1
|
Kong Z, Wang X. Bioprinting Technologies and Bioinks for Vascular Model Establishment. Int J Mol Sci 2023; 24:891. [PMID: 36614332 PMCID: PMC9821327 DOI: 10.3390/ijms24010891] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Clinically, large diameter artery defects (diameter larger than 6 mm) can be substituted by unbiodegradable polymers, such as polytetrafluoroethylene. There are many problems in the construction of small diameter blood vessels (diameter between 1 and 3 mm) and microvessels (diameter less than 1 mm), especially in the establishment of complex vascular models with multi-scale branched networks. Throughout history, the vascularization strategies have been divided into three major groups, including self-generated capillaries from implantation, pre-constructed vascular channels, and three-dimensional (3D) printed cell-laden hydrogels. The first group is based on the spontaneous angiogenesis behaviour of cells in the host tissues, which also lays the foundation of capillary angiogenesis in tissue engineering scaffolds. The second group is to vascularize the polymeric vessels (or scaffolds) with endothelial cells. It is hoped that the pre-constructed vessels can be connected with the vascular networks of host tissues with rapid blood perfusion. With the development of bioprinting technologies, various fabrication methods have been achieved to build hierarchical vascular networks with high-precision 3D control. In this review, the latest advances in 3D bioprinting of vascularized tissues/organs are discussed, including new printing techniques and researches on bioinks for promoting angiogenesis, especially coaxial printing, freeform reversible embedded in suspended hydrogel printing, and acoustic assisted printing technologies, and freeform reversible embedded in suspended hydrogel (flash) technology.
Collapse
Affiliation(s)
- Zhiyuan Kong
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Liu S, Wang T, Li S, Wang X. Application Status of Sacrificial Biomaterials in 3D Bioprinting. Polymers (Basel) 2022; 14:2182. [PMID: 35683853 PMCID: PMC9182955 DOI: 10.3390/polym14112182] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing, also known as three-dimensional (3D) printing, relates to several rapid prototyping (RP) technologies, and has shown great potential in the manufacture of organoids and even complex bioartificial organs. A major challenge for 3D bioprinting complex org unit ans is the competitive requirements with respect to structural biomimeticability, material integrability, and functional manufacturability. Over the past several years, 3D bioprinting based on sacrificial templates has shown its unique advantages in building hierarchical vascular networks in complex organs. Sacrificial biomaterials as supporting structures have been used widely in the construction of tubular tissues. The advent of suspension printing has enabled the precise printing of some soft biomaterials (e.g., collagen and fibrinogen), which were previously considered unprintable singly with cells. In addition, the introduction of sacrificial biomaterials can improve the porosity of biomaterials, making the printed structures more favorable for cell proliferation, migration and connection. In this review, we mainly consider the latest developments and applications of 3D bioprinting based on the strategy of sacrificial biomaterials, discuss the basic principles of sacrificial templates, and look forward to the broad prospects of this approach for complex organ engineering or manufacturing.
