1
|
Jonny J, Larasati AD, Ramadhani BP, Hernowo BA, Pasiak TF. The role of intravenous glutamine administration in critical care patients with acute kidney injury: a narrative review. EMERGENCY AND CRITICAL CARE MEDICINE 2024; 4:117-125. [DOI: 10.1097/ec9.0000000000000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
The kidneys are complex organs responsible for waste removal and various regulatory functions. Critically ill patients often experience acute kidney injury (AKI). Although renal replacement therapy is used to manage AKI, nutritional therapy is crucial. Glutamine, an amino acid involved in cellular functions, has potential benefits when administered intravenously to critically ill patients. This administration is associated with reduced mortality rates, infectious complications, and hospitalization duration. However, its use in patients with AKI remains controversial. Glutamine is used by various organs, including the kidneys, and its metabolism affects several important pathways. Intravenous glutamine supplementation at specific doses can improve blood marker levels and restore plasma glutamine concentrations. Moreover, this supplementation reduces infections, enhances immune responses, decreases disease severity scores, and reduces complications in critically ill patients. However, caution is advised in patients with multiple organ failure, particularly AKI, as high doses of glutamine may increase mortality rates. Hyperglutaminemia can have adverse effects. Monitoring and appropriate dosing can help to mitigate these risks. Kidneys rely on glutamine for various essential functions. Thus, the use of intravenous glutamine in critically ill patients with AKI remains controversial. Despite its potential benefits in terms of infection reduction, immunomodulation, and improved outcomes, careful consideration of the patient’s condition, dosage, and treatment duration is necessary. Further research is needed to establish optimal guidelines for glutamine administration in this patient population.
Collapse
Affiliation(s)
| | - Astrid Devina Larasati
- Faculty of Medicine of the Jakarta Veteran National Development University, DKI Jakarta, Indonesia
| | | | | | - Taufiq Fredrik Pasiak
- Faculty of Medicine of the Jakarta Veteran National Development University, DKI Jakarta, Indonesia
| |
Collapse
|
2
|
Li F, Wang Z, Cao Y, Pei B, Luo X, Liu J, Ge P, Luo Y, Ma S, Chen H. Intestinal Mucosal Immune Barrier: A Powerful Firewall Against Severe Acute Pancreatitis-Associated Acute Lung Injury via the Gut-Lung Axis. J Inflamm Res 2024; 17:2173-2193. [PMID: 38617383 PMCID: PMC11016262 DOI: 10.2147/jir.s448819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
The pathogenesis of severe acute pancreatitis-associated acute lung injury (SAP-ALI), which is the leading cause of mortality among hospitalized patients in the intensive care unit, remains incompletely elucidated. The intestinal mucosal immune barrier is a crucial component of the intestinal epithelial barrier, and its aberrant activation contributes to the induction of sustained pro-inflammatory immune responses, paradoxical intercellular communication, and bacterial translocation. In this review, we firstly provide a comprehensive overview of the composition of the intestinal mucosal immune barrier and its pivotal roles in the pathogenesis of SAP-ALI. Secondly, the mechanisms of its crosstalk with gut microbiota, which is called gut-lung axis, and its effect on SAP-ALI were summarized. Finally, a number of drugs that could enhance the intestinal mucosal immune barrier and exhibit potential anti-SAP-ALI activities were presented, including probiotics, glutamine, enteral nutrition, and traditional Chinese medicine (TCM). The aim is to offer a theoretical framework based on the perspective of the intestinal mucosal immune barrier to protect against SAP-ALI.
