1
|
Li XQ, Chen Y. Rosin: A comprehensive review on traditional uses, phytochemistry, and pharmacology. Fitoterapia 2024; 177:106068. [PMID: 38857833 DOI: 10.1016/j.fitote.2024.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Rosin, a natural resin obtained from conifer trees, has a long history of use in traditional folk medicine for treating abscesses, wounds, carbuncles, and burns, etc. It has been employed in ancient Egypt, China, Nordic countries, and Turkey as a therapeutic remedy. This comprehensive review examines the traditional uses, phytochemistry, and pharmacology of rosin, and it provides a critical update on current knowledge of rosin and identifies potential therapeutic opportunities. The chemical composition of rosin is known to vary depending on factors such as botanical sources, geographical locations, and processing methods. Rosin acids, which account for over 90% of its primary chemical constituents, have been identified as the predominant compounds in rosin. Researchers have isolated approximately 50 compounds from rosin, with terpenoid rosin acids being the most prevalent. Furthermore, the review highlights the potential pharmacological activities of rosin and its constituents. Crude extracts and isolated rosin acids have demonstrated promising properties, including antimicrobial, anti-inflammatory, anti-tumor, insecticidal, wound healing, and anti-obesity effects. However, the review emphasizes that further research is needed, as existing studies are predominantly preliminary. Many of the reported bioactivities require further verification, and the underlying mechanisms of action remain largely unexplored. In conclusion, rosin has been extensively used in traditional medicine across different cultures, and its chemical composition has been confirmed to a significant extent. The pharmacological activities observed in crude extracts and isolated rosin acids support its traditional uses. Nevertheless, additional research is necessary to deepen our understanding of the pharmacological mechanisms underlying its effects.
Collapse
Affiliation(s)
- Xiao Qiang Li
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an 710003, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yong Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Han X, Xu R, Gu S, Kong Y, Lou Y, Gao Y, Shang S, Song Z, Song J, Li J. Discovery of novel acrylopimaric acid triazole derivatives as promising antifungal agents. PEST MANAGEMENT SCIENCE 2024; 80:3988-3996. [PMID: 38529554 DOI: 10.1002/ps.8102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND To further develop potential natural fungicides, two series of new acrylopimaric acid triazole derivatives were synthesized, and their antifungal activities were tested and evaluated. RESULTS In vitro antifungal activity results indicated that compound 5m exhibited significant inhibitory activity against Rhizoctonia solani with an half maximal effective concentration (EC50) value of 1.528 mg/L. Its antifungal effect was comparable to that of the commercially available fungicide fluconazole, epoxiconazole and propiconazole (EC50 values of 1.441, 0.815 and 1.173 mg/L). Subsequently, in vivo studies were conducted on compound 5m, which revealed its significant protective and curative effects against R. solani. In addition, physiological and biochemical studies showed that compound 5m could disrupt the morphology and ultrastructure of R. solani mycelium, increase cell membrane permeability, inhibit ergosterol synthesis, and enhance the activity of defense enzymes in rice plants. Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies revealed that the molecular structure significantly influenced the binding of compound 5m to the receptor, thereby enhancing its antifungal activity. CONCLUSION Compound 5m exhibits excellent antifungal activity against R. solani, making it a promising candidate fungicide for the prevention and control of R. solani. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xu Han
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Renle Xu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Shihao Gu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Yue Kong
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Yuhang Lou
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, P. R. China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, P. R. China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, P. R. China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI, USA
| | - Jian Li
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
3
|
Zhang SG, Wan YQ, Zhang WH. Discovery of Dehydroabietylamine Derivatives as Antibacterial and Antifungal Agents. JOURNAL OF NATURAL PRODUCTS 2024; 87:924-934. [PMID: 38513270 DOI: 10.1021/acs.jnatprod.3c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A diverse array of biologically active derivatives was derived by modifying the chemically active sites of dehydroabietylamine. Herein, we describe the synthesis of a new series of C-19-arylated dehydroabietylamine derivatives using a palladium-catalyzed C(sp3)-H activation reaction. Five analogues (3b, 3d, 3h, 3n, and 4a) exhibited antibacterial activity against Escherichia coli. Compound 4a exhibited strong inhibitory activity against DNA Topo II and Topo IV. Molecular docking modeling indicated that it can bind effectively to the target through interactions with amino acid residues. The synthesized compounds were tested in vitro for their antifungal activity against six common phytopathogenic fungi. The mechanism of action of compound 4c against Rhizoctorzia solani was investigated, revealing that it disrupts the morphology of the mycelium and enhances cell membrane permeability.
Collapse
Affiliation(s)
- Shu-Guang Zhang
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yu-Qiang Wan
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
4
|
Park SA, Son J, Kim AJ, Oh S, Bae JM. Effect of adhesive components in experimental fluoride varnish on fluoride release within 30 days in vitro study. Dent Mater J 2024; 43:320-327. [PMID: 38382939 DOI: 10.4012/dmj.2023-299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We aimed to determine whether adhesive components could increase the release time of effective fluoride concentration from an experimental fluoride varnish applied to bovine teeth. An experimental fluoride varnish containing 5% sodium fluoride (EX1) was prepared and combined with 35% hydroxyethyl methacrylate (HEMA) (EX2), 5% glutaraldehyde (EX3), or 35% HEMA/5% glutaraldehyde mixture (EX4). Two commercially available fluoride varnishes were used for comparison. Each group was applied to bovine incisors, and the fluoride release and pH were monitored for 30 days. Cell viability analysis, scanning electron microscopy, and energy-dispersive spectroscopy were performed. EX4 released the highest and most effective concentration of fluoride for the longest period and reached neutral pH at the earliest; the release was maintained for up to 30 days without cytotoxicity. In conclusion, EX4 is considered to be the most effective varnish to prevent dental caries.
