1
|
Belal RM, Yousef DA, Elgendy E, Belal MH. Dentin Collagen versus Er:YAG Laser as Surface Biomodifiers for Intact Root Slices Simulating Delayed Replanted Roots. Photobiomodul Photomed Laser Surg 2025; 43:41-49. [PMID: 38836755 DOI: 10.1089/pho.2023.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Objective: To evaluate effects of dentin collagen versus Er:YAG laser application through enhancing human periodontal ligament fibroblast (PDLF) cells to attach to intact root surfaces imitating delayed replanted roots. Background Data: Accidental traumatic injuries with teeth avulsion are managed by replantation. Root resorption, poor conditioning, and non-viable fibroblasts are factors responsible for failure. Methods: Thirty six human healthy single-rooted premolars were collected. Six teeth were used for PDLF, six teeth used for dentin collagen, whereas the remaining 24 teeth (48 root slices) were used for PDLF cell density and morphology. Each root was soaked in 5.25% NaOCl. Three groups (n = 16 slices/each) were planned as follows: I: Control (untreated); II: dentin collagen application; III: Er:YAG laser irradiation (4 mm distance, 40 mJ/pulse, under coolant). Following incubation, cell density and morphology of PDLF were investigated under SEM. Statistical analysis was performed using analysis of variance with Scheffé's test, and p < 0.05 was considered significant. Results: All groups showed increased cultured PDLF following incubation. Regarding cell density, attached PDLFs were significantly lower in untreated controls (36.5 ± 6.36) (p < 0.00001 i.e., <0.05) in negative empty and/or light cellular areas, compared with dentin collagen (65 ± 6) and laser-irradiated (66.75 ± 5.77) groups that did not show significant differences (p = 0.940 i.e., >0.05) and showed intermediate and/or heavy cellular areas. Regarding cell morphology, controls showed round and/or oval appearance with less lamellipodia, whereas dentin collagen and laser groups showed flat morphology with cytoplasmic processes. Conclusions: Both dentin collagen and Er:YAG laser showed comparable effectiveness as biomodification tools with good biocompatibility for human PDLF cell attachment on intact root slices imitating delayed replantation. Dentin collagen as a natural bioactive material is considered an alternative to Er:YAG laser to enhance the regenerative effects.
Collapse
Affiliation(s)
- Reham M Belal
- Health Administration of Kafr El-Zayat, Ministry of Health & Population, Kafr El-Zayat, Egypt
| | - Doaa A Yousef
- Department of Oral Medicine, Periodontology, Diagnosis and Radiology.Faculty of Dentistry, Tanta, Egypt
| | - Enas Elgendy
- Faculty of Oral and Dental Medicine, Kafr Elsheikh University, Kafr El-Shaikh, Egypt
| | - Mahmoud Helmy Belal
- Department of Oral Medicine, Periodontology, Oral Diagnosis & Radiology, Faculty of Oral & Dental Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Recent Clinical Treatment and Basic Research on the Alveolar Bone. Biomedicines 2023; 11:biomedicines11030843. [PMID: 36979821 PMCID: PMC10044990 DOI: 10.3390/biomedicines11030843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The periodontal ligament is located between the bone (alveolar bone) and the cementum of the tooth, and it is connected by tough fibers called Sharpey’s fibers. To maintain healthy teeth, the foundation supporting the teeth must be healthy. Periodontal diseases, also known as tooth loss, cause the alveolar bone to dissolve. The alveolar bone, similar to the bones in other body parts, is repeatedly resorbed by osteoclasts and renewed by osteogenic cells. This means that an old bone is constantly being resorbed and replaced by a new bone. In periodontal diseases, the alveolar bone around the teeth is absorbed, and as the disease progresses, the alveolar bone shrinks gradually. In most cases, the resorbed alveolar bone does not return to its original form even after periodontal disease is cured. Gum covers the tooth surface so that it matches the shape of the resorbed alveolar bone, exposing more of the tooth surface than before, making the teeth look longer, leaving gaps between the teeth, and in some cases causing teeth to sting. Previously, the only treatment for periodontal diseases was to stop the disease from progressing further before the teeth fell out, and restoration to the original condition was almost impossible. However, a treatment method that can help in the regeneration of the supporting tissues of the teeth destroyed by periodontal diseases and the restoration of the teeth to their original healthy state as much as possible is introduced. Recently, with improvements in implant material properties, implant therapy has become an indispensable treatment method in dentistry and an important prosthetic option. Treatment methods and techniques, which are mainly based on experience, have gradually accumulated scientific evidence, and the number of indications for treatment has increased. The development of bone augmentation methods has contributed remarkably to the expansion of indications, and this has been made possible by various advances in materials science. The induced pluripotent stem cell (iPS) cell technology for regenerating periodontal tissues, including alveolar bone, is expected to be applied in the treatment of diseases, such as tooth loss and periodontitis. This review focuses on the alveolar bone and describes clinical practice, techniques, and the latest basic research.