Collapse
Affiliation(s)
- Fan Li
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhengjian Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yinan Cao
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
3
|
Yang YJ, Liu MM, Zhang Y, Wang ZE, Dan-Wu, Fan SJ, Wei Y, Xia L, Peng X. Effectiveness and mechanism study of glutamine on alleviating hypermetabolism in burned rats. Nutrition 2020; 79-80:110934. [PMID: 32847775 DOI: 10.1016/j.nut.2020.110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES This study aimed to explore the effects of glutamine on hypermetabolic reactions in burned rats and its underlying mechanism. METHODS Fifty-five Sprague-Dawley rats were randomly divided into three groups, namely, the control (C), burned (B), and burned + glutamine (B + G) groups. Rats in the glutamine treatment group were supplemented with 1 g glutamine per kg body weight. Changes in body weight and resting energy expenditure in all groups were observed daily. Blood glucose and glucose tolerance level were measured on days 1, 3, 7, 10 and 14 after burn injury. On days 7 and 14 after injury, the rats were sacrificed, and the weight and protein content of the skeletal muscle were measured. Moreover, the level of glutamine, inflammatory mediator, nicotinamide adenine dinucleotide phosphate (NADPH), glutathione, and the activity of glutamine metabolic enzymes were measured. RESULTS The hypermetabolic reaction after burn injury was significantly inhibited by glutamine administration, and the range of variations in the resting energy expenditure and body weight indicators was narrowed remarkably (P < 0.05 or 0.01), whereas the weight and protein content of the skeletal muscle returned to normal (P < 0.05 or 0.01). Glutamine could increase glutaminase activity in various tissues, promote the utilization of glutamine, and appropriately reduce the degree of organ damage and inflammatory response (P < 0.05 or 0.01). Furthermore, glutamine could promote the synthesis of the reducing substances NADPH and glutathione (P < 0.05 or 0.01). CONCLUSIONS Glutamine administration effectively reduces hypermetabolic reactions by promoting NADPH synthesis, inhibiting oxidative stress, and improving glutamine utilization after burn injury.
Collapse
Affiliation(s)
- Yong-Jun Yang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Man-Man Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Yong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Zi En Wang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China; Department of Burns, Union Hospital, Fujian Medical University, Fuzhou China
| | - Dan-Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Shi-Jun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Yan Wei
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Lin Xia
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China; Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China; Department of Burns, Union Hospital, Fujian Medical University, Fuzhou China; Shriners Burns Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
4
|
Zhu J, Yang W, Wang B, Liu Q, Zhong X, Gao Q, Liu J, Huang J, Lin B, Tao Y. Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine. Microb Cell Fact 2020; 19:129. [PMID: 32527330 PMCID: PMC7291740 DOI: 10.1186/s12934-020-01369-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND L-Alanyl-L-glutamine (AQ) is a functional dipeptide with high water solubility, good thermal stability and high bioavailability. It is widely used in clinical treatment, post-operative rehabilitation, sports health care and other fields. AQ is mainly produced via chemical synthesis which is complicated, time-consuming, labor-intensive, and have a low yield accompanied with the generation of by-products. It is therefore highly desirable to develop an efficient biotechnological process for the industrial production of AQ. RESULTS A metabolically engineered E. coli strain for AQ production was developed by over-expressing L-amino acid α-ligase (BacD) from Bacillus subtilis, and inactivating the peptidases PepA, PepB, PepD, and PepN, as well as the dipeptide transport system Dpp. In order to use the more readily available substrate glutamic acid, a module for glutamine synthesis from glutamic acid was constructed by introducing glutamine synthetase (GlnA). Additionally, we knocked out glsA-glsB to block the first step in glutamine metabolism, and glnE-glnB involved in the ATP-dependent addition of AMP/UMP to a subunit of glutamine synthetase, which resulted in increased glutamine supply. Then the glutamine synthesis module was combined with the AQ synthesis module to develop the engineered strain that uses glutamic acid and alanine for AQ production. The expression of BacD and GlnA was further balanced to improve AQ production. Using the final engineered strain p15/AQ10 as a whole-cell biocatalyst, 71.7 mM AQ was produced with a productivity of 3.98 mM/h and conversion rate of 71.7%. CONCLUSION A metabolically engineered strain for AQ production was successfully developed via inactivation of peptidases, screening of BacD, introduction of glutamine synthesis module, and balancing the glutamine and AQ synthesis modules to improve the yield of AQ. This work provides a microbial cell factory for efficient production of AQ with industrial potential.
Collapse
Affiliation(s)
- Jiangming Zhu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Yang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bohua Wang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qun Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaotong Zhong
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Quanxiu Gao
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian People’s Republic of China
| | - Jiezheng Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jianzhong Huang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian People’s Republic of China
| | - Baixue Lin
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
5
|
Loss SH, Franzosi OS, Nunes DSL, Teixeira C, Viana LV. Seven Deadly Sins of Nutrition Therapy in Critically Ill Patients. Nutr Clin Pract 2019; 35:205-210. [PMID: 31642115 DOI: 10.1002/ncp.10430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This article presents 7 nutrition steps that, if not followed by the clinical staff, may be metaphorically considered as "7 deadly sins" of nutrition therapy. In this review, we suggest approaches that must be avoided or accomplished to increase compliance with the "Ten Commandments" of good nutrition practice in the intensive care setting. Multiple aggressive and simultaneous sets of therapies are implemented in the intensive care setting, which include nutrition and metabolic support as important components in these therapies. "Sins" should be remembered as a mnemonic device for nutrition standard care in the intensive care unit; this incorporates nutrition adequacy and protocol adherence.
