1
|
Vrchovecká K, Pávková-Goldbergová M, Engqvist H, Pujari-Palmer M. Cytocompatibility and Bioactive Ion Release Profiles of Phosphoserine Bone Adhesive: Bridge from In Vitro to In Vivo. Biomedicines 2022; 10:biomedicines10040736. [PMID: 35453486 PMCID: PMC9044752 DOI: 10.3390/biomedicines10040736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
One major challenge when developing new biomaterials is translating in vitro testing to in vivo models. We have recently shown that a single formulation of a bone tissue adhesive, phosphoserine modified cement (PMC), is safe and resorbable in vivo. Herein, we screened many new adhesive formulations, for cytocompatibility and bioactive ion release, with three cell lines: MDPC23 odontoblasts, MC3T3 preosteoblasts, and L929 fibroblasts. Most formulations were cytocompatible by indirect contact testing (ISO 10993-12). Formulations with larger amounts of phosphoserine (>50%) had delayed setting times, greater ion release, and cytotoxicity in vitro. The trends in ion release from the adhesive that were cured for 24 h (standard for in vitro) were similar to release from the adhesives cured only for 5−10 min (standard for in vivo), suggesting that we may be able to predict the material behavior in vivo, using in vitro methods. Adhesives containing calcium phosphate and silicate were both cytocompatible for seven days in direct contact with cell monolayers, and ion release increased the alkaline phosphatase (ALP) activity in odontoblasts, but not pre-osteoblasts. This is the first study evaluating how PMC formulation affects osteogenic cell differentiation (ALP), cytocompatibility, and ion release, using in situ curing conditions similar to conditions in vivo.
Collapse
Affiliation(s)
- Kateřina Vrchovecká
- Department of Pathology Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (K.V.); (M.P.-G.)
| | - Monika Pávková-Goldbergová
- Department of Pathology Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (K.V.); (M.P.-G.)
| | - Håkan Engqvist
- Department of Materials Science and Engineering, Applied Material Science, Uppsala University, 75103 Uppsala, Sweden
- Correspondence: (H.E.); (M.P.-P.)
| | - Michael Pujari-Palmer
- Department of Materials Science and Engineering, Applied Material Science, Uppsala University, 75103 Uppsala, Sweden
- Correspondence: (H.E.); (M.P.-P.)
| |
Collapse
|
2
|
Cal F, Sezgin Arslan T, Derkus B, Kiran F, Cengiz U, Arslan YE. Synthesis of Silica-Based Boron-Incorporated Collagen/Human Hair Keratin Hybrid Cryogels with the Potential Bone Formation Capability. ACS APPLIED BIO MATERIALS 2021; 4:7266-7279. [PMID: 35006956 DOI: 10.1021/acsabm.1c00805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue engineering and regenerative medicine have evolved into a different concept, the so-called clinical tissue engineering. Within this context, the synthesis of next-generation inorganic-organic hybrid constructs without the use of chemical crosslinkers emerges with a great potential for treating bone defects. Here, we propose a sophisticated approach for synthesizing cost-effective boron (B)- and silicon (Si)-incorporated collagen/hair keratin (B-Si-Col-HK) cryogels with the help of sol-gel reactions. In this approach, collagen and hair keratin were engaged with a B-Si network using tetraethyl orthosilicate as a silica precursor, and the obtained cryogels were characterized in depth with attenuated total reflectance-Fourier transform infrared spectroscopy, solid-state NMR, X-ray diffraction, thermogravimetric analysis, porosity and swelling tests, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda analyses, frequency sweep and temperature-dependent rheology, contact angle analysis, micromechanical tests, and scanning electron microscopy with energy dispersive X-ray analysis. In addition, the cell survival and osteogenic features of the cryogels were evaluated by the MTS test, live/dead assay, immuno/histochemistry, and quantitative real-time polymerase chain reaction analyses. We conclude that the B-Si-networked Col-HK cryogels having good mechanical durability and osteoinductive features would have the potential bone formation capability.