Collapse
|
3
|
Wang Z, Li Z, Zhang X, Yu Y, Feng Q, Chen J, Xie W. A bone substitute composed of polymethyl-methacrylate bone cement and Bio-Gene allogeneic bone promotes osteoblast viability, adhesion and differentiation. Biomed Mater Eng 2021; 32:29-37. [PMID: 33427728 DOI: 10.3233/bme-201139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Increasing reports on new cement formulations that address the shortcomings of PMMA bone cements and various active components have been introduced to improve the biological activity of PMMA cement. OBJECTIVE Evaluating the biological properties of PMMA cements reinforced with Bio-Gene allogeneic bone. METHODS The MC3T3-E1 mouse osteoblast-like cells were utilized to determine the effects of Bio-Gene + PMMA on osteoblast viability, adhesion and differentiation. RESULTS The combination of allogeneic bone and PMMA increased the number of adherent live cells compared to both control group and PMMA or Bio-Gene group. Scanning electron microscopy observed that the number of cells adhered to Bio-Gene + PMMA was larger than Bio-Gene and PMMA group. Compared with the control and PMMA or Bio-Gene group, the level of ALP and the number of calcium nodules after osteoinduction was remarkably enhanced in Bio-Gene + PMMA group. Additionally, the combination of Bio-Gene and PMMA induced the protein expression of osteocalcin, osterix and collagen I. CONCLUSION The composition of PMMA and allogeneic bone could provide a more beneficial microenvironment for osteoblast proliferation, adhesion and differentiation. PMMA bone cement reinforced with Bio-Gene allogeneic bone may act as a novel bone substitute to improve the biological activity of PMMA cement.
Collapse
Affiliation(s)
- Zhikun Wang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopedics, SSL Central Hospital of Dongguan City, Guangdong, China
| | - Zaixue Li
- Department of Orthopedics, SSL Central Hospital of Dongguan City, Guangdong, China
| | - Xiansen Zhang
- Department of Orthopedics, SSL Central Hospital of Dongguan City, Guangdong, China
| | - Yingfeng Yu
- Department of Orthopedics, SSL Central Hospital of Dongguan City, Guangdong, China
| | - Qingyu Feng
- Department of Orthopedics, SSL Central Hospital of Dongguan City, Guangdong, China
| | - Jianting Chen
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenwei Xie
- Department of Orthopedics, SSL Central Hospital of Dongguan City, Guangdong, China
| |
Collapse
|
4
|
Balu SK, Andra S, Jeevanandam J, S MV, V S. Emerging marine derived nanohydroxyapatite and their composites for implant and biomedical applications. J Mech Behav Biomed Mater 2021; 119:104523. [PMID: 33940538 DOI: 10.1016/j.jmbbm.2021.104523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 01/30/2023]
Abstract
Implant materials must mimic natural human bones with biocompatibility, osteoconductivity and mechanical stability to successfully replace damaged or disease-affected bones. Synthetic hydroxyapatite was incorporated with bioglass to mimic natural bones for replacing conventional implant materials which has led to certain toxicity issues. Hence, hydroxyapatite (HAp) are recently gaining applicational importance as they are resembling the structure and function of natural bones. Further, nanosized HAp is under extensive research to utilize them as a potential replacement for traditional implants with several exclusive properties. However, chemical synthesis of nano-HAp exhibited toxicity towards normal and healthy cells. Recently, biogenic Hap synthesis from marine and animal sources are introduced as a next generation implant materials, due to their mineral ion and significant porous architecture mediated biocompatibility and bone bonding ability, compared to synthetic HAp. Thus, the purpose of the paper is to give a bird's eye view into the conventional approaches for fabricating nano-HAp, its limitations and the significance of using marine organisms and marine food wastes as a precursor for biogenic nano-Hap production. Moreover, in vivo and in vitro analyses of marine source derived nano-HAp and their potential biomedical applications were also discussed.