Collapse
Affiliation(s)
- Soo-Auk Park
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
| | - Julee Son
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
| | - Ah-Jin Kim
- Department of Dental Hygienist, Singyeongju University
| | - Seunghan Oh
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
- Institute of Biomaterials•Implant, College of Dentistry, Wonkwang University
| | - Ji-Myung Bae
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
- Institute of Biomaterials•Implant, College of Dentistry, Wonkwang University
- Musculoskeletal and Immune Disease Research Institute, Wonkwang University
| |
Collapse
|
5
|
Zhang ZW, Liu SW, Huang HP, Xie YH, Huang RC, Deng YQ, Lin N. Dehydroabietane-type bifunctional organocatalysts in asymmetric synthesis: recent progress. RSC Adv 2023; 13:31047-31058. [PMID: 37881754 PMCID: PMC10594059 DOI: 10.1039/d3ra06715g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Dehydroabietane-type bifunctional organocatalysts derived from rosane-type diterpenes of dehydroabietic acid (DHAA) and dehydroabietylamine (DA) have been utilized in a wide variety of highly enantioselective reactions. Since one well-documented review exclusively reported on the development of terpene-derived bifunctional thioureas in asymmetric organocatalysis in 2013, fragmentary progress on the dehydroabietane-type bifunctional thioureas and squaramides has been mentioned in other reviews. In this mini-review, we systematically analyze and reorganize the published literature on dehydroabietane-type bifunctional organocatalysts in the recent decade according to the type of catalysts. Our aim is for this review to provide helpful research information and serve as a foundation for further design and application of rosin-based organocatalysts.
Collapse
Affiliation(s)
- Zhen-Wei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology Nanning 530200 China
- Key Laboratory of TCM Extraction and Purification and Quality Analysis (Guangxi University of Chinese Medicine), Education Department of Guangxi Zhuang Autonomous Region Nanning 530200 China
| | - Shao-Wu Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology Nanning 530200 China
| | - Hong-Ping Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology Nanning 530200 China
| | - Yu-Hang Xie
- College of Pharmacy, Guangxi University of Chinese Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology Nanning 530200 China
| | - Ruo-Chen Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology Nanning 530200 China
| | - Yan-Qiu Deng
- College of Pharmacy, Guangxi University of Chinese Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology Nanning 530200 China
- Key Laboratory of TCM Extraction and Purification and Quality Analysis (Guangxi University of Chinese Medicine), Education Department of Guangxi Zhuang Autonomous Region Nanning 530200 China
| | - Ning Lin
- College of Pharmacy, Guangxi University of Chinese Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology Nanning 530200 China
| |
Collapse
|
6
|
Characterization of Boswellia rivae Engl Resin as a Potential Use for Pharmaceutical Excipient. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5791308. [PMID: 35978631 PMCID: PMC9377920 DOI: 10.1155/2022/5791308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 07/23/2022] [Indexed: 11/18/2022]
Abstract
Pharmaceutical excipients derived from natural sources like resins are nowadays meritoriously used in the formulation of drugs. Resins of natural origin have many advantages over chemically synthesized substances; they are safer, nontoxic, less expensive, biodegradable, and widely available. To our knowledge, resins from plants have been not sufficiently explored for application in pharmaceutical formulations. Thus, in the present study, a resin isolated from Boswellia rivae Engl was characterized for its potential use as a pharmaceutical excipient. Method. The resin was extracted from the oleo gum resin of Boswellia rivae Engl, which involved the removal of volatile oils, gum, and Boswellic acid contents. The dried resin powder was then characterized for its micromeritic properties, heavy metal contents, moisture content, moisture absorption power, pH, solubility, swelling property, and acute toxicity profile. Moreover, the crystal nature and the chemical functionality of the resin were evaluated by using X-ray diffraction and Fourier transform infrared spectrometry, respectively. Results. The yield of the neutral resin was 13.17%, and the powder was pale yellow and had irregular surfaces. The resin was freely soluble in organic solvents but almost insoluble in water. The moisture content of the dried extract was 2.5% while its moisture absorption capacity was 2.5%, 4%, and 5.47% at 40%, 60%, and 75% RH, respectively. Besides, the maximum swelling capacities of the resin observed were 40%, 37%, and 30% at 350C, 300C, and 250C, respectively. The bulk powder exhibited a 1.21 Hausner ratio, 36.497 angles of repose, and 17.03% Carr's index, indicating the fair flowability of the powder. Heavy metals such as zinc, chromium, and cobalt were detected at a low level while elements like copper, manganese, lead, and cadmium were absent. The X-ray diffraction study revealed that the crystallinity index of the powder was 42.7% with a crystal size of 994.5A. The Boswellia resin could be safe in mice up to 3 g/kg of their body weight. In conclusion, the physicochemical properties of the resin powder investigated reveal its potential application as pharmaceutical additives in the formulation of modified release solid dosages forms like tablets and microcapsules.
