1
|
Zehra M, Usmani Y, Shafiq J, Khan A, Zafar M, Raza Mirza M, Shah SR, Al-Harrasi A, Hasan SM, Farooqui A, Ahmed A. In vitro and in vivo antimicrobial potential of lithium complex against multi-drug resistant Acinetobacter baumannii. Microbiol Spectr 2023; 11:e0193023. [PMID: 37861330 PMCID: PMC10715101 DOI: 10.1128/spectrum.01930-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Multi-drug resistance (MDR) by virtue of evolving resistance and virulence mechanisms among A. baumannii is a global concern which is responsible for lethal hospital-acquired infections. Therefore, it is crucial to develop new therapeutics against it. Metal complexes are compact structures with diverse mechanisms that the pathogens cannot evade easily which make them a strong drug candidate. In this study, we assessed the in vitro and in vivo efficacy of lithium complex {[Li(phen)2 sal]} against biofilm-forming MDR A. baumannii. The lithium complex displayed strong antimicrobial activity and reduced the pre-formed mature biofilm which is key barrier for antimicrobial action. Moreover, it employs oxidative stress as one of its mode of actions and causes cellular rupturing. Lithium complex was non-toxic and was significantly effective to overcome pneumonia in mice model. These results highlight the untapped potential of metal complexes that can be explored and utilized for combating notorious A. baumannii infections.
Collapse
Affiliation(s)
- Moatter Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Yamina Usmani
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Jazib Shafiq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ajmal Khan
- Natural and Medical Science Research Center, University of Nizwa, Birkat Almouz, Oman
| | - Muneeza Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Raza Shah
- Natural and Medical Science Research Center, University of Nizwa, Birkat Almouz, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Birkat Almouz, Oman
| | - Syed Mehmood Hasan
- Department of Pathology, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Amber Farooqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Translational Medicine Program, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
2
|
Hussain N, McCartney C, Neal J, Chippor J, Banfield L, Abdallah F. Local anaesthetic-induced myotoxicity in regional anaesthesia: a systematic review and empirical analysis. Br J Anaesth 2018; 121:822-841. [DOI: 10.1016/j.bja.2018.05.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
|
3
|
A moldable sustained release bupivacaine formulation for tailored treatment of postoperative dental pain. Sci Rep 2018; 8:12172. [PMID: 30111777 PMCID: PMC6093872 DOI: 10.1038/s41598-018-29696-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022] Open
Abstract
A moldable and biodegradable dental material was designed for customized placement and sustained delivery of bupivacaine (BP) within an extraction cavity. Microparticles comprising poly(lactic-co-glycolic acid) (PLGA) containing BP were generated via solvent-evaporation and combined with absorbable hemostat Gelfoam®. Kinetics of drug release were evaluated by in vitro dialysis assays, showing higher release within the first 24 hours, with subsequent tapering of release kinetics. Formulations of Gelfoam® and BP-PLGA microparticles (GelBP), with three targeted dosing profiles (0.25, 0.5, and 1 mg/kg/day), were evaluated alongside acute subcutaneous BP injections (2 mg/kg) to determine analgesic efficacy in a rat model of tooth extraction pain. Molar extraction resulted in mechanical and thermal cold hyperalgesia in male and female rats. GelBP outperformed acute BP in blocking post-surgical dental pain, with the 0.25 mg/kg GelBP dose preventing hypersensitivity to mechanical (p < 0.01) and thermal cold stimuli (p = 0.05). Molar extraction also resulted in decreased food consumption and weight. Males receiving acute BP and 0.25 mg/kg GelBP maintained normal food consumption (p < 0.002) and weight (p < 0.0001) throughout 7 days. Females, receiving 0.25 mg/kg GelBP maintained weight on days 5-7 (p < 0.04). Customized, sustained release formulation of anesthetic within a tooth extraction cavity holds potential to eliminate post-operative dental pain over several days.
Collapse
|