Collapse
Affiliation(s)
- Satheesh Kumar Balu
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Swetha Andra
- Center for Nanoscience and Technology, Chennai Institute of Technology, Chennai, Tamil Nadu, 600069, India
| | - Jaison Jeevanandam
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Manisha Vidyavathy S
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India.
| | - Sampath V
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
5
|
Keceli HG, Bayram C, Celik E, Ercan N, Demirbilek M, Nohutcu RM. Dual delivery of platelet-derived growth factor and bone morphogenetic factor-6 on titanium surface to enhance the early period of implant osseointegration. J Periodontal Res 2020; 55:694-704. [PMID: 32776328 DOI: 10.1111/jre.12756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To test the surface properties and in vitro effects of a new sequential release system on MC3T3-E1 cells for improved osseointegration. BACKGROUND BMP6-loaded anodized titanium coated with PDGF containing silk fibroin (SF) may improve osseointegration. METHODS Titanium surfaces were electrochemically anodized, and SF layer was covered via electrospinning. Five experimental groups (unanodized Ti (Ti), anodized Ti (AnTi), anodized + BMP6-loaded Ti (AnTi-BMP6), anodized + BMP6 loaded + silk fibroin-coated Ti (AnTi-BMP6-SF), and anodized + BMP6-loaded + silk fibroin with PDGF-coated Ti (AnTi-BMP6-PDGF-SF)) were tested. After SEM characterization, contact angle analysis, and FTIR analysis, the amount of released PDGF and BMP6 was detected using ELISA. Cell proliferation (XTT), mineralization, and gene expression (RUNX2 and ALPL) were also evaluated. RESULTS After successful anodization and loading of PDGF and BMP6, contact angle measurements showed hydrophobicity for TiO2 and hydrophilicity for protein-adsorbed surfaces. In FTIR, protein-containing surfaces exhibited amide-I, amide-II, and amide-III bands at 1600 cm-1 -1700 cm-1 , 1520 cm-1 -1540 cm-1 , and 1220 cm-1 -1300 cm-1 spectrum levels with a significant peak in BMP6- and/or SF-loaded groups at 1100 cm-1 . PDGF release and BMP6 release were delayed, and relatively slower release was detected in SF-coated surfaces. Higher MC3T3-E1 proliferation and mineralization and lower gene expression of RUNX2 and ALPL were detected in AnTi-BMP6-PDGF-SF toward day 28. CONCLUSION The new system revealed a high potential for an improved early osseointegration period by means of a better factor release curve and contribution to the osteoblastic cell proliferation, mineralization, and associated gene expression.