Collapse
|
7
|
Li L, Liu X, Li L, Wei S, Huang Q. Preparation of Rosin-Based Composite Membranes and Study of Their Dencichine Adsorption Properties. Polymers (Basel) 2022; 14:polym14112161. [PMID: 35683833 PMCID: PMC9183177 DOI: 10.3390/polym14112161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
In this work, rosin-based composite membranes (RCMs) were developed as selective sorbents for the preparation of dencichine for the first time. The rosin-based polymer microspheres (RPMs) were synthesized using 4-ethylpyridine as a functional monomer and ethylene glycol maleic rosinate acrylate as a crosslinking. RCMs were prepared by spinning the RPMs onto the membranes by electrostatic spinning technology. The optimization of various parameters that affect RCMs was carried out, such as the ratio concentration and voltage intensity of electrospinning membrane. The RCMs were characterized by SEM, TGA and FT-IR. The performances of RCMs were assessed, which included adsorption isotherms, selective recognition and adsorption kinetics. The adsorption of dencichine on RCMs followed pseudo-second-order and adapted Langmuir–Freundlich isotherm model. As for the RCMs, the fast adsorption stage appeared within the first 45 min, and the experimental maximum adsorption capacity was 1.056 mg/g, which is much higher than the previous dencichine adsorbents reported in the literature. The initial decomposition temperature of RCMs is 297 °C, the tensile strength is 2.15 MPa and the elongation at break is 215.1%. The RCMs have good thermal stability and mechanical properties. These results indicated that RCMs are a tremendously promising adsorbent for enriching and purifying dencichine from the notoginseng extracts.
Collapse
Affiliation(s)
- Long Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (L.L.); (X.L.); (L.L.); (S.W.)
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning 530006, China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, China
- Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Xiuyu Liu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (L.L.); (X.L.); (L.L.); (S.W.)
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning 530006, China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, China
- Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Lanfu Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (L.L.); (X.L.); (L.L.); (S.W.)
| | - Sentao Wei
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (L.L.); (X.L.); (L.L.); (S.W.)
| | - Qin Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (L.L.); (X.L.); (L.L.); (S.W.)
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning 530006, China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, China
- Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
- Correspondence:
| |
Collapse
|
8
|
Lime Peel Oil–Incorporated Rosin-Based Antimicrobial In Situ Forming Gel. Gels 2022; 8:gels8030169. [PMID: 35323282 PMCID: PMC8951584 DOI: 10.3390/gels8030169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 02/04/2023] Open
Abstract
Localized intra-periodontal pocket drug delivery using an injectable in situ forming gel is an effective periodontitis treatment. The aqueous insoluble property of rosin is suitable for preparing a solvent exchange-induced in situ forming gel. This study aims to investigate the role of incorporating lime peel oil (LO) on the physicochemical properties of injectable in situ forming gels based on rosin loaded with 5% w/w doxycycline hyclate (DH) in dimethyl sulfoxide (DMSO) and N-methyl pyrrolidone (NMP). Their gel formation, viscosity, injectability, mechanical properties, wettability, drug release, and antimicrobial activities were evaluated. The presence of LO slowed gel formation due to the loose precipitate formation of gel with a high LO content. The viscosity and injectability were slightly increased with higher LO content for the DH-loaded rosin-based in situ forming gel. The addition of 10% LO lowered gel hardness with higher adhesion. LO incorporation promoted a higher drug release pattern than the no oil-added formulation over 10 days and the gel formation rate related to burst drug release. The drug release kinetics followed the non-Fickian diffusion mechanism for oil-added formulations. LO exhibited high antimicrobial activity against Porphyromonas gingivalis and Staphylococcus aureus. The DH-loaded rosin in situ forming gel with an addition of LO (0, 2.5, 5, and 10% w/w) inhibited all tested microorganisms. Adding 10% LO to rosin-based in situ forming gel improved the antimicrobial activities, especially for the P. gingivalis and S. aureus. As a result, the study demonstrates the possibility of using an LO amount of less than 10% loading into a rosin-based in situ forming gel for efficient periodontitis treatment.