Collapse
Affiliation(s)
- Fatma Cal
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Tugba Sezgin Arslan
- Personalized Medicine and Biosensing Research (PMBR) Laboratory, Chemistry Department, Faculty of Science, Ankara University, Ankara 06560, Turkey
| | - Burak Derkus
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey.,Interdisciplinary Research Unit for Advanced Materials (INTRAM), Department of Chemistry, Ankara University, Ankara 06560, Turkey
| | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, Ankara 06100, Turkey
| | - Ugur Cengiz
- Surface Science Research Laboratory, Department of Chemical Engineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| |
Collapse
|
3
|
Bosch-Rué E, Diez-Tercero L, Giordano-Kelhoffer B, Delgado LM, Bosch BM, Hoyos-Nogués M, Mateos-Timoneda MA, Tran PA, Gil FJ, Perez RA. Biological Roles and Delivery Strategies for Ions to Promote Osteogenic Induction. Front Cell Dev Biol 2021; 8:614545. [PMID: 33520992 PMCID: PMC7841204 DOI: 10.3389/fcell.2020.614545] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is the most studied tissue in the field of tissue regeneration. Even though it has intrinsic capability to regenerate upon injury, several pathologies and injuries could hamper the highly orchestrated bone formation and resorption process. Bone tissue engineering seeks to mimic the extracellular matrix of the tissue and the different biochemical pathways that lead to successful regeneration. For many years, the use of extrinsic factors (i.e., growth factors and drugs) to modulate these biological processes have been the preferred choice in the field. Even though it has been successful in some instances, this approach presents several drawbacks, such as safety-concerns, short release profile and half-time life of the compounds. On the other hand, the use of inorganic ions has attracted significant attention due to their therapeutic effects, stability and lower biological risks. Biomaterials play a key role in such strategies where they serve as a substrate for the incorporation and release of the ions. In this review, the methodologies used to incorporate ions in biomaterials is presented, highlighting the osteogenic properties of such ions and the roles of biomaterials in controlling their release.
Collapse
Affiliation(s)
- Elia Bosch-Rué
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Leire Diez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mireia Hoyos-Nogués
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Phong A. Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Francisco Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
4
|
Sharmila G, Muthukumaran C, Kirthika S, Keerthana S, Kumar NM, Jeyanthi J. Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering. Int J Biol Macromol 2020; 156:430-437. [PMID: 32294496 DOI: 10.1016/j.ijbiomac.2020.04.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023]
Abstract
In recent years, plant based scaffold due to its inherent properties such as mechanical stability, renewability, easy mass production, inexpensiveness, biocompatibility and biodegradability with low toxic effects have received much attention in the field of bone tissue engineering. Design of good tissue compatible plant based polymer scaffold plays a vital role in biomedicine, nanomedicine and in various tissue engineering applications. The present study focused on the fabrication of a novel herbal scaffold using the medicinal plants Spinacia oleracea (SO) and Cissus quadrangularis (CQ) extracts incorporated with Alginate (Alg), Carboxy Methyl Cellulose (CMC) by lyophilization method. The structural nature and the properties of prepared scaffold were analyzed by XRD, FE-SEM, FTIR, EDAX, TGA, swelling ratio, porosity, in-vitro degradation and cell viability studies. The biocompatible nature of the plant based polymer scaffold was assessed using MG-63 Human Osteosarcoma cell line. The investigation of biocompatibility study showed that Alg/CMC/SO scaffold expressed higher cell viability than Alg/CMC/SO-CQ scaffold, which possess better cellular biocompatibility. The results of the present study suggested that plant based Alg/CMC/SO scaffold serve as a potential biopolymer scaffold which could be further exploited for bone tissue applications.