Collapse
Affiliation(s)
- H Gencay Keceli
- Periodontology Department, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Cem Bayram
- Department of Nanotechnology and Nanomedicine, Institute of Science and Technology, Hacettepe University, Ankara, Turkey
| | - Ekin Celik
- Medical Biology Department, Faculty of Medicine, Kirsehir Ahi Evran University, Kirsehir, Turkey
| | - Nuray Ercan
- Periodontology Department, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | - Murat Demirbilek
- Advanced Technologies Application and Research Center, Hacettepe University, Ankara, Turkey
| | - Rahime Meral Nohutcu
- Periodontology Department, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Neto AS, Ferreira JMF. Synthetic and Marine-Derived Porous Scaffolds for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1702. [PMID: 30216991 PMCID: PMC6165145 DOI: 10.3390/ma11091702] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022]
Abstract
Bone is a vascularized and connective tissue. The cortical bone is the main part responsible for the support and protection of the remaining systems and organs of the body. The trabecular spongy bone serves as the storage of ions and bone marrow. As a dynamic tissue, bone is in a constant remodelling process to adapt to the mechanical demands and to repair small lesions that may occur. Nevertheless, due to the increased incidence of bone disorders, the need for bone grafts has been growing over the past decades and the development of an ideal bone graft with optimal properties remains a clinical challenge. This review addresses the bone properties (morphology, composition, and their repair and regeneration capacity) and puts the focus on the potential strategies for developing bone repair and regeneration materials. It describes the requirements for designing a suitable scaffold material, types of materials (polymers, ceramics, and composites), and techniques to obtain the porous structures (additive manufacturing techniques like robocasting or derived from marine skeletons) for bone tissue engineering applications. Overall, the main objective of this review is to gather the knowledge on the materials and methods used for the production of scaffolds for bone tissue engineering and to highlight the potential of natural porous structures such as marine skeletons as promising alternative bone graft substitute materials without any further mineralogical changes, or after partial or total transformation into calcium phosphate.
Collapse
Affiliation(s)
- Ana S Neto
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - José M F Ferreira
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Abstract
Xenogeneic bone graft materials are an alternative to autologous bone grafting. Among such implants, coralline-derived bone grafts substitutes have a long track record as safe, biocompatible and osteoconductive graft materials. In this review, we present the available literature surrounding their use with special focus on the commercially available graft materials. Corals thanks to their chemical and structural characteristics similar to those of the human cancellous bone have shown great potential but clinical data presented to date is ambiguous with both positive and negative outcomes reported. Correct formulation and design of the graft to ensure adequate osteo-activity and resorption appear intrinsic to a successful outcome.
Collapse
Affiliation(s)
- Ippokratis Pountos
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, United Kingdom.
| | - Peter V Giannoudis
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, United Kingdom.
| |
Collapse
|
8
|
Kadkhodazadeh M, Ghasemianpour M, Soltanian N, Sultanian GR, Ahmadpour S, Amid R. Effects of fresh mineralized dentin and cementum on socket healing: a preliminary study in dogs. J Korean Assoc Oral Maxillofac Surg 2015; 41:119-23. [PMID: 26131427 PMCID: PMC4483524 DOI: 10.5125/jkaoms.2015.41.3.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 11/25/2022] Open
Abstract
Objectives Dentin is composed of many minerals and growth factors. Based on this composition, we studied its effect as a possible regenerative material for alveolar healing. Materials and Methods This study was conducted using four 2.5-year-old mongrel dogs (male; weight, 25 to 30 kg). The third mandibular premolars were carefully mobilized with a dental elevator and then removed using forceps. The crown portions of the extracted teeth were removed with cutters, and the root portions of the remaining teeth were collectively trimmed as closely as possible to 350 to 500 µm. Dentin and cementum (DC) chips harvested from the extracted teeth were soaked in blood and packed into the fresh sockets (autograft). Biopsies were performed at the ends of day 14 and day 56 following implantation. Data were expressed as mean±standard deviation and compared with t-test results. Results The ratio of SA(bone) to total area of each probe was determined and was 170±16 µm2 for the control group and 71±14 µm2 for the DC group, a significant difference (P<0.05). Conclusion DC particulate grafts offered no improvement in bone regeneration in alveolar extraction sockets.
