1
|
Di Berardino C, Peserico A, Camerano Spelta Rapini C, Liverani L, Capacchietti G, Russo V, Berardinelli P, Unalan I, Damian-Buda AI, Boccaccini AR, Barboni B. Bioengineered 3D ovarian model for long-term multiple development of preantral follicle: bridging the gap for poly(ε-caprolactone) (PCL)-based scaffold reproductive applications. Reprod Biol Endocrinol 2024; 22:95. [PMID: 39095895 PMCID: PMC11295475 DOI: 10.1186/s12958-024-01266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
| | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Chiara Camerano Spelta Rapini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
- DGS SpA, Via Paolo di Dono 73, 00142, Rome, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Paolo Berardinelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Andrada-Ioana Damian-Buda
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| |
Collapse
|
2
|
Renkler NZ, Scialla S, Russo T, D’Amora U, Cruz-Maya I, De Santis R, Guarino V. Micro- and Nanostructured Fibrous Composites via Electro-Fluid Dynamics: Design and Applications for Brain. Pharmaceutics 2024; 16:134. [PMID: 38276504 PMCID: PMC10819193 DOI: 10.3390/pharmaceutics16010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reproducible microenvironment for brain cells can represent a key tool for tissue repair and regeneration. Indeed, this is crucial to support cell growth, mitigate inflammation phenomena and provide adequate structural properties needed to support the damaged tissue, corroborating the activity of the vascular network and ultimately the functionality of neurons. In this context, electro-fluid dynamic techniques (EFDTs), i.e., electrospinning, electrospraying and related techniques, offer the opportunity to engineer a wide variety of composite substrates by integrating fibers, particles, and hydrogels at different scales-from several hundred microns down to tens of nanometers-for the generation of countless patterns of physical and biochemical cues suitable for influencing the in vitro response of coexistent brain cell populations mediated by the surrounding microenvironment. In this review, an overview of the different technological approaches-based on EFDTs-for engineering fibrous and/or particle-loaded composite substrates will be proposed. The second section of this review will primarily focus on describing current and future approaches to the use of composites for brain applications, ranging from therapeutic to diagnostic/theranostic use and from repair to regeneration, with the ultimate goal of providing insightful information to guide future research efforts toward the development of more efficient and reliable solutions.
Collapse
Affiliation(s)
- Nergis Zeynep Renkler
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| |
Collapse
|
3
|
Islam MS, Molley TG, Hung TT, Sathish CI, Putra VDL, Jalandhra GK, Ireland J, Li Y, Yi J, Kruzic JJ, Kilian KA. Magnetic Nanofibrous Hydrogels for Dynamic Control of Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37643902 DOI: 10.1021/acsami.3c07021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The extracellular matrix in tissue consists of complex heterogeneous soft materials with hierarchical structure and dynamic mechanical properties dictating cell and tissue level function. In many natural matrices, there are nanofibrous structures that serve to guide cell activity and dictate the form and function of tissue. Synthetic hydrogels with integrated nanofibers can mimic the structural properties of native tissue; however, model systems with dynamic mechanical properties remain elusive. Here we demonstrate modular nanofibrous hydrogels that can be reversibly stiffened in response to applied magnetic fields. Iron oxide nanoparticles were incorporated into gelatin nanofibers through electrospinning, followed by chemical stabilization and fragmentation. These magnetoactive nanofibers can be mixed with virtually any hydrogel material and reversibly stiffen the matrix at a low fiber content (≤3%). In contrast to previous work, where a large quantity of magnetic material disallowed cell encapsulation, the low nanofiber content allows matrix stiffening with cells in 3D. Using adipose derived stem cells, we show how nanofibrous matrices are beneficial for both osteogenesis and adipogenesis, where stiffening the hydrogel with applied magnetic fields enhances osteogenesis while discouraging adipogenesis. Skeletal myoblast progenitors were used as a model of tissue morphogenesis with matrix stiffening augmenting myogenesis and multinucleated myotube formation. The ability to reversibly stiffen fibrous hydrogels through magnetic stimulation provides a useful tool for studying nanotopography and dynamic mechanics in cell culture, with a scope for stimuli responsive materials for tissue engineering.