Collapse
Affiliation(s)
- Govindasamy Sharmila
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India.
| | - Chandrasekaran Muthukumaran
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| | - Shanmugam Kirthika
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| | - Sundarapandian Keerthana
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| | - Narasimhan Manoj Kumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India
| | - Jeyadharmarajan Jeyanthi
- Department of Civil Engineering, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| |
Collapse
|
5
|
Akther F, Little P, Li Z, Nguyen NT, Ta HT. Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Adv 2020; 10:43682-43703. [PMID: 35519701 PMCID: PMC9058401 DOI: 10.1039/d0ra08566a] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Hydrogel-based artificial scaffolds and its incorporation with microfluidic devices play a vital role in shifting in vitro models from two-dimensional (2D) cell culture to in vivo like three-dimensional (3D) cell culture
Collapse
Affiliation(s)
- Fahima Akther
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- Queensland Micro- and Nanotechnology Centre
| | - Peter Little
- School of Pharmacy
- The University of Queensland
- Brisbane
- Australia
| | - Zhiyong Li
- School of Mechanical Medical & Process Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Brisbane
- Australia
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- Queensland Micro- and Nanotechnology Centre
| |
Collapse
|
6
|
Chen H, Wei X, Chen H, Wei H, Wang Y, Nan W, Zhang Q, Wen X. The study of establishment of an in vivo tumor model by three-dimensional cells culture systems methods and evaluation of antitumor effect of biotin-conjugated pullulan acetate nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:123-131. [PMID: 30663429 DOI: 10.1080/21691401.2018.1544142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, three-dimensional (3D) hydrogels were used for human hepatocellular carcinoma (HepG2) cells culture systems in vitro and establishment of an in vivo xenografted tumor model. Based on our previous work on the biotin-conjugated pullulan acetate nanoparticles (Bio-PA NPs) as anticancer drug carriers, we further studied the anti-tumor effect of the NPs in two-dimensional (2D) and 3D cell culture system. When embedded in 3D hydrogels, HepG2 cells formed tumor spheroids and the cytoplasmic actin microfilamentrates were rearranged over a period of 7 days. In vitro cytotoxicity results indicated that HepG2 cells in 3D hydrogels were more resistant to Bio-PA NPs treatments compared to the 2D system. The tumor formation rate of in vivo xenografted tumor model using 3D culture systems method was 98.2%, which was significantly higher than that using of 2D cultured cells (76.4%). Then we injected the 3D HepG2 cells systems in the right anterior axillary of female Balb/c nude mice, and evaluate the in vivo anti-tumor efficacy of Bio-PA NPs. In summary, these results suggested that HepG2 cells in 3D hydrogel system has shown the potential to provide an in vitro and in vivo model and for the evaluation of Bio-PA NPs.
Collapse
Affiliation(s)
- Hongli Chen
- a The Key Laboratory of Biomedical Material, School of Life Science and Technology , Xinxiang Medical University , Xinxiang , China
| | - Xiangjuan Wei
- a The Key Laboratory of Biomedical Material, School of Life Science and Technology , Xinxiang Medical University , Xinxiang , China
| | - Hongyang Chen
- a The Key Laboratory of Biomedical Material, School of Life Science and Technology , Xinxiang Medical University , Xinxiang , China
| | - Hongliang Wei
- b School of Engineering , Virginia Commonwealth University , Richmond , VA , USA
| | - Yongxue Wang
- a The Key Laboratory of Biomedical Material, School of Life Science and Technology , Xinxiang Medical University , Xinxiang , China
| | - Wenbin Nan
- a The Key Laboratory of Biomedical Material, School of Life Science and Technology , Xinxiang Medical University , Xinxiang , China
| | - Qiqing Zhang
- a The Key Laboratory of Biomedical Material, School of Life Science and Technology , Xinxiang Medical University , Xinxiang , China.,c Institute of Biomedical Engineering, Chinese Academy of Medical Sciences , Tianjin , China
| | - Xuejun Wen
- b School of Engineering , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
7
|