Collapse
Affiliation(s)
- Siyu Liu
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Tianlin Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Shenglong Li
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Lee TJ, Wu T, Kim YJ, Park JH, Lee DS, Bhang SH. Alternative method for trypsin-based cell dissociation using poly (amino ester) coating and pH 6.0 PBS. J BIOACT COMPAT POL 2021. [DOI: 10.1177/0883911520981710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To maintain the cellular functions of a stem cells for therapeutic tissue engineering, an advanced cell culture method for safe cell dissociation is necessary. We developed a novel cell dissociation method by applying pH-responsive bioreducible polymer on the surface of tissue culture plates (TCPs). We applied acid-responsive bioreducible poly (amino ester) (PAE) as a new candidate for surface coating method to develop alternative cell dissociation method against conventional enzyme (trypsin-ethylene diamine tetra acetic acid (EDTA)) treatment. Human adipose derived stem cells (hADSCs) were cultured on and dissociated from PAE-coated TCPs to compare cell adhesion, cell proliferation, cell viability, and functionality to those of the cells cultured on and dissociated with trypsin-EDTA from normal TCPs without PAE coating. To confirm the in vivo therapeutic efficacy of the hADSCs retrieved from PAE-coated TCPs compared to that of the cells retrieved from normal TCPs with trypsin-EDTA, we induced skin defects at the dorsal area of mice and injected the cells collected from both conditions. With the PAE coating method, cell adhesion, cell proliferation, cell viability, and functionality, especially the angiogenic efficacy, were well preserved when compared to those of the cells treated with trypsin-EDTA. In addition to in vitro results, injecting hADSCs retrieved from PAE-coated TCPs showed similar in vivo angiogenesis and wound closing efficiency compared to those of injecting hADSCs retrieved from normal TCPs with trypsin-EDTA treatment at 2 weeks after the transplantation into mouse skin wound models. We proposed the alternative method for the cell dissociation with pH-responsive bioreducible polymer, PAE. This PAE coating method may lead to the development of alternative cell dissociation method without using enzyme for future regenerative medicine and stem cell therapy.
Collapse
Affiliation(s)
- Tae-Jin Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Division of Medical Biotechnology, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Tepeng Wu
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung-Hwan Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
4
|
Liu F, Wang X. Synthetic Polymers for Organ 3D Printing. Polymers (Basel) 2020; 12:E1765. [PMID: 32784562 PMCID: PMC7466039 DOI: 10.3390/polym12081765] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) printing, known as the most promising approach for bioartificial organ manufacturing, has provided unprecedented versatility in delivering multi-functional cells along with other biomaterials with precise control of their locations in space. The constantly emerging 3D printing technologies are the integration results of biomaterials with other related techniques in biology, chemistry, physics, mechanics and medicine. Synthetic polymers have played a key role in supporting cellular and biomolecular (or bioactive agent) activities before, during and after the 3D printing processes. In particular, biodegradable synthetic polymers are preferable candidates for bioartificial organ manufacturing with excellent mechanical properties, tunable chemical structures, non-toxic degradation products and controllable degradation rates. In this review, we aim to cover the recent progress of synthetic polymers in organ 3D printing fields. It is structured as introducing the main approaches of 3D printing technologies, the important properties of 3D printable synthetic polymers, the successful models of bioartificial organ printing and the perspectives of synthetic polymers in vascularized and innervated organ 3D printing areas.
Collapse
Affiliation(s)
- Fan Liu
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
- Department of Orthodontics, School of Stomatology, China Medical University, No. 117 North Nanjing Street, Shenyang 110003, China
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Chen Q, Tian X, Fan J, Tong H, Ao Q, Wang X. An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting. Molecules 2020; 25:molecules25030756. [PMID: 32050529 PMCID: PMC7036974 DOI: 10.3390/molecules25030756] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/04/2023] Open
Abstract
Crosslinking is an effective way to improve the physiochemical and biochemical properties of hydrogels. In this study, we describe an interpenetrating polymer network (IPN) of alginate/gelatin hydrogels (i.e., A-G-IPN) in which cells can be encapsulated for in vitro three-dimensional (3D) cultures and organ bioprinting. A double crosslinking model, i.e., using Ca2+ to crosslink alginate molecules and transglutaminase (TG) to crosslink gelatin molecules, is exploited to improve the physiochemical, such as water holding capacity, hardness and structural integrity, and biochemical properties, such as cytocompatibility, of the alginate/gelatin hydrogels. For the sake of convenience, the individual ionic (i.e., only treatment with Ca2+) or enzymatic (i.e., only treatment with TG) crosslinked alginate/gelatin hydrogels are referred as alginate-semi-IPN (i.e., A-semi-IPN) or gelatin-semi-IPN (i.e., G-semi-IPN), respectively. Tunable physiochemical and biochemical properties of the hydrogels have been obtained by changing the crosslinking sequences and polymer concentrations. Cytocompatibilities of the obtained hydrogels are evaluated through in vitro 3D cell cultures and bioprinting. The double crosslinked A-G-IPN hydrogel is a promising candidate for a wide range of biomedical applications, including bioartificial organ manufacturing, high-throughput drug screening, and pathological mechanism analyses.