Collapse
Affiliation(s)
- Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - C I Sathish
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vina D L Putra
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Gagan K Jalandhra
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Jake Ireland
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Yancheng Li
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiabao Yi
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Di Berardino C, Liverani L, Peserico A, Capacchietti G, Russo V, Bernabò N, Tosi U, Boccaccini AR, Barboni B. When Electrospun Fiber Support Matters: In Vitro Ovine Long-Term Folliculogenesis on Poly (Epsilon Caprolactone) (PCL)-Patterned Fibers. Cells 2022; 11:cells11121968. [PMID: 35741097 PMCID: PMC9222101 DOI: 10.3390/cells11121968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Current assisted reproduction technologies (ART) are insufficient to cover the slice of the population needing to restore fertility, as well as to amplify the reproductive performance of domestic animals or endangered species. The design of dedicated reproductive scaffolds has opened the possibility to better recapitulate the reproductive 3D ovarian environment, thus potentially innovating in vitro folliculogenesis (ivF) techniques. To this aim, the present research has been designed to compare ovine preantral follicles in vitro culture on poly(epsilon-caprolactone) (PCL)-based electrospun scaffolds designed with different topology (Random vs. Patterned fibers) with a previously validated system. The ivF performances were assessed after 14 days under 3D-oil, Two-Step (7 days in 3D-oil and on scaffold), or One-Step PCL protocols (14 days on PCL-scaffold) by assessing morphological and functional outcomes. The results show that Two- and One-Step PCL ivF protocols, when performed on patterned scaffolds, were both able to support follicle growth, antrum formation, and the upregulation of follicle marker genes leading to a greater oocyte meiotic competence than in the 3D-oil system. In conclusion, the One-Step approach could be proposed as a practical and valid strategy to support a synergic follicle-oocyte in vitro development, providing an innovative tool to enhance the availability of matured gametes on an individual basis for ART purposes.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
- Correspondence:
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Umberto Tosi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| |
Collapse
|
5
|
Boon-In S, Theerasilp M, Crespy D. Marrying the incompatible for better: Incorporation of hydrophobic payloads in superhydrophilic hydrogels. J Colloid Interface Sci 2022; 622:75-86. [PMID: 35489103 DOI: 10.1016/j.jcis.2022.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/31/2023]
Abstract
HYPOTHESIS The entrapment of lyophobic in superhydrophilic hydrogels is challenging because of the intrinsic incompatibility between hydrophobic and hydrophilic molecules. To achieve such entrapment without affecting the hydrogel's formation, the electrospinning of nanodroplets or nanoparticles with a water-soluble polymer could reduce the incompatibility through the reduction of interfacial tension and the formation of a barrier film preventing coalescence or aggregation. EXPERIMENTS Nanodroplets or nanoparticles dispersion are electrospun in the presence of a hydrophilic polymer in hydrogel precursors. The dissolution of the hydrophilic nanofibers during electrospinning allows a redispersion of emulsion droplets and nanoparticles in the hydrogel's matrix. FINDINGS Superhydrophilic hydrogels with well-distributed hydrophobic nanodroplets or nanoparticles are obtained without detrimentally imparting the viscosity of hydrogel's precursors and the mechanical properties of the hydrogels. Compared with the incorporation of droplets without electrospinning, higher loadings of hydrophobic payload are achieved without premature leakage. This concept can be used to entrap hydrophobic agrochemicals, drugs, or antibacterial agents in simple hydrogels formulation.