Collapse
Affiliation(s)
- Mahdi Kadkhodazadeh
- Dental Research Center, Department of Periodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Ghasemianpour
- Endodontic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Soltanian
- Dental School, International Branch of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahriar Ahmadpour
- Department of Anatomical Sciences, Medicine Faculty, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Amid
- Dental Research Center, Department of Periodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Du B, Liu W, Deng Y, Li S, Liu X, Gao Y, Zhou L. Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo. Int J Nanomedicine 2015; 10:2555-65. [PMID: 25848271 PMCID: PMC4386782 DOI: 10.2147/ijn.s78331] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To improve the regenerative performance of nano-hydroxyapatite/coralline (nHA/coral) block grafting in a canine mandibular critical-size defect model, nHA/coral blocks were coated with recombinant human vascular endothelial growth factor(165) (rhVEGF) via physical adsorption (3 μg rhVEGF165 per nHA/coral block). After the nHA/coral blocks and VEGF/nHA/coral blocks were randomly implanted into the mandibular box-shaped defects in a split-mouth design, the healing process was evaluated by histological observation and histomorphometric and immunohistological analyses. The histological evaluations revealed the ingrowth of newly formed blood vessels and bone at the periphery and cores of the blocks in both groups at both 3 and 8 weeks postsurgery, respectively. In the histomorphometric analysis, the VEGF/nHA/coral group exhibited a larger quantity of new bone formation at 3 and 8 weeks postsurgery. The percentages of newly formed bone within the entire blocks in the VEGF/nHA/coral group were 27.3% ± 8.1% and 39.3% ± 12.8% at 3 weeks and 8 weeks, respectively, and these values were slightly greater than those of the nHA/coral group (21.7% ± 3.0% and 32.6% ± 10.3%, respectively), but the differences were not significant (P>0.05). The immunohistological evaluations revealed that the neovascular density in the VEGF/nHA/coral group (146 ± 32.9 vessel/mm(2)) was much greater than that in the nHA/coral group (105 ± 51.8 vessel/mm(2)) at the 3-week time point (P<0.05), but no significant difference was observed at the 8-week time point (341 ± 86.1 and 269 ± 50.7 vessel/mm(2), respectively, P>0.05). The present study indicated that nHA/coral blocks might be optimal scaffolds for block grafting in critical-size mandibular defects and that additional VEGF coating via physical adsorption can promote angiogenesis in the early stage of bone healing, which suggests that prevascularized nHA/coral blocks have significant potential as a bioactive material for bone regeneration in large-scale alveolar defects.
Collapse
Affiliation(s)
- Bing Du
- Department of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Center of Stomatology, The First People’s Hospital of Foshan, Foshan, Guangdong, People’s Republic of China
| | - Weizhen Liu
- Department of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yue Deng
- Department of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital, Qingdao, People’s Republic of China
| | - Shaobing Li
- Department of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiangning Liu
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Yan Gao
- Department of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Zhou
- Department of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Vago R. Beyond the skeleton: Cnidarian biomaterials as bioactive extracellular microenvironments for tissue engineering. Organogenesis 2012; 4:18-22. [PMID: 19279710 DOI: 10.4161/org.5843] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 03/06/2008] [Indexed: 11/19/2022] Open
Affiliation(s)
- Razi Vago
- Department of Biotechnology Engineering; Ben-Gurion University of the Negev; Beer Sheva, Israel
| |
Collapse
|
11
|
Chen FM, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:219-55. [PMID: 19860551 DOI: 10.1089/ten.teb.2009.0562] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The management of periodontal tissue defects that result from periodontitis represents a medical and socioeconomic challenge. Concerted efforts have been and still are being made to accelerate and augment periodontal tissue and bone regeneration, including a range of regenerative surgical procedures, the development of a variety of grafting materials, and the use of recombinant growth factors. More recently, tissue-engineering strategies, including new cell- and/or matrix-based dimensions, are also being developed, analyzed, and employed for periodontal regenerative therapies. Tissue engineering in periodontology applies the principles of engineering and life sciences toward the development of biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum. It is based on an understanding of the role of periodontal formation and aims to grow new functional tissues rather than to build new replacements of periodontium. Although tissue engineering has merged to create more opportunities for predictable and optimal periodontal tissue regeneration, the technique and design for preclinical and clinical studies remain in their early stages. To date, the reconstruction of small- to moderate-sized periodontal bone defects using engineered cell-scaffold constructs is technically feasible, and some of the currently developed concepts may represent alternatives for certain ideal clinical scenarios. However, the predictable reconstruction of the normal structure and functionality of a tooth-supporting apparatus remains challenging. This review summarizes current regenerative procedures for periodontal healing and regeneration and explores their progress and difficulties in clinical practice, with particular emphasis placed upon current challenges and future possibilities associated with tissue-engineering strategies in periodontal regenerative medicine.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology and Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | | |
