1
|
Conditioned medium produced by fibroblasts cultured in low oxygen pressure allows the formation of highly structured capillary-like networks in fibrin gels. Sci Rep 2020; 10:9291. [PMID: 32518266 PMCID: PMC7283357 DOI: 10.1038/s41598-020-66145-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tissue engineering is an emerging and promising concept to replace or cure failing organs, but its clinical translation currently encounters issues due to the inability to quickly produce inexpensive thick tissues, which are necessary for many applications. To circumvent this problem, we postulate that cells secrete the optimal cocktail required to promote angiogenesis when they are placed in physiological conditions where their oxygen supply is reduced. Thus, dermal fibroblasts were cultivated under hypoxia (2% O2) to condition their cell culture medium. The potential of this conditioned medium was tested for human umbilical vein endothelial cell proliferation and for their ability to form capillary-like networks into fibrin gels. The medium conditioned by dermal fibroblasts under hypoxic conditions (DF-Hx) induced a more significant proliferation of endothelial cells compared to medium conditioned by dermal fibroblasts under normoxic conditions (DF-Nx). In essence, doubling time for endothelial cells in DF-Hx was reduced by 10.4% compared to DF-Nx after 1 week of conditioning, and by 20.3% after 2 weeks. The DF-Hx allowed the formation of more extended and more structured capillary-like networks than DF-Nx or commercially available medium, paving the way to further refinements.
Collapse
|
2
|
Schulz C, Krüger-Genge A, Jung F, Lendlein A. Aptamer supported in vitro endothelialization of poly(ether imide) films. Clin Hemorheol Microcirc 2020; 75:201-217. [PMID: 31985458 DOI: 10.3233/ch-190775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Implantation of synthetic small-diameter vascular bypass grafts is often associated with an increased risk of failure, due to thrombotic events or late intimal hyperplasia. As one of the causes an insufficient hemocompatibility of the artificial surface is discussed. Endothelialization of synthetic grafts is reported to be a promising strategy for creating a self-renewing and regulative anti-thrombotic graft surface. However, the establishment of a shear resistant cell monolayer is still challenging. In our study, cyto- and immuno-compatible poly(ether imide) (PEI) films were explored as potential biomaterial for cardiovascular applications. Recently, we reported that the initial adherence of primary human umbilical vein endothelial cells (HUVEC) was delayed on PEI-films and about 9 days were needed to establish a confluent and almost shear resistant HUVEC monolayer. To accelerate the initial adherence of HUVEC, the PEI-film surface was functionalized with an aptamer-cRGD peptide based endothelialization supporting system. With this functionalization the initial adherence as well as the shear resistance of HUVEC on PEI-films was considerable improved compared to the unmodified polymer surface. The in vitro results confirm the general applicability of aptamers for an efficient functionalization of substrate surfaces.
Collapse
Affiliation(s)
- Christian Schulz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
3
|
Whited BM, Hofmann MC, Lu P, Xu Y, Rylander CG, Wang G, Sapoznik E, Criswell T, Lee SJ, Soker S, Rylander MN. Dynamic, nondestructive imaging of a bioengineered vascular graft endothelium. PLoS One 2013; 8:e61275. [PMID: 23585885 PMCID: PMC3621659 DOI: 10.1371/journal.pone.0061275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/10/2013] [Indexed: 02/07/2023] Open
Abstract
Bioengineering of vascular grafts holds great potential to address the shortcomings associated with autologous and conventional synthetic vascular grafts used for small diameter grafting procedures. Lumen endothelialization of bioengineered vascular grafts is essential to provide an antithrombogenic graft surface to ensure long-term patency after implantation. Conventional methods used to assess endothelialization in vitro typically involve periodic harvesting of the graft for histological sectioning and staining of the lumen. Endpoint testing methods such as these are effective but do not provide real-time information of endothelial cells in their intact microenvironment, rather only a single time point measurement of endothelium development. Therefore, nondestructive methods are needed to provide dynamic information of graft endothelialization and endothelium maturation in vitro. To address this need, we have developed a nondestructive fiber optic based (FOB) imaging method that is capable of dynamic assessment of graft endothelialization without disturbing the graft housed in a bioreactor. In this study we demonstrate the capability of the FOB imaging method to quantify electrospun vascular graft endothelialization, EC detachment, and apoptosis in a nondestructive manner. The electrospun scaffold fiber diameter of the graft lumen was systematically varied and the FOB imaging system was used to noninvasively quantify the affect of topography on graft endothelialization over a 7-day period. Additionally, results demonstrated that the FOB imaging method had a greater imaging penetration depth than that of two-photon microscopy. This imaging method is a powerful tool to optimize vascular grafts and bioreactor conditions in vitro, and can be further adapted to monitor endothelium maturation and response to fluid flow bioreactor preconditioning.