Collapse
Affiliation(s)
- Supissra Boon-In
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
6
|
Doyle SE, Snow F, Duchi S, O’Connell CD, Onofrillo C, Di Bella C, Pirogova E. 3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities. Int J Mol Sci 2021; 22:12420. [PMID: 34830302 PMCID: PMC8622524 DOI: 10.3390/ijms222212420] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Osteochondral (OC) defects are debilitating joint injuries characterized by the loss of full thickness articular cartilage along with the underlying calcified cartilage through to the subchondral bone. While current surgical treatments can provide some relief from pain, none can fully repair all the components of the OC unit and restore its native function. Engineering OC tissue is challenging due to the presence of the three distinct tissue regions. Recent advances in additive manufacturing provide unprecedented control over the internal microstructure of bioscaffolds, the patterning of growth factors and the encapsulation of potentially regenerative cells. These developments are ushering in a new paradigm of 'multiphasic' scaffold designs in which the optimal micro-environment for each tissue region is individually crafted. Although the adoption of these techniques provides new opportunities in OC research, it also introduces challenges, such as creating tissue interfaces, integrating multiple fabrication techniques and co-culturing different cells within the same construct. This review captures the considerations and capabilities in developing 3D printed OC scaffolds, including materials, fabrication techniques, mechanical function, biological components and design.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Finn Snow
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| | - Serena Duchi
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Carmine Onofrillo
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Claudia Di Bella
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| |
Collapse
|
7
|
Shen Y, Xu Y, Yi B, Wang X, Tang H, Chen C, Zhang Y. Engineering a Highly Biomimetic Chitosan-Based Cartilage Scaffold by Using Short Fibers and a Cartilage-Decellularized Matrix. Biomacromolecules 2021; 22:2284-2297. [PMID: 33913697 DOI: 10.1021/acs.biomac.1c00366] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Engineering scaffolds with structurally and biochemically biomimicking cues is essential for the success of tissue-engineered cartilage. Chitosan (CS)-based scaffolds have been widely used for cartilage regeneration due to its chemostructural similarity to the glycosaminoglycans (GAGs) found in the extracellular matrix of cartilage. However, the weak mechanical properties and inadequate chondroinduction capacity of CS give rise to compromised efficacy of cartilage regeneration. In this study, we incorporated short fiber segments, processed from electrospun aligned poly(lactic-co-glycolic acid) (PLGA) fiber arrays, into a citric acid-modified chitosan (CC) hydrogel scaffold for mechanical strengthening and structural biomimicking and meanwhile introduced cartilage-decellularized matrix (CDM) for biochemical signaling to promote the chondroinduction activity. We found that the incorporation of PLGA short fibers and CDM remarkably strengthened the mechanical properties of the CC hydrogel (+349% in compressive strength and +153% in Young's modulus), which also exhibited a large pore size, appropriate porosity, and fast water absorption ability. Biologically, the engineered CDM-Fib/CC scaffold significantly promoted the adhesion and proliferation of chondrocytes and supported the formation of matured cartilage tissue with a cartilagelike structure and deposition of abundant cartilage ECM-specific GAGs and type II collagen (+42% in GAGs content and +295% in type II collagen content). The enhanced mechanical competency and chondroinduction capacity with the engineered CDM-Fib/CC scaffold eventually fulfilled successful in situ osteochondral regeneration in a rabbit model. This study thereby demonstrated a great potential of the engineered highly biomimetic chitosan-based scaffold in cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Yanbing Shen
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bingcheng Yi
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xianliu Wang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Han Tang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.,Key Lab of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
8
|
Sahvieh S, Oryan A, Hassanajili S, Kamali A. Role of bone 1stem cell-seeded 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on a critical-sized radial bone defect in rat. Cell Tissue Res 2021; 383:735-750. [PMID: 32924069 DOI: 10.1007/s00441-020-03284-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023]
Abstract
Osteoconductive biomaterials were used to find the most reliable materials in bone healing. Our focus was on the bone healing capacity of the stem cell-loaded and unloaded PLA/PCL/HA scaffolds. The 3D scaffold of PLA/PCL/HA was characterized by scanning electron microscopy (SEM), rheology, X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) spectroscopy. Bone marrow stem cells (BMSCs) have multipotential differentiation into osteoblasts. Forty Wistar male rats were used to organize four experimental groups: control, autograft, scaffold, and BMSCs-loaded scaffold groups. qRT-PCR showed that the BMSCs-loaded scaffold had a higher expression level of CD31 and osteogenic markers compared with the control group (P < 0.05). Radiology and computed tomography (CT) scan evaluations showed significant improvement in the BMSCs-loaded scaffold compared with the control group (P < 0.001). Biomechanical estimation demonstrated significantly higher stress (P < 0.01), stiffness (P < 0.001), and ultimate load (P < 0.01) in the autograft and BMSCs-loaded scaffold groups compared with the untreated group and higher strain was seen in the control group than the other groups (P < 0.01). Histomorphometric and immunohistochemical (IHC) investigations showed significantly improved regeneration scores in the autograft and BMSCs-loaded scaffold groups compared with the control group (P < 0.05). Also, there was a significant difference between the scaffold and control groups in all tests (P < 0.05). The results depicted that our novel approach will allow to develop PLA/PCL/HA 3D scaffold in bone healing via BMSC loading.