Collapse
|
9
|
Pavon C, Aldas M, Hernández‐Fernández J, López‐Martínez J. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J Appl Polym Sci 2022. [DOI: 10.1002/app.51734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cristina Pavon
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Alcoy Spain
| | - Miguel Aldas
- Departamento de Ciencia de Alimentos y Biotecnología Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional Quito Ecuador
| | - Joaquín Hernández‐Fernández
- Centro de Investigación e Invención en Ciencias e Ingeniarías CECOPAT&A Cartagena Colombia
- Department of Natural and Exact Sciences Universidad de la Costa Barranquilla Colombia
| | - Juan López‐Martínez
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Alcoy Spain
| |
Collapse
|
10
|
Masry BA, Elhady MA, Mousaa IM. Fabrication of a novel polyvinylpyrrolidone/abietic acid hydrogel by gamma irradiation for the recovery of Zn, Co, Mn and Ni from aqueous acidic solution. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- B. A. Masry
- Chemistry of Nuclear Fuel Department, Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - M. A. Elhady
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - I. M. Mousaa
- Radiation Chemistry Department, Radiation Research Division, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
11
|
Pavon C, Aldas M, De La Rosa‐Ramírez H, Samper MD, Arrieta MP, López‐Martínez J. Bilayer films of poly(ε‐caprolactone) electrosprayed with gum rosin microspheres: Processing and characterization. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cristina Pavon
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Alcoy Spain
| | - Miguel Aldas
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Alcoy Spain
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria Escuela Politécnica Nacional Quito Ecuador
| | | | - María Dolores Samper
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Alcoy Spain
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid (ETSII‐UPM) Madrid Spain
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA) Madrid Spain
| | - Juan López‐Martínez
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Alcoy Spain
| |
Collapse
|
12
|
Rajić D, Spasojević L, Gojković Cvjetković V, Bučko S, Fraj J, Milinković Budinčić J, Petrović L, Pilić B, Sharipova A, Babayev A, Aidarova S, Katona J. Zein–resin composite nanoparticles with coencapsulated carvacrol. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Danijela Rajić
- Faculty of Technology University of Novi Sad Novi Sad Serbia
- Faculty of Technology University of East Sarajevo Zvornik Bosnia and Herzegovina
| | | | | | - Sandra Bučko
- Faculty of Technology University of Novi Sad Novi Sad Serbia
| | - Jadranka Fraj
- Faculty of Technology University of Novi Sad Novi Sad Serbia
| | | | - Lidija Petrović
- Faculty of Technology University of Novi Sad Novi Sad Serbia
| | - Branka Pilić
- Faculty of Technology University of Novi Sad Novi Sad Serbia
| | | | | | - Saule Aidarova
- Kazakh National Research Technical University Almaty Kazakhstan
- Kazakh–British Technical University Almaty Kazakhstan
| | - Jaroslav Katona
- Faculty of Technology University of Novi Sad Novi Sad Serbia
| |
Collapse
|
13
|
Mao S, Wu C, Gao Y, Hao J, He X, Tao P, Li J, Shang S, Song Z, Song J. Pine Rosin as a Valuable Natural Resource in the Synthesis of Fungicide Candidates for Controlling Fusarium oxysporum on Cucumber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6475-6484. [PMID: 34075747 DOI: 10.1021/acs.jafc.1c01887] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To improve the effect of pine rosin in plant fungicides, four series of dehydroabietyl-1,3,4-thiadiazole derivatives from the natural product rosin were synthesized. Based on the evaluation of the in vitro antifungal activity against Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae, rosin-based 1,3,4-thiadiazole compounds containing thiophene heterocycles were screened. Notably, compound 3e [dehydroabietyl-(1,3,4-thiadiazol-2-yl)-5-nitrothiophene-2-carboxamide] exhibited excellent antifungal property against F. oxysporum with an EC50 of 0.618 mg/L, which was lower than that of the positive control carbendazim (0.649 mg/L). The in vivo antifungal activity results showed that 3e exerted a protective effect on cucumber plants. Physiological and biochemical studies showed that the primary mechanism of action of compound 3e on F. oxysporum was it changed the mycelial morphology, increased the cell membrane permeability, and inhibited the synthesis of ergosterol in the mycelia. Furthermore, the quantitative structure-activity relationship studies revealed that the frontier orbital energy in the molecule had a key role in the antifungal activity through the conjugation and electrostatic interaction between compound 3e and the receptors of the target. Thus, the present study highlighted the application of rosin-based fungicidal candidates and exploited efficient plant pesticides for sustainable crop production.
Collapse
Affiliation(s)
- Shiying Mao
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chengyu Wu
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jin Hao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaohua He
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Pan Tao
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jian Li
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| |
Collapse
|
14
|
Pavon C, Aldas M, López-Martínez J, Hernández-Fernández J, Arrieta MP. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021; 10:1171. [PMID: 34071084 PMCID: PMC8224774 DOI: 10.3390/foods10061171] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Completely biobased and biodegradable thermoplastic starch (TPS) based materials with a tunable performance were prepared for food packaging applications. Five blends were prepared by blending TPS with 10 wt%. of different pine resins derivatives: gum rosin (GR), disproportionated gum rosin (RD), maleic anhydride-modified gum rosin (CM), pentaerythritol ester of gum rosin (LF), and glycerol ester of gum rosin (UG). The materials were characterized in terms of thermo-mechanical behavior, surface wettability, color performance, water absorption, X-ray diffraction pattern, and disintegration under composting conditions. It was determined that pine resin derivatives increase the hydrophobicity of TPS and also increase the elastic component of TPS which stiffen the TPS structure. The water uptake study revealed that GR and LF were able to decrease the water absorption of TPS, while the rest of the resins kept the water uptake ability. X-ray diffraction analyses revealed that GR, CM, and RD restrain the aging of TPS after 24 months of aging. Finally, all TPS-resin blends were disintegrated under composting conditions during the thermophilic incubation period (90 days). Because of the TPS-resin blend's performance, the prepared materials are suitable for biodegradable rigid food packaging applications.
Collapse
Affiliation(s)
- Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), 03801 Alcoy, Spain; (M.A.); (J.L.-M.)
| | - Miguel Aldas
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), 03801 Alcoy, Spain; (M.A.); (J.L.-M.)