Collapse
Affiliation(s)
- Qiuhong Chen
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Q.C.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Xiaohong Tian
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Q.C.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Jun Fan
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Q.C.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Hao Tong
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Q.C.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Qiang Ao
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Q.C.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Q.C.); (X.T.); (J.F.); (H.T.); (Q.A.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Correspondence: or ; Tel./Fax: +86-24-3190-0983
| |
Collapse
|
6
|
Wang X. Advanced Polymers for Three-Dimensional (3D) Organ Bioprinting. MICROMACHINES 2019; 10:E814. [PMID: 31775349 PMCID: PMC6952999 DOI: 10.3390/mi10120814] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) organ bioprinting is an attractive scientific area with huge commercial profit, which could solve all the serious bottleneck problems for allograft transplantation, high-throughput drug screening, and pathological analysis. Integrating multiple heterogeneous adult cell types and/or stem cells along with other biomaterials (e.g., polymers, bioactive agents, or biomolecules) to make 3D constructs functional is one of the core issues for 3D bioprinting of bioartificial organs. Both natural and synthetic polymers play essential and ubiquitous roles for hierarchical vascular and neural network formation in 3D printed constructs based on their specific physical, chemical, biological, and physiological properties. In this article, several advanced polymers with excellent biocompatibility, biodegradability, 3D printability, and structural stability are reviewed. The challenges and perspectives of polymers for rapid manufacturing of complex organs, such as the liver, heart, kidney, lung, breast, and brain, are outlined.
Collapse
Affiliation(s)
- Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; or ; Tel./Fax: +86-24-31900983
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
3D Bioprinting of Adipose-Derived Stem Cells for Organ Manufacturing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1078:3-14. [PMID: 30357615 DOI: 10.1007/978-981-13-0950-2_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Organ manufacturing is an attractive high-tech research field which can solve the serious donor shortage problems for allograft organ transplantation, high throughput drug screening, and energy metabolism model establishment. How to integrate heterogeneous cell types along with other biomaterials to form bioartificial organs is one of the kernel issues for organ manufacturing. At present, three-dimensional (3D) bioprinting of adipose-derives stem cell (ADSC) containing hydrogels has shown the most bright futures with respect to overcoming all the difficult problems encountered by tissue engineers over the last several decades. In this chapter, we briefly introduce the 3D ADSC bioprinting technologies for organ manufacturing, especially for the branched vascular network construction.
Collapse
|
8
|
Liu F, Chen Q, Liu C, Ao Q, Tian X, Fan J, Tong H, Wang X. Natural Polymers for Organ 3D Bioprinting. Polymers (Basel) 2018; 10:E1278. [PMID: 30961203 PMCID: PMC6401941 DOI: 10.3390/polym10111278] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/25/2023] Open
Abstract
Three-dimensional (3D) bioprinting, known as a promising technology for bioartificial organ manufacturing, has provided unprecedented versatility to manipulate cells and other biomaterials with precise control their locations in space. Over the last decade, a number of 3D bioprinting technologies have been explored. Natural polymers have played a central role in supporting the cellular and biomolecular activities before, during and after the 3D bioprinting processes. These polymers have been widely used as effective cell-loading hydrogels for homogeneous/heterogeneous tissue/organ formation, hierarchical vascular/neural/lymphatic network construction, as well as multiple biological/biochemial/physiological/biomedical/pathological functionality realization. This review aims to cover recent progress in natural polymers for bioartificial organ 3D bioprinting. It is structured as introducing the important properties of 3D printable natural polymers, successful models of 3D tissue/organ construction and typical technologies for bioartificial organ 3D bioprinting.