Collapse
Affiliation(s)
- Sonia Sahvieh
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Shadi Hassanajili
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Amir Kamali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
9
|
Jia Y, Sciutto G, Mazzeo R, Samorì C, Focarete ML, Prati S, Gualandi C. Organogel Coupled with Microstructured Electrospun Polymeric Nonwovens for the Effective Cleaning of Sensitive Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39620-39629. [PMID: 32820898 PMCID: PMC8009474 DOI: 10.1021/acsami.0c09543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 05/21/2023]
Abstract
Hydrogels and organogels are widely used as cleaning materials, especially when a controlled solvent release is necessary to prevent substrate damage. This situation is often encountered in the personal care and electronic components fields and represents a challenge in restoration, where the removal of a thin layer of aged varnish from a painting may compromise the integrity of the painting itself. There is an urgent need for new and effective cleaning materials capable of controlling and limiting the use of solvents, achieving at the same time high cleaning efficacy. In this paper, new sandwich-like composites that fully address these requirements are developed by using an organogel (poly(3-hydroxybutyrate) + γ-valerolactone) in the core and two external layers of electrospun nonwovens made of continuous submicrometric fibers produced by electrospinning (either poly(vinyl alcohol) or polyamide 6,6). The new composite materials exhibit an extremely efficient cleaning action that results in the complete elimination of the varnish layer with a minimal amount of solvent adsorbed by the painting layer after the treatment. This demonstrates that the combined materials exert a superficial action that is of utmost importance to safeguard the painting. Moreover, we found that the electrospun nonwoven layers act as mechanically reinforcement components, greatly improving the bending resistance of organogels and their handling. The characterization of these innovative cleaning materials allowed us to propose a mechanism to explain their action: electrospun fibers play the leading role by slowing down the diffusion of the solvent and by conferring to the entire composite a microstructured rough superficial morphology, enabling to achieve outstanding cleaning performance.
Collapse
Affiliation(s)
- Yiming Jia
- Department
of Chemistry “G. Ciamician”, Microchemistry and Microscopy
Art Diagnostic Laboratory (M2ADL), University
of Bologna, Via Guaccimanni 42, 48121 Ravenna, Italy
- Chongqing
Cultural Heritage Research Institute, 400013 Chongqing, China
| | - Giorgia Sciutto
- Department
of Chemistry “G. Ciamician”, Microchemistry and Microscopy
Art Diagnostic Laboratory (M2ADL), University
of Bologna, Via Guaccimanni 42, 48121 Ravenna, Italy
| | - Rocco Mazzeo
- Department
of Chemistry “G. Ciamician”, Microchemistry and Microscopy
Art Diagnostic Laboratory (M2ADL), University
of Bologna, Via Guaccimanni 42, 48121 Ravenna, Italy
| | - Chiara Samorì
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Sant’Alberto 163, 48123 Ravenna, Italy
| | - Maria Letizia Focarete
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health
Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia Bologna, Italy
| | - Silvia Prati
- Department
of Chemistry “G. Ciamician”, Microchemistry and Microscopy
Art Diagnostic Laboratory (M2ADL), University
of Bologna, Via Guaccimanni 42, 48121 Ravenna, Italy
| | - Chiara Gualandi
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy
| |
Collapse
|
10
|
Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Mol Biotechnol 2019; 60:506-532. [PMID: 29761314 DOI: 10.1007/s12033-018-0084-5] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Biomaterial-based scaffolds are important cues in tissue engineering (TE) applications. Recent advances in TE have led to the development of suitable scaffold architecture for various tissue defects. In this narrative review on polycaprolactone (PCL), we have discussed in detail about the synthesis of PCL, various properties and most recent advances of using PCL and PCL blended with either natural or synthetic polymers and ceramic materials for TE applications. Further, various forms of PCL scaffolds such as porous, films and fibrous have been discussed along with the stem cells and their sources employed in various tissue repair strategies. Overall, the present review affords an insight into the properties and applications of PCL in various tissue engineering applications.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Simran Asawa
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Bhaskar Birru
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Ramaraju Baadhe
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Sreenivasa Rao
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
11
|