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Juan López-Martínez
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), 03801 Alcoy, Spain; (M.A.); (J.L.-M.)
| | - Joaquín Hernández-Fernández
- Research Group in Polymer Science, Engineering and Sustainability, Esenttia, Mamonal Industrial Zona, km. 8, Cartagena 130013, Colombia;
- Department of Natural and Exact Sciences, Universidad de la Costa, Calle 58 # 55–66, Barranquilla 080002, Colombia
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| |
Collapse
|
15
|
Improved Corrosion Resistance of Magnesium Alloy AZ31 in Ringer Lactate by Bilayer Anodic Film/Beeswax–Colophony. COATINGS 2021. [DOI: 10.3390/coatings11050564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A bilayer anodic film/beeswax–colophony is proposed for improving the corrosion resistance of magnesium alloy surface. The bilayer was synthesized on the AZ31 alloy by anodization and subsequent dip coating, and the corrosion behavior was investigated by electrochemical measurements and weight loss test in Ringer lactate at 37 °C. The bilayer improved the electrochemical corrosion resistance by four orders of magnitude, as demonstrated by ~104 times lower corrosion current density in the polarization curves and ~104 higher film resistance in the impedance spectra. The tremendous surface area of the porous anodic film led to a strong attachment of the topcoat beeswax–colophony. Most of the coating remained attached to the surface after 14 days soaking in Ringer lactate. A few small blisters developed under the bilayer contributed to the low mass loss of 0.07 mg/cm2/day compared to the bare substrate, with an average loss rate of 0.25 mg/cm2/day. Local detachment of topcoat layer exposed the underlying anodic film that triggered the deposition of Ca and further nucleation of the Ca–P compound on the surface. The existence of a Ca−P compound with a Ca/P ratio of 1.68 indicated the ability of the bilayer to promote the formation of bone mineral apatite.
Collapse
|
16
|
Films Based on Mater-Bi ® Compatibilized with Pine Resin Derivatives: Optical, Barrier, and Disintegration Properties. Polymers (Basel) 2021; 13:polym13091506. [PMID: 34067087 PMCID: PMC8124954 DOI: 10.3390/polym13091506] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Mater-Bi® NF866 (MB) was blended with gum rosin and two pentaerythritol esters of gum rosin (labeled as LF and UT), as additives, to produce biobased and compostable films for food packaging or agricultural mulch films. The films were prepared by blending MB with 5, 10, and 15 wt.% of each additive. The obtained films were characterized by optical, colorimetric, wettability, and oxygen barrier properties. Moreover, the additives and the MB-based films were disintegrated under composting conditions and the effect of each additive on the biodegradation rate was studied. All films were homogeneous and optically transparent. The color of the films tended to yellow tones due to the addition of pine resin derivatives. All the formulated films presented a complete UV-transmittance blocking effect in the UVA and UVB region, and those with 5 wt.% of pine resin derivatives increased the MB hydrophobicity. Low amounts of resins tend to maintain the oxygen transmission rate (OTR) values of the neat MB, due to its good solubilizing and compatibilizing effects. The disintegration under composting conditions test revealed that gum rosin completely disintegrates in about 90 days, while UT degrades 80% and LF degrades 5%, over 180 days of incubation. As expected, the same tendency was obtained for the disintegration of the studied films, although Mater-Bi® reach 28% of disintegrability over the 180 days of the composting test.
Collapse
|
17
|
Improvement of PBAT Processability and Mechanical Performance by Blending with Pine Resin Derivatives for Injection Moulding Rigid Packaging with Enhanced Hydrophobicity. Polymers (Basel) 2020; 12:polym12122891. [PMID: 33276625 PMCID: PMC7761566 DOI: 10.3390/polym12122891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/06/2023] Open
Abstract
Polybutylene adipate-co-terephthalate (PBAT) is a biodegradable polymer with good features for packaging applications. However, the mechanical performance and high prices of PBAT limit its current usage at the commercial level. To improve the properties and reduce the cost of PBAT, pine resin derivatives, gum rosin (GR) and pentaerythritol ester of GR (UT), were proposed as sustainable additives. For this purpose, PBAT was blended with 5, 10, and 15 wt.% of additives by melt-extrusion followed by injection moulding. The overall performance of the formulations was assessed by tensile test, microstructural, thermal, and dynamic mechanical thermal analysis. The results showed that although good miscibility of both resins with PBAT matrix was achieved, GR in 10 wt.% showed better interfacial adhesion with the PBAT matrix than UT. The thermal characterization suggested that GR and UT reduce PBAT melting enthalpy and enhance its thermal stability, improving PBAT processability. A 10 wt.% of GR significantly increased the tensile properties of PBAT, while a 15 wt.% of UT maintained PBAT tensile performance. The obtained materials showed higher hydrophobicity than neat PBAT. Thus, GR and UT demonstrated that they are advantageous additives for PBAT–resin compounding for rigid food packaging which are easy to process and adequate for industrial scalability. At the same time, they enhance its mechanical and hydrophobic performance.
Collapse
|
18
|
Interactions of zein and zein/rosin nanoparticles with natural polyanion gum arabic. Colloids Surf B Biointerfaces 2020; 196:111289. [DOI: 10.1016/j.colsurfb.2020.111289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
|
19
|
Kupnik K, Primožič M, Kokol V, Leitgeb M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers (Basel) 2020; 12:E2825. [PMID: 33261198 PMCID: PMC7760654 DOI: 10.3390/polym12122825] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.