Collapse
Affiliation(s)
- Fan Liu
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
- Department of Orthodontics, School of Stomatology, China Medical University, No.117 North Nanjing Street, Shenyang 110003, China.
| | - Qiuhong Chen
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Chen Liu
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Qiang Ao
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Xiaohong Tian
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jun Fan
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Hao Tong
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Xiaohong Wang
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Naghieh S, Sarker M, Izadifar M, Chen X. Dispensing-based bioprinting of mechanically-functional hybrid scaffolds with vessel-like channels for tissue engineering applications – A brief review. J Mech Behav Biomed Mater 2018; 78:298-314. [DOI: 10.1016/j.jmbbm.2017.11.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
|
10
|
Wang X, Ao Q, Tian X, Fan J, Tong H, Hou W, Bai S. Gelatin-Based Hydrogels for Organ 3D Bioprinting. Polymers (Basel) 2017; 9:E401. [PMID: 30965706 PMCID: PMC6418925 DOI: 10.3390/polym9090401] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a family of enabling technologies that can be used to manufacture human organs with predefined hierarchical structures, material constituents and physiological functions. The main objective of these technologies is to produce high-throughput and/or customized organ substitutes (or bioartificial organs) with heterogeneous cell types or stem cells along with other biomaterials that are able to repair, replace or restore the defect/failure counterparts. Gelatin-based hydrogels, such as gelatin/fibrinogen, gelatin/hyaluronan and gelatin/alginate/fibrinogen, have unique features in organ 3D bioprinting technologies. This article is an overview of the intrinsic/extrinsic properties of the gelatin-based hydrogels in organ 3D bioprinting areas with advanced technologies, theories and principles. The state of the art of the physical/chemical crosslinking methods of the gelatin-based hydrogels being used to overcome the weak mechanical properties is highlighted. A multicellular model made from adipose-derived stem cell proliferation and differentiation in the predefined 3D constructs is emphasized. Multi-nozzle extrusion-based organ 3D bioprinting technologies have the distinguished potential to eventually manufacture implantable bioartificial organs for purposes such as customized organ restoration, high-throughput drug screening and metabolic syndrome model establishment.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Qiang Ao
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Xiaohong Tian
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jun Fan
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Hao Tong
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Weijian Hou
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Shuling Bai
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
11
|
Wang X, Ao Q, Tian X, Fan J, Wei Y, Hou W, Tong H, Bai S. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E802. [PMID: 28773924 PMCID: PMC5456640 DOI: 10.3390/ma9100802] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
- Department of Mechanical Engineering, Tsinghua University, Center of Organ Manufacturing, Beijing 100084, China.
| | - Qiang Ao
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Xiaohong Tian
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jun Fan
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Yujun Wei
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Weijian Hou
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Hao Tong
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Shuling Bai
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
12
|
Lei M, Wang X. Biodegradable Polymers and Stem Cells for Bioprinting. Molecules 2016; 21:E539. [PMID: 27136526 PMCID: PMC6274354 DOI: 10.3390/molecules21050539] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023] Open
Abstract
It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.
Collapse
Affiliation(s)
- Meijuan Lei
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaohong Wang
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
- Center of 3D printing & Organ Manufacturing, Department of Tissue Engineering, China Medical University (CMU), Shenyang 110122, China.