Ortega Z, Alemán ME, Donate R. Nanofibers and Microfibers for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:97-123. [PMID: 29691819 DOI: 10.1007/978-3-319-76711-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of fibers into scaffolds is a way to mimic natural tissues, in which fibrils are embedded in a matrix. The use of fibers can improve the mechanical properties of the scaffolds and may act as structural support for cell growth. Also, as the morphology of fibrous scaffolds is similar to the natural extracellular matrix, cells cultured on these scaffolds tend to maintain their phenotypic shape. Different materials and techniques can be used to produce micrfibers- and nanofibers for scaffolds manufacturing; cells, in general, adhere and proliferate very well on PCL, chitosan, silk fibroin, and other nanofibers. One of the most important techniques to produce microfibers/nanofibers is electrospinning. Nanofibrous scaffolds are receiving increasing attention in bone tissue engineering, because they are able to offer a favorable microenvironment for cell attachment and growth. Different polymers can be electrospun, i.e., polyester, polyurethane, PLA, PCL, collagen, and silk. Other materials such as bioglass fibers, nanocellulose, and even carbon fiber and fabrics have been used to help increase bioactivity, mechanical properties of the scaffold, and cell proliferation. A compilation of mechanical properties and most common biological tests performed on fibrous scaffolds is included in this chapter. HIGHLIGHTS The use of microfibers and nanofibers allows for tailoring the scaffold properties. Electrospinning is one of the most important techniques nowadays to produce fibrous scaffolds. Microfibers and nanofibers use in scaffolds is a promising field to improve the behavior of scaffolds in osteochondral applications.
Collapse
Affiliation(s)
- Zaida Ortega
- Grupo de investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| | - María Elena Alemán
- Grupo de investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Ricardo Donate
- Grupo de investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
12
|
Pugliese E, Coentro JQ, Zeugolis DI. Advancements and Challenges in Multidomain Multicargo Delivery Vehicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704324. [PMID: 29446161 DOI: 10.1002/adma.201704324] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/05/2017] [Indexed: 06/08/2023]
Abstract
Reparative and regenerative processes are well-orchestrated temporal and spatial events that are governed by multiple cells, molecules, signaling pathways, and interactions thereof. Yet again, currently available implantable devices fail largely to recapitulate nature's complexity and sophistication in this regard. Herein, success stories and challenges in the field of layer-by-layer, composite, self-assembly, and core-shell technologies are discussed for the development of multidomain/multicargo delivery vehicles.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - João Q Coentro
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| |
Collapse
|
13
|
Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev 2016; 107:247-276. [PMID: 27125191 PMCID: PMC5482531 DOI: 10.1016/j.addr.2016.04.015] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Varadraj N Vernekar
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Emmanuel L Kuyinu
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
14
|
Eftekhari H, Jahandideh A, Asghari A, Akbarzadeh A, Hesaraki S. Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:961-968. [PMID: 27356956 DOI: 10.1080/21691401.2016.1198360] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Segmental bone loss due to trauma, infection, and tumor resection and even non-union results in the vast demand for replacement and restoration of the function of the lost bone. The objective of this study is to utilize novel inorganic-organic nanocomposites for biomedical applications. Biodegradable implants have shown great promise for the repair of bone defects and have been commonly used as bone substitutes, which traditionally would be treated using metallic implants. In this study, 45 mature male New Zealand white rabbits 6-8 months and weighting 3-3.5 kg were examined. Rabbits were divided into three groups. Surgical procedures were done after an intramuscular injection of Ketamine 10% (ketamine hydrochloride, 50 mg/kg), Rompun 5% (xylazine, 5 mg/kg). Then an approximately 6 mm diameter - 5 mm cylinder bone defect was created in the femur of one of the hind limbs. After inducing the surgical wound, all rabbits were colored and randomly divided into three experimental groups of nine animals each: Group 1 received medical pure nanocomposite polycaprolactone (PCL) granules, Group 2 received hydroxyapatite and Group 3 was a control group with no treatment. Histopathological evaluation was performed on days 15, 30 and 45 after surgery. On day 45 after surgery, the quantity of newly formed lamellar bone in the healing site in PCL group was better than onward compared with HA and control groups. Finally, nanocomposite PCL granules exhibited a reproducible bone-healing potential.