Collapse
Affiliation(s)
- Kaja Kupnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Mateja Primožič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
20
|
Albarahmieh E, Alkhalidi BA, Al-Hiari Y. Evaluation of amorphous dispersion of a cellulose ester-colophony mix for ibuprofen controlled release processed by HME and spin coating. Carbohydr Polym 2020; 241:116265. [PMID: 32507195 DOI: 10.1016/j.carbpol.2020.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022]
Abstract
Recently, there has been a rapid growth of using bio-based materials in pharmaceutical applications, due to their low cost and availability. In this study, natural composition of cellaburate (cellulose-ester) and colophony (pine-resin) was used to prepare films to control ibuprofen release from its amorphous solid dispersion. The effect of two preparation technologies of spin-coating and hot-melt-extrusion was studied on the physicochemical properties and in vitro dissolution/release behavior. Physical stability was evaluated for 12 w at 54 %RH/22 °C. Characterization involved using PLM/DSC/MTDSC/ATRFTIR/TGA/SEM and PXRD. Ibuprofen was amorphously-dispersed at 30 %(w/w) in 35:65 colophony:cellaburate films. Spin-films were more physically stable over 12 w; however, controlled release of ibuprofen was achieved mainly from hot-melt-extruded-films for 5 h. Both films have shown first-order release kinetics; whereby polymeric swelling and relaxation likely governed the release. The successful preparation of cellaburate-colophony platform that has achieved tunable release profiles of poorly water-soluble drug holds the potential for further drug delivery development.
Collapse
Affiliation(s)
- Esra'a Albarahmieh
- Pharmaceutical Chemical Engineering Department, School of Applied Medical Sciences, German Jordanian University, P.O. Box 35247, Amman, 11180, Jordan.
| | - Bashar A Alkhalidi
- School of Pharmacy, University of Jordan, Queen Rania Street, 11942, Amman, Jordan
| | - Yusuf Al-Hiari
- School of Pharmacy, University of Jordan, Queen Rania Street, 11942, Amman, Jordan
| |
Collapse
|
21
|
Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072561] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fully bio-based materials based on thermoplastic starch (TPS) were developed starting from corn starch plasticized with glycerol. The obtained TPS was further blended with five pine resin derivatives: gum rosin (GR), disproportionated gum rosin (dehydroabietic acid, RD), maleic anhydride modified gum rosin (CM), pentaerythritol ester of gum rosin (LF), and glycerol ester of gum rosin (UG). The TPS–resin blend formulations were processed by melt extrusion and further by injection moulding to simulate the industrial conditions. The obtained materials were characterized in terms of mechanical, thermal and structural properties. The results showed that all gum rosin-based additives were able to improve the thermal stability of TPS, increasing the degradation onset temperature. The carbonyl groups of gum rosin derivatives were able to interact with the hydroxyl groups of starch and glycerol by means of hydrogen bond interactions producing a significant increase of the glass transition temperature with a consequent stiffening effect, which in turn improve the overall mechanical performance of the TPS-resin injected moulded blends. The developed TPS–resin blends are of interest for rigid packaging applications.
Collapse
|
22
|
Pavon C, Aldas M, López-Martínez J, Ferrándiz S. New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers (Basel) 2020; 12:polym12020334. [PMID: 32033300 PMCID: PMC7077448 DOI: 10.3390/polym12020334] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
In this work, different materials for three-dimensional (3D)-printing were studied, which based on polycaprolactone with two natural additives, gum rosin, and beeswax. During the 3D-printing process, the bed and extrusion temperatures of each formulation were established. After, the obtained materials were characterized by mechanical, thermal, and structural properties. The results showed that the formulation with containing polycaprolactone with a mixture of gum rosin and beeswax as additive behaved better during the 3D-printing process. Moreover, the miscibility and compatibility between the additives and the matrix were concluded through the thermal assessment. The mechanical characterization established that the addition of the mixture of gum rosin and beeswax provides greater tensile strength than those additives separately, facilitating 3D-printing. In contrast, the addition of beeswax increased the ductility of the material, which makes the 3D-printing processing difficult. Despite the fact that both natural additives had a plasticizing effect, the formulations containing gum rosin showed greater elongation at break. Finally, Fourier-Transform Infrared Spectroscopy assessment deduced that polycaprolactone interacts with the functional groups of the additives.
Collapse
Affiliation(s)
- Cristina Pavon
- Instituto de Tecnología de Materiales, Departamento de Ingeniería Mecánica y de Materiales, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, 03801 Alcoi, Spain; (J.L.-M.); (S.F.)
- Correspondence: (C.P.); (M.A.); Tel.: +34-644-343-735 (C.P.); +593-999-736-444 (M.A.)
| | - Miguel Aldas
- Instituto de Tecnología de Materiales, Departamento de Ingeniería Mecánica y de Materiales, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, 03801 Alcoi, Spain; (J.L.-M.); (S.F.)
