Technical University, Aachen Germany
| | | |
Collapse
|