| |
Collapse
|
13
|
Wang X, Rijff BL, Khang G. A building-block approach to 3D printing a multichannel, organ-regenerative scaffold. J Tissue Eng Regen Med 2015; 11:1403-1411. [PMID: 26123711 DOI: 10.1002/term.2038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 02/01/2015] [Accepted: 04/29/2015] [Indexed: 11/07/2022]
Abstract
Multichannel scaffolds, formed by rapid prototyping technologies, retain a high potential for regenerative medicine and the manufacture of complex organs. This study aims to optimize several parameters for producing poly(lactic-co-glycolic acid) (PLGA) scaffolds by a low-temperature, deposition manufacturing, three-dimensional printing (3DP, or rapid prototyping) system. Concentration of the synthetic polymer solution, nozzle speed and extrusion rate were analysed and discussed. Polymer solution with a concentration of 12% w/v was determined as optimal for formation; large deviation of this figure failed to maintain the desired structure. The extrusion rate was also modified for better construct quality. Finally, several solid organ scaffolds, such as the liver, with proper wall thickness and intact contour were printed. This study gives basic instruction to design and fabricate scaffolds with de novo material systems, particularly by showing the approximation of variables for manufacturing multichannel PLGA scaffolds. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiaohong Wang
- Centre of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
- State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Boaz Lloyd Rijff
- Centre of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Gilson Khang
- Department of BIN Fusion Technology and Department of Polymer Nanoscience Technology, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
14
|
Wang X, Huang Y, Liu C. A combined rotational mold for manufacturing a functional liver system. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515578872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A combined rotational mold system for liver manufacturing was prepared. The combined rotational mold system was composed of a branched internal mold, a basement mold, and a series of external molds with increasing diameters. Semi-spindle constructs, consisting of multiple cell types, such as adipose-derived stem cells and hepatocytes encapsulated in a fibrin hydrogel, were created by sequentially sandwiching cell-laden fibrin hydrogels between the combined rotational mold system based on the Weissenberg effect of non-Newtonian fluid. A spindle liver lobe precursor was constructed, with a multi-scale vascular network including arteries, veins, and capillaries, by integrating the two semi-spindle constructs together and coating the spindle construct with a layer of poly(DL-lactide-co-glycolide acid) solution. The spindle liver lobe precursor was characterized by a series of in vivo experiments. This first report is the preparation of a functioning complex organ, such as the liver, that was produced using an inexpensive, simple, and effective method.
Collapse
Affiliation(s)
- Xiaohong Wang
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, P.R. China
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuanwen Huang
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, P.R. China
| | - Chang Liu
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, P.R. China
| |
Collapse
|
15
|
Xu Y, Wang X. Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel. Biotechnol Bioeng 2015; 112:1683-95. [PMID: 25727058 DOI: 10.1002/bit.25579] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/17/2015] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) cell manipulation is available with the integration of microfluidic technology and rapid prototyping techniques. High-Fidelity (Hi-Fi) constructs hold enormous therapeutic potential for organ manufacturing and regenerative medicine. In the present paper we introduced a quasi-three-dimensional (Q3D) model with parallel biocompatible alginate/gelatin/fibrin hurdles. The behaviors of fluids and cells along the microfluidic channels with various widths were studied. Cells inside the newly designed microfluidic channels attached and grew well. Morphological changes of adipose-derived stem cells (ADSCs) in both two-dimensional (2D) and 3D milieu were found on the printed constructs. Endothelialization occurred with the co-cultures of ADSCs and hepatocytes. This study provides insights into the interactions among fluids, cells and biomaterials, the behaviors of fluids and cells along the microfluidic channels, and the applications of Q3D techniques.
Collapse
Affiliation(s)
- Yufan Xu
- Department of Mechanical Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education & Center of Organ Manufacturing, Tsinghua University, Beijing, 100084, P.R. China
| | - Xiaohong Wang
- Department of Mechanical Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education & Center of Organ Manufacturing, Tsinghua University, Beijing, 100084, P.R. China. .,State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
| |
Collapse
|
16
|
Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology. MATERIALS 2014; 7:2104-2119. [PMID: 28788558 PMCID: PMC5453284 DOI: 10.3390/ma7032104] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/27/2014] [Accepted: 03/10/2014] [Indexed: 01/26/2023]
Abstract
Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.