Collapse
Affiliation(s)
- Sérgio Henrique Loss
- Intensive Care Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Postgraduate Program in Medical Sciences: Endocrinology Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Oellen Stuani Franzosi
- Nutrition and Dietetic Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Medical Sciences: Medical Sciences Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Silva Leite Nunes
- Intensive Care Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Postgraduate Program in Medical Sciences: Medical Sciences Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cassiano Teixeira
- Intensive Care Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Medical School, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Luciana Verçoza Viana
- Postgraduate Program in Medical Sciences: Endocrinology Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Gilani S, Howarth GS, Tran CD, Kitessa SM, Forder REA, Barekatain R, Hughes RJ. Effects of delayed feeding, sodium butyrate and glutamine on intestinal permeability in newly-hatched broiler chickens. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1443109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Saad Gilani
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
- Poultry CRC, University of New England, Armidale, Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - Cuong D. Tran
- Commonwealth Scientific and Industrial Research Organisation, Health and Bio-security, Adelaide, Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Soressa M. Kitessa
- South Australian Research and Development Institute, University of Adelaide, Roseworthy, Australia
| | - Rebecca E. A. Forder
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - Reza Barekatain
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
- South Australian Research and Development Institute, University of Adelaide, Roseworthy, Australia
| | - Robert J. Hughes
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
- South Australian Research and Development Institute, University of Adelaide, Roseworthy, Australia
| |
Collapse
|
7
|
McRae MP. Therapeutic benefits of glutamine: An umbrella review of meta-analyses. Biomed Rep 2017; 6:576-584. [PMID: 28529738 DOI: 10.3892/br.2017.885] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Glutamine may be an essential amino acid in patients with catabolic disease, as it has been demonstrated that circulating glutamine levels drop during critical illness and following major surgery; this may result in an increase in secondary infection risk, recovery time and mortality rates. However, there is much discrepancy in the literature with regards to randomized controlled studies, and therefore, the present study is an umbrella review of published meta-analyses, conducted to examine the effectiveness of glutamine's role as a therapeutic agent. A search using PubMed, Cochrane Library and CINAHL from January 1st, 1980 to December 31st, 2016 was conducted using the following strategy: 'Glutamine AND (meta-analysis OR systematic review)' and publications were retrieved, which provided quantitative statistical analysis of pooled treatment effects on the relative risks of infectious complications, mortality and length of stay in hospital. A total of 22 meta-analyses were entered into the current umbrella review. As displayed in Tables I, II and III, these analyses are split into three groups, based on different parameters. Of the 19 meta-analyses investigating the effects of infectious complications, 15 identified statistically significant reductions in complications, with relative risks ranging between 0.42 and 0.93. In addition, 12 of the 18 meta-analyses analyzing the length of hospital stays presented statistically significant reductions in the length of stay, with reductions ranging between 0.19 to 4.73 days. Only 4 of the 15 meta-analyses studying mortality effects identified statistically significant reductions in mortality with relative risks ranging between 0.64 and 1.28. Statistically significant heterogeneity was observed in 16 of 22 meta-analyses, and publication bias was observed in five of 11 meta-analyses. Glutamine supplementation for critically ill or surgical patients through parenteral or enteral routes appears to reduce the rate of hospital acquired infectious complications and shortening of the length of stay in hospital. Furthermore, glutamine supplementation appeared to reduce the rate of in-patient mortality, but the majority of meta-analyses did not reach statistical significance. However, researchers must appreciate the positive results with caution in light of the fact that there exists statistically significant heterogeneity for the majority of meta-analyses, and statistically significant publication bias in almost half.
Collapse
Affiliation(s)
- Marc P McRae
- Department of Basic Science, National University of Health Sciences, Lombard, IL 60148, USA
| |
Collapse
|