Collapse
Affiliation(s)
- Bryce M Whited
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mayer A, Kratz K, Hiebl B, Lendlein A, Jung F. Interaction of Angiogenically Stimulated Intermediate CD163+ Monocytes/Macrophages With Soft Hydrophobic Poly(n-Butyl Acrylate) Networks With Elastic Moduli Matched to That of Human Arteries. Artif Organs 2012; 36:E28-38. [DOI: 10.1111/j.1525-1594.2011.01410.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Arul V, Masilamoni JG, Jesudason EP, Jaji PJ, Inayathullah M, Dicky John DG, Vignesh S, Jayakumar R. Glucose Oxidase Incorporated Collagen Matrices for Dermal Wound Repair in Diabetic Rat Models: A Biochemical Study. J Biomater Appl 2011; 26:917-38. [DOI: 10.1177/0885328210390402] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Impaired wound healing in diabetes is a well-documented phenomenon. Emerging data favor the involvement of free radicals in the pathogenesis of diabetic wound healing. We investigated the beneficial role of the sustained release of reactive oxygen species (ROS) in diabetic dermal wound healing. In order to achieve the sustained delivery of ROS in the wound bed, we have incorporated glucose oxidase in the collagen matrix (GOIC), which is applied to the healing diabetic wound. Our in vitro proteolysis studies on incorporated GOIC show increased stability against the proteases in the collagen matrix. In this study, GOIC film and collagen film (CF) are used as dressing material on the wound of streptozotocin-induced diabetic rats. A significant increase in ROS ( p < 0.05) was observed in the fibroblast of GOIC group during the inflammation period compared to the CF and control groups. This elevated level up regulated the antioxidant status in the granulation tissue and improved cellular proliferation in the GOIC group. Interestingly, our biochemical parameters nitric oxide, hydroxyproline, uronic acid, protein, and DNA content in the healing wound showed that there is an increase in proliferation of cells in GOIC when compared to the control and CF groups. In addition, evidence from wound contraction and histology reveals faster healing in the GOIC group. Our observations document that GOIC matrices could be effectively used for diabetic wound healing therapy.
Collapse
Affiliation(s)
- V. Arul
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - J. G. Masilamoni
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
- Department of Neurology, Yerkes National Primate Research Center Emory University, 954 Gatewood Rd., Atlanta, GA 30329, USA
| | - E. P. Jesudason
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - P. J. Jaji
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - M. Inayathullah
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
- Department of Neurology, David Geffen School of Medicine University of California, Los Angeles, CA 90095, USA
| | - D. G. Dicky John
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
- Department of Bioinformatics, Sri Ramachandra University Chennai 600116, India
| | - S. Vignesh
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - R. Jayakumar
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Hagey Laboratory of Regenerative Medicine, 257 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Vrana NE, Cahill PA, McGuinness GB. Endothelialization of PVA/gelatin cryogels for vascular tissue engineering: effect of disturbed shear stress conditions. J Biomed Mater Res A 2010; 94:1080-90. [PMID: 20694975 DOI: 10.1002/jbm.a.32790] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mechanically, poly(vinyl alcohol) (PVA)-based cryogels are extremely well suited for vascular tissue engineering applications. However, their surface properties lead to a slow rate of endothelialization, and the mode of cell attachment leaves the endothelium susceptible to removal under physiological shear stress conditions. In this study, abrupt and ramped disturbed shear stress conditions created by a turbulent orbital flow were used to examine endothelialization on PVA/gelatin cryogels. Cell proliferation rate and apoptosis were evaluated by fluorescent activated cell sorter (FACS) analysis, and the expression of cell-adhesion molecules was used to evaluate the response of cells on cryogels to static and shear conditions by real-time polymerase chain reaction (RT-PCR). Application of a ramped shear stress had a profound effect on endothelial cell proliferation (22.30 +/- 0.20-fold increase), necrosis (eliminated), apoptosis (1.04 +/- 0.18 increase), and overall facilitation of endothelialization while concomitantly increasing nitric oxide (NO) synthesis levels. Ramped shear stress was also effective in helping the retention of the endothelial cells on the cryogel surface, whereas abrupt application caused widespread removal. Under static conditions, Selectin-P expression decreased, whereas both inter-cellular adhesion molecule (ICAM) and platelet endothelial cell adhesion molecule (PECAM)-I expression increased on cryogels over a 10-day culture period. Under both shear stress conditions, Selectin-P expression was decreased both on cryogels and tissue culture polystyrene (TCPS). Controlled application of disturbed shear stress shortens endothelialization times on cryogel surfaces, in contrast to the established antiproliferative effect of shear stress caused by laminar flow, without compromising their functionality. This demonstrates how such mechanical stimuli can be exploited to alter cellular behavior and facilitate the required outcomes for tissue engineering applications.
Collapse
Affiliation(s)
- Nihal Engin Vrana
- School of Mechanical and Manufacturing Engineering, Materials Processing Research Centre, Dublin City University, Glasnevin, Dublin, Ireland
| | | | | |
Collapse
|