Collapse
Affiliation(s)
- Hadi Eftekhari
- a Department of Clinical Science, Faculty of Specialized Veterinary Sciences , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Alireza Jahandideh
- a Department of Clinical Science, Faculty of Specialized Veterinary Sciences , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Ahmad Asghari
- a Department of Clinical Science, Faculty of Specialized Veterinary Sciences , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Abolfazl Akbarzadeh
- b Universal Scientific Education and Research Network (USERN) , Tabriz , Iran.,c Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Saeed Hesaraki
- d Department of Pathobiology, Faculty of Specialized Veterinary Sciences , Science and Research Branch, Islamic Azad University , Tehran , Iran
| |
Collapse
|
15
|
Xu S, Deng L, Zhang J, Yin L, Dong A. Composites of electrospun-fibers and hydrogels: A potential solution to current challenges in biological and biomedical field. J Biomed Mater Res B Appl Biomater 2015; 104:640-56. [DOI: 10.1002/jbm.b.33420] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/02/2015] [Accepted: 03/15/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Shuxin Xu
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Liandong Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Jianhua Zhang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Li Yin
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| |
Collapse
|
16
|
Electrospinning of Bioinspired Polymer Scaffolds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 881:33-53. [DOI: 10.1007/978-3-319-22345-2_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Zhang J, Li G, Gao S, Yao Y, Pang L, Li Y, Wang W, Zhao Q, Kong D, Li C. Monocyte chemoattractant protein-1 released from polycaprolactone/chitosan hybrid membrane to promote angiogenesis in vivo. J BIOACT COMPAT POL 2014. [DOI: 10.1177/0883911514554146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have fabricated a hybrid membrane composed of polycaprolactone and a natural polysaccharide, chitosan. The incorporation of chitosan enabled heparinization of the material via electrostatic interaction between heparin and chitosan. More importantly, since multiple cytokines have exhibited binding affinity towards heparin, heparinization of the polycaprolactone/chitosan compound also facilitated immobilization of monocyte chemoattractant protein-1, which is a well-reported pro-angiogenic chemokine. Results demonstrated that the heparinized polycaprolactone/chitosan membrane with monocyte chemoattractant protein-1 immobilization was able to release monocyte chemoattractant protein-1 in a controlled and sustained manner. Bioactivity of the released monocyte chemoattractant protein-1 was uncompromised as shown by a chemotaxis chamber assay using isolated rat peripheral blood mononuclear cells. Enhanced local angiogenesis was subsequently observed in vivo after subcutaneous implantation of the heparinized polycaprolactone/chitosan membrane with monocyte chemoattractant protein-1-releasing property and the mechanisms underlying the angiogenic role of monocyte chemoattractant protein-1 were also investigated. We propose that the monocyte chemoattractant protein-1-induced local capillary formation is attributable to increased recruitment of macrophages, particularly the alternatively activated M2 macrophages, which have been implicated in wound healing. Moreover, a direct effect of monocyte chemoattractant protein-1 on angiogenesis was also observed, mainly via monocyte chemoattractant protein-1-stimulated vascular endothelial growth factor expression and activity. In summary, we report here a feasible way to fabricate a polycaprolactone/chitosan hybrid material that could be functionalized with angiogenic signalling agents, such as monocyte chemoattractant protein-1. Implantation of this material promoted angiogenesis and may therefore be developed into scaffold or dressing materials in treating local ischemia injuries or cutaneous wound.