Collapse
|
12
|
Emecen P, Akman AC, Hakki SS, Hakki EE, Demiralp B, Tözüm TF, Nohutcu RM. ABM/P-15 modulates proliferation and mRNA synthesis of growth factors of periodontal ligament cells. Acta Odontol Scand 2009; 67:65-73. [PMID: 19031159 DOI: 10.1080/00016350802555525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Periodontal regeneration is histologically defined as regeneration of the tooth supporting structures, including alveolar bone, periodontal ligament, and cementum. Cells in the remaining periodontal tissues need optimal conditions if they are to perform their functions in the regeneration process. The present study is an investigation of the molecular effects of ABM/P-15 on human periodontal ligament cells (PDL) in vitro. MATERIAL AND METHODS PDL cells obtained from healthy subjects were used for in vitro experiments. Cell proliferation, morphology, and mineralization using Von kossa staining were evaluated. mRNA expressions for transforming growth factor-beta (TGF-beta), insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF), bone morphogenic protein-2 (BMP-2), platelet-derived growth factor (PDGF), and type 1 collagen (COL1) were assessed on days 3 and 7 using RT-PCR. RESULTS ABM/P-15 enhanced proliferation of cultured PDL cells. It increased the mRNA expression of TGF-beta and BMP-2 in cultured PDL cells on days 3 and 7. IGF-I and b-FGF mRNA expressions showed a slight decrease, while PDGF expression was observed to have increased on day 3. VEGF and COL1 mRNA expressions were found not to be different on days 3 and 7. No differences were observed in the mineralization properties of cultured PDL cells treated with or without ABM/P-15. CONCLUSIONS Based on the results of this in vitro study, it may be concluded that ABM/P-15 enhanced the regenerative capacity of PDL by regulating specific gene expressions of cells during early wound healing.
Collapse
|
13
|
Vago R. Cnidarians biomineral in tissue engineering: a review. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:343-349. [PMID: 18481145 DOI: 10.1007/s10126-008-9103-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/18/2008] [Accepted: 04/01/2008] [Indexed: 05/26/2023]
Abstract
Biomineralization is the process by which organisms precipitate minerals. Crystals formed in this way are exploited by the organisms for a variety of purposes, including mechanical support and protection of soft tissue. Skeletal precipitation, via millions of years of evolution, has produced a wide variety of architectural configurations and material properties. It is exactly these properties that now attract the attention of researchers searching for new materials for a variety of biomedical applications.
Collapse
Affiliation(s)
- Razi Vago
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
14
|
Sun W, Chu C, Wang J, Zhao H. Comparison of periodontal ligament cells responses to dense and nanophase hydroxyapatite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:677-83. [PMID: 17143736 DOI: 10.1007/s10856-006-0019-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 12/08/2005] [Indexed: 05/12/2023]
Abstract
Hydroxyapatite, a synthetic calcium phosphate ceramic, is used as a biomaterial for the restoration of human hard tissue as well as in techniques which aim to regenerate periodontal tissues. Generally, hydroxyapatite is believed to have osteoconductive effects and to be non-bioresorbable but not to induce to periodontal tissue regeneration. No report has been found on responses of periodontal ligament cells (PDLC), the main contributor to periodontal tissue regeneration, to nanoparticles of hydroxyapatite. The objective of this study was to investigate the possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Using a sol-gel method, the nanophase hydroxyapatite powders were fabricated. These powders were proved to comprise nanoparticles by transmission electron microscope examination. The primary periodontal ligament cells were cultured on dense particle hydroxyapatite and nanometer particle hydroxyapatite. The effects on proliferation of periodontal ligament cells on dense and nanoparticle hydroxyapatite were examined in vitro using a methyl thiazolil tetracolium (MTT) test. The intercellular effects were studied with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). In addition, the influence of the two materials on osteogenic differentiation was determined through measurement of alkaline phosphatase activity and flow cytometry. About 2, 3, and 4 days after treatment with nanoparticles of hydroxyapatite, the proliferation activity of the PDLC increased significantly compared with those proliferating on dense hydroxyapatite and of control PDLC, but no significant difference was found between the PDLC proliferation on dense hydroxyapatite and the control PDLCs. After 3 and 5 days' incubation with nanoparticles of hydroxyapatite, alkaline phosphatase activity was significantly increased as compared to PDLCs incubated with dense hydroxyapatite and control PDLCs. Intracellular engulfment was found in the cultured cells with nanophase hydroxyapatite under electron microscopy. The results suggest that nanophase hydroxyapatite can promote proliferation and osteogenic differentiation of periodontal ligament cells and further that it may be used as a bioresorbable agent in osseous restoration.