Collapse
|
17
|
Zhao X, Liu L, Wang J, Xu Y, Zhang W, Khang G, Wang X. In vitro vascularization of a combined system based on a 3D printing technique. J Tissue Eng Regen Med 2014; 10:833-842. [PMID: 24399638 DOI: 10.1002/term.1863] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 11/07/2022]
Abstract
A vital challenge in complex organ manufacturing is to vascularize large combined tissues. The aim of this study is to vascularize in vitro an adipose-derived stem cell (ADSC)/fibrin/collagen incorporated three-dimensional (3D) poly(d,l-lactic-co-glycolic acid) (PLGA) scaffold (10 × 10 × 10 mm3 ) with interconnected channels. A low-temperature 3D printing technique was employed to build the PLGA scaffold. A step-by-step cocktail procedure was designed to engage or steer the ADSCs in the PLGA channels towards both endothelial and smooth muscle cell lineages. The combined system had sufficient mechanical properties to support the cell/fibrin/collagen hydrogel inside the predefined PLGA channels. The ADSCs encapsulated in the fibrin/collagen hydrogel differentiated to endothelial and smooth muscle cell lineage, respectively, corresponding to their respective locations in the construct and formed vascular-like structures. This technique allows in vitro vascularization of the predefined PLGA channels and provides a choice for complex organ manufacture. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xinru Zhao
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Libiao Liu
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Jiayin Wang
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yufan Xu
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Weiming Zhang
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Gilson Khang
- Department of BIN Fusion Technology and Department of Polymer Nano Science Technology, Chonbuk National University, Jeonju, Korea
| | - Xiaohong Wang
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, China. .,State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
McCool JM, Rodriguez IA, Sell SA, Han Y, Bowlin GL. A preliminary study on amelogenin-loaded electrospun scaffolds. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911513513661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amelogenin is a major enamel matrix protein onto which developing enamel forms. In the realm of tissue engineering, amelogenin has been studied and applied to periodontal and wound healing applications. This study introduces the first attempts of incorporating amelogenin within an electrospun scaffold. Amelogenin was extracted from porcine unerupted tooth buds and electrospun with poly(glycolic acid) and poly(ϵ-caprolactone). Protein release kinetics, mechanical properties, fiber diameter, mineralization potential, and cell adhesion properties of the amelogenin-blended scaffolds were studied and compared to the electrospun poly(glycolic acid) and poly(ϵ-caprolactone) controls. Electrospun scaffolds loaded with amelogenin were incubated in phosphate buffer saline. Protein quantification and morphological and mechanical analyses were conducted on the degraded scaffolds, and the incubated phosphate buffer saline was also tested for protein content. Fresh scaffolds were incubated overnight in conventional simulated body fluid to evaluate mineralization potential of the incorporated electrospun amelogenin. Human dermal fibroblasts were seeded onto scaffolds, incubated overnight, cryosectioned, and stained with 4′,6-diamidino-2-phenylindole to determine cellular adhesive properties. The incorporation of 5 mg/mL amelogenin into electrospun scaffolds improved mechanical properties (in poly(ϵ-caprolactone) scaffolds), increased fiber mineralization (in poly(glycolic acid) scaffolds), and improved human dermal fibroblast adhesion (in poly(ϵ-caprolactone) scaffolds). The presented results suggest that amelogenin can be used for multiple tissue engineering applications in the form of an additive to an electrospun scaffold.
Collapse
Affiliation(s)
- Jennifer M McCool
- Tissue Engineering Laboratory, Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Isaac A Rodriguez
- Department of Biomedical Engineering, Herff College of Engineering, The University of Memphis, Memphis, TN, USA
| | - Scott A Sell
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO, USA
| | - Yang Han
- Tissue Engineering Laboratory, Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, Herff College of Engineering, The University of Memphis, Memphis, TN, USA
| |
Collapse
|