Collapse
Affiliation(s)
- Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Guoping Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Shan Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yao Yao
- The Key Laboratory of Bioactive Materials of Ministry of Education, Institute of Molecular Biology, College of Life Science, Nankai University, Tianjin, China
| | - Liyun Pang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yuejie Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Qiang Zhao
- The Key Laboratory of Bioactive Materials of Ministry of Education, Institute of Molecular Biology, College of Life Science, Nankai University, Tianjin, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- The Key Laboratory of Bioactive Materials of Ministry of Education, Institute of Molecular Biology, College of Life Science, Nankai University, Tianjin, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
18
|
Costa-Pinto AR, Martins AM, Castelhano-Carlos MJ, Correlo VM, Sol PC, Longatto-Filho A, Battacharya M, Reis RL, Neves NM. In vitro degradation and in vivo biocompatibility of chitosan–poly(butylene succinate) fiber mesh scaffolds. J BIOACT COMPAT POL 2014. [DOI: 10.1177/0883911514521919] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In tissue engineering, the evaluation of the host response to the biomaterial implantation must be assessed to determine the extent of the inflammatory reaction. We studied the degradation of poly(butylene succinate) and chitosan in vitro using lipase and lysozyme enzymes, respectively. The subcutaneous implantation of the scaffolds was performed to assess tissue response. The type of inflammatory cells present in the surrounding tissue, as well as within the scaffold, was determined histologically and by immunohistochemistry. In the presence of lipase or lysozyme, the water uptake of the scaffolds increased. Based on the weight loss data and scanning electron microscopy analysis, the lysozyme combined with lipase had a notable effect on the in vitro degradation of the scaffolds. The in vivo implantation showed a normal inflammatory response, with presence of neutrophils, in a first stage, and macrophages, lymphocytes, and giant cells in a later stage. Vascularization in the surrounding tissue and within the implant increased with time. Moreover, the collagen deposition increased with time inside the implant. In vivo, the scaffolds maintained the structural integrity. The degradation in vitro was faster and greater compared to that observed in vivo within the same time periods.
Collapse
Affiliation(s)
- Ana R Costa-Pinto
- 3B’s Research Group in Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana M Martins
- 3B’s Research Group in Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Magda J Castelhano-Carlos
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, Braga, Portugal
| | - Vitor M Correlo
- 3B’s Research Group in Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paula C Sol
- 3B’s Research Group in Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adhemar Longatto-Filho
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, Braga, Portugal
| | - Mrinal Battacharya
- Department of Biosystems Engineering, University of Minnesota, St Paul, MN, USA
| | - Rui L Reis
- 3B’s Research Group in Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M Neves
- 3B’s Research Group in Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
19
|
Zhang Q, Lu H, Kawazoe N, Chen G. Preparation of collagen scaffolds with controlled pore structures and improved mechanical property for cartilage tissue engineering. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911513494620] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Appropriate pore structures and mechanical properties are required for scaffolds that are used for tissue engineering and regenerative medicine. In this study, pre-prepared ice particulates were used as a porogen material to prepare collagen porous scaffolds with well-controlled pore structures and improved mechanical properties. Porogen ice particulates initiated the formation of interconnected large spherical pores surrounded by small pores. The large spherical pores were well compacted and increased the elastic modulus of the scaffolds. The unique pore structures facilitated cell penetration, resulting in a homogeneous cell distribution throughout the scaffolds. The excellent mechanical properties protected the scaffolds from deformation during cell culturing and implantation. The collagen porous scaffolds facilitated cartilage regeneration when bovine articular chondrocytes were cultured in these scaffolds. The use of pre-prepared ice particulates as a porogen material proved to be a useful method to control the pore structure and improve the mechanical properties of collagen-based porous scaffolds.
Collapse
Affiliation(s)
- Qin Zhang
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hongxu Lu
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Naoki Kawazoe
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Guoping Chen
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|