Collapse
Affiliation(s)
- Weibin Sun
- Department of Periodontology, College of Stomatology, Nanjing Medical University, Nanjing, PR China.
| | | | | | | |
Collapse
|
15
|
Chen FM, Zhao YM, Wu H, Deng ZH, Wang QT, Zhou W, Liu Q, Dong GY, Li K, Wu ZF, Jin Y. Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran–co-gelatin microspheres. J Control Release 2006; 114:209-22. [PMID: 16859799 DOI: 10.1016/j.jconrel.2006.05.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/15/2006] [Accepted: 05/17/2006] [Indexed: 12/31/2022]
Abstract
The present work focused on the design of novel hydrogel microspheres based on both dextran- and gelatin-derived biomaterials, and discussed whether locally controlled delivery of IGF-I from dextran-co-gelatin hydrogel microspheres (DG-MP) was useful for periodontal regeneration enhancement. Microspheres were synthesized when gelatin was cooperating with glycidyl methacrylate (GMA) derivatized dextrans (Dex-GMA) and the resultant DG-MP with a hydrogel character of which the cross-linking density could be controlled by the degree of substitution (DS, the number of methacrylates per 100 glucopyranose residues) of Dex-GMA. In this study, three types of DG-MP (DG-MP4.7, DG-MP6.3 and DG-MP7.8) obtained from gelatin and Dex-GMA (differing in DS: 4.7, 6.3 and 7.8 respectively) were prepared and characterized by swelling and degradation properties, drug release kinetics and biological capability in promoting tissue regeneration. By swelling in aqueous positively charged IGF-I solutions, the protein could be encapsulated in DG-MP by polyionic complexation with negatively charged acidic gelatin. No obvious influence of Dex-GMA's DS on DG-MP's configuration and size was observed, and the release and degraded properties showed no significant difference between three types of DG-MP in PBS buffer either. However, high DS of Dex-GMA could lower microsphere's swelling, prolong its degraded time and minimize IGF-I burst release markedly in dextranase-containing PBS, where IGF-I release from a slow release type of microspheres (DG-MP7.8) could be maintained more than 28 days, and an effective protein release kinetics without a significant burst but a relevantly constant release after the initial burst was achieved. IGF-I in DG-MP resulted in more new bone formation in the periodontal defects within 4 or 8 weeks than IGF-I in blood clot directly did (P < 0.01). The observed newly formation of periodontal tissues including the height and percentage of new bone and new cementum on the denuded root surfaces of the furcation area in DG-MP7.8 group were more than that in other groups (P < 0.05). The adequate width of regenerative periodontal ligament (PDL), regular Sharpey's fibers and alveolar bone reconstruction could be observed only in DG-MP7.8 group. These combined results demonstrate that effective release kinetics can be realized by adjusting the DS of Dex-GMA and followed cross-linking density of DG-MP, and that locally controlled delivery of IGF-I from slow release type of DG-MP may serve as a novel therapeutic strategy for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Fa-ming Chen
- Department of Periodontology and Oral Medicine, College of Stomatology, Fourth Military Medical University, 145th Chang-le Road, Xi'an 710032, Shaanxi, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|