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, 170517 Quito, Ecuador
- Correspondence: (C.P.); (M.A.); Tel.: +34-644-343-735 (C.P.); +593-999-736-444 (M.A.)
| | - Juan López-Martínez
- Instituto de Tecnología de Materiales, Departamento de Ingeniería Mecánica y de Materiales, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, 03801 Alcoi, Spain; (J.L.-M.); (S.F.)
| | - Santiago Ferrándiz
- Instituto de Tecnología de Materiales, Departamento de Ingeniería Mecánica y de Materiales, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, 03801 Alcoi, Spain; (J.L.-M.); (S.F.)
| |
Collapse
|
23
|
Aldas M, Rayón E, López-Martínez J, Arrieta MP. A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers (Basel) 2020; 12:polym12010226. [PMID: 31963296 PMCID: PMC7023580 DOI: 10.3390/polym12010226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/24/2022] Open
Abstract
The interaction between gum rosin and gum rosin derivatives with Mater-Bi type bioplastic, a biodegradable and compostable commercial bioplastic, were studied. Gum rosin and two pentaerythritol esters of gum rosin (Lurefor 125 resin and Unik Tack P100 resin) were assessed as sustainable compatibilizers for the components of Mater-Bi® NF 866 polymeric matrix. To study the influence of each additive in the polymeric matrix, each gum rosin-based additive was compounded in 15 wt % by melt-extrusion and further injection molding process. Then, the mechanical properties were assessed, and the tensile properties and impact resistance were determined. Microscopic analyses were carried out by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and atomic force microscopy with nanomechanical assessment (AFM-QNM). The oxygen barrier and wettability properties were also assayed. The study revealed that the commercial thermoplastic starch is mainly composed of three phases: A polybutylene adipate-co-terephthalate (PBAT) phase, an amorphous phase of thermoplastic starch (TPSa), and a semi-crystalline phase of thermoplastic starch (TPSc). The poor miscibility among the components of the Mater-Bi type bioplastic was confirmed. Finally, the formulations with the gum rosin and its derivatives showed an improvement of the miscibility and the solubility of the components depending on the additive used.
Collapse
Affiliation(s)
- Miguel Aldas
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170517, Ecuador
- Correspondence: (M.A.); (E.R.); (M.P.A.); Tel.: +593-999-736-444 (M.A.); +34-660-806-113 (E.R.); +34-913-944-231 (M.P.A.)
| | - Emilio Rayón
- Instituto de Tecnología de Materiales, Universitat Politècnica de València (UPV), 03801 Alcoy-Alicante, Spain;
- Correspondence: (M.A.); (E.R.); (M.P.A.); Tel.: +593-999-736-444 (M.A.); +34-660-806-113 (E.R.); +34-913-944-231 (M.P.A.)
| | - Juan López-Martínez
- Instituto de Tecnología de Materiales, Universitat Politècnica de València (UPV), 03801 Alcoy-Alicante, Spain;
| | - Marina P. Arrieta
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Avenida Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain
- Correspondence: (M.A.); (E.R.); (M.P.A.); Tel.: +593-999-736-444 (M.A.); +34-660-806-113 (E.R.); +34-913-944-231 (M.P.A.)
| |
Collapse
|
24
|
Luchnikova NA, Ivanova KM, Tarasova EV, Grishko VV, Ivshina IB. Microbial Conversion of Toxic Resin Acids. Molecules 2019; 24:molecules24224121. [PMID: 31739575 PMCID: PMC6891630 DOI: 10.3390/molecules24224121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/03/2022] Open
Abstract
Organic wood extractives—resin acids—significantly contribute to an increase in the toxicity level of pulp and paper industry effluents. Entering open ecosystems, resin acids accumulate and have toxic effects on living organisms, which can lead to the ecological imbalance. Among the most effective methods applied to neutralize these ecotoxicants is enzymatic detoxification using microorganisms. A fundamental interest in the in-depth study of the oxidation mechanisms of resin acids and the search for their key biodegraders is increasing every year. Compounds from this group receive attention because of the need to develop highly effective procedures of resin acid removal from pulp and paper effluents and also the possibility to obtain their derivatives with pronounced pharmacological effects. Over the past fifteen years, this is the first report analyzing the data on distribution, the impacts on living organisms, and the microbial transformation of resin acids. Using the example of dehydroabietic acid—the dominant compound of resin acids in effluents—the review discusses the features of interactions between microorganisms and this pollutant and also highlights the pathways and main products of resin acid bioconversion.
Collapse
Affiliation(s)
- Natalia A. Luchnikova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia; (N.A.L.); (K.M.I.); (E.V.T.)
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| | - Kseniya M. Ivanova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia; (N.A.L.); (K.M.I.); (E.V.T.)
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| | - Ekaterina V. Tarasova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia; (N.A.L.); (K.M.I.); (E.V.T.)
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| | - Victoria V. Grishko
- Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences, 614013 Perm, Russia;
| | - Irina B. Ivshina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia; (N.A.L.); (K.M.I.); (E.V.T.)
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
- Correspondence: ; Tel.: +7-342-2808114
| |
Collapse
|
25
|
Pichaiaukrit W, Thamrongananskul N, Siralertmukul K, Swasdison S. Fluoride varnish containing chitosan demonstrated sustained fluoride release. Dent Mater J 2019; 38:1036-1042. [PMID: 31611494 DOI: 10.4012/dmj.2018-112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fluoride varnish is a professionally applied product that prevents dental caries. However, fluoride varnishes do not provide sustained fluoride release. The objective of this study was to prepare fluoride varnish formulations containing various amounts of chitosan that would generate sustained fluoride release. We evaluated their chemical structure, viscosity, and in vitro fluoride release. Furthermore, the 3-(4, 5-dimethylthiazolyl-2)-2,5diphenyltetrazolium bromide (MTT) assay and direct contact test were used to determine varnish cytotoxicity. We found that all fluoride varnish formulations had the same chemical structure. Their viscosity demonstrated a chitosan concentration-dependent increase. In vitro fluoride release showed a sustained fluoride release. The chitosan fluoride varnishes were cytotoxic to human gingival fibroblasts. We propose the new fluoride varnish formulation as a potential material to be used as a sustained release fluoride varnish.
Collapse
Affiliation(s)
- Woradej Pichaiaukrit
- Dental Biomaterials Science, Graduate School-Interdisciplinary Program, Chulalongkorn University
| | | | | | - Somporn Swasdison
- Department of Oral Medicine, College of Dental Medicine, Rangsit University
| |
Collapse
|
26
|
Kugler S, Ossowicz P, Malarczyk-Matusiak K, Wierzbicka E. Advances in Rosin-Based Chemicals: The Latest Recipes, Applications and Future Trends. Molecules 2019; 24:E1651. [PMID: 31035500 PMCID: PMC6539233 DOI: 10.3390/molecules24091651] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023] Open
Abstract
A comprehensive review of the publications about rosin-based chemicals has been compiled. Rosin, or colophony, is a natural, abundant, cheap and non-toxic raw material which can be easily modified to obtain numerous useful products, which makes it an excellent subject of innovative research, attracting growing interest in recent years. The last extensive review in this research area was published in 2008, so the current article contains the most promising, repeatable achievements in synthesis of rosin-derived chemicals, published in scientific literature from 2008 to 2018. The first part of the review includes low/medium molecule weight compounds: Especially intermediates, resins, monomers, curing agents, surfactants, medications and biocides. The second part is about macromolecules: mainly elastomers, polymers for biomedical applications, coatings, adhesives, surfactants, sorbents, organosilicons and polysaccharides. In conclusion, a critical evaluation of the publications in terms of data completeness has been carried out with an indication of the most promising directions of rosin-based chemicals development.
Collapse
Affiliation(s)
- Szymon Kugler
- Faculty of Chemical Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland.
| | - Paula Ossowicz
- Faculty of Chemical Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland.
| | - Kornelia Malarczyk-Matusiak
- Faculty of Chemical Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland.
| | - Ewa Wierzbicka
- Industrial Chemistry Research Institute, Rydygiera 8, 01-793 Warsaw, Poland.
| |
Collapse
|
27
|
Zhang H, Jiang J, Shang S, Song Z, Song J. Novel, rosin-based, hydrophobically modified cationic polyacrylamide for kaolin suspension flocculation. J Appl Polym Sci 2018. [DOI: 10.1002/app.46637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haibo Zhang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory on Forest Chemical Engineering, State Forestry Administration; Nanjing 210042 People's Republic of China
- College of Materials Science and Technology, Beijing Forestry University, Engineering Research Center of Forestry Biomass Material and Bioenergy; Ministry of Education; Beijing 100083 People's Republic of China
| | - Jianxin Jiang
- College of Materials Science and Technology, Beijing Forestry University, Engineering Research Center of Forestry Biomass Material and Bioenergy; Ministry of Education; Beijing 100083 People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory on Forest Chemical Engineering, State Forestry Administration; Nanjing 210042 People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory on Forest Chemical Engineering, State Forestry Administration; Nanjing 210042 People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry; University of Michigan-Flint; Flint Michigan 48502 United States
| |
Collapse
|
28
|
|
29
|
Zhang H, Huang X, Jiang J, Shang S, Song Z. Hydrogels with high mechanical strength cross-linked by a rosin-based crosslinking agent. RSC Adv 2017. [DOI: 10.1039/c7ra08024g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A novel type of DN hydrogel, prepared by micellar copolymerization of acrylamide and rosin-based crosslinking agent in a micellar solution of SDS. The hydrogels could form both chemical crosslinks and hydrophobic association crosslinked centers.
Collapse
Affiliation(s)
- Haibo Zhang
- Institute of Chemical Industry of Forest Products
- CAF
- National Engineering Lab. for Biomass Chemical Utilization
- Key and Open Lab. of Forest Chemical Engineering
- SFA
| | - Xin Huang
- Institute of Chemical Industry of Forest Products
- CAF
- National Engineering Lab. for Biomass Chemical Utilization
- Key and Open Lab. of Forest Chemical Engineering
- SFA
| | - Jianxin Jiang
- College of Materials Science and Technology
- Beijing Forestry University
- Engineering Research Center of Forestry Biomass Material and Bioenergy
- Ministry of Education
- Beijing 100083
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products
- CAF
- National Engineering Lab. for Biomass Chemical Utilization
- Key and Open Lab. of Forest Chemical Engineering
- SFA
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products
- CAF
- National Engineering Lab. for Biomass Chemical Utilization
- Key and Open Lab. of Forest Chemical Engineering
- SFA
| |
Collapse
|