Abbasian M, Massoumi B, Mohammad-Rezaei R, Samadian H, Jaymand M. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int J Biol Macromol 2019; 134:673-694. [PMID: 31054302 DOI: 10.1016/j.ijbiomac.2019.04.197] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Nowadays, tissue and organ failures resulted from injury, aging accounts, diseases or other type of damages is one of the most important health problems with an increasing incidence worldwide. Current treatments have limitations including, low graft efficiency, shortage of donor organs, as well as immunological problems. In this context, tissue engineering (TE) was introduced as a novel and versatile approach for restoring tissue/organ function using living cells, scaffold and bioactive (macro-)molecules. Among these, scaffold as a three-dimensional (3D) support material, provide physical and chemical cues for seeding cells and has an essential role in cell missions. Among the wide verity of scaffolding materials, natural or synthetic biopolymers are the most commonly biomaterials mainly due to their unique physicochemical and biological features. In this context, naturally occurring biological macromolecules are particular of interest owing to their low immunogenicity, excellent biocompatibility and cytocompatibility, as well as antigenicity that qualified them as popular choices for scaffolding applications. In this review, we highlighted the potentials of natural and synthetic polymers as scaffolding materials. The properties, advantages, and disadvantages of both polymer types as well as the current status, challenges, and recent progresses regarding the application of them as scaffolding biomaterials are also discussed.
Collapse
Affiliation(s)
- Mojtaba Abbasian
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Bakhshali Massoumi
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Rahim Mohammad-Rezaei
- Analytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O. Box: 53714-161, Tabriz, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
8
|
Shojaeiarani J, Bajwa D, Shirzadifar A. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels. Carbohydr Polym 2019; 216:247-259. [PMID: 31047064 DOI: 10.1016/j.carbpol.2019.04.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/10/2019] [Accepted: 04/07/2019] [Indexed: 11/29/2022]
Abstract
Hydrogels are hydrophilic cross-linked polymer networks formed via the simple reaction of one or more monomers with the ability to retain a significant extent of water. Owing to an increased demand for environmentally friendly, biodegradable, and biocompatible products, cellulose nanocrystals (CNCs) with high hydrophilicity have emerged as a promising sustainable material for the formation of hydrogels. The cytocompatibility, swellability, and non-toxicity make CNC hydrogels of great interest in biomedical, biosensing, and wastewater treatment applications. There has been a considerable progress in the research of CNC hydrogels, as the number of scientific publications has exponentially increased (>600%) in the last five years. In this paper, recent progress in CNC hydrogels with particular emphasis on design, materials, and fabrication techniques to control hydrogel architecture, and advanced applications are discussed.
Collapse
Affiliation(s)
- Jamileh Shojaeiarani
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, 58102, United States.
| | - Dilpreet Bajwa
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, 58102, United States.
| | - Alimohammad Shirzadifar
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, United States.
| |
Collapse
|
9
|
Lee JH, Mandakhbayar N, El-Fiqi A, Kim HW. Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization. Acta Biomater 2017; 60:93-108. [PMID: 28713017 DOI: 10.1016/j.actbio.2017.07.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Inducing differentiation and maturation of resident multipotent stem cells (MSCs) is an important strategy to regenerate hard tissues in mal-calcification conditions. Here we explore a co-delivery approach of therapeutic molecules comprised of ion and drug through a mesoporous bioglass nanoparticle (MBN) for this purpose. Recently, MBN has offered unique potential as a nanocarrier for hard tissues, in terms of high mesoporosity, bone bioactivity (and possibly degradability), tunable delivery of biomolecules, and ionic modification. Herein Sr ion is structurally doped to MBN while drug Phenamil is externally loaded as a small molecule activator of BMP signaling, for the stimulation of osteo/odontogenesis and mineralization of human MSCs derived from dental pulp. The Sr-doped MBN (85Si:10Ca:5Sr) sol-gel processed presents a high mesoporosity with a pore size of ∼6nm. In particular, Sr ion is released slowly at a daily rate of ∼3ppm per mg nanoparticles for up to 7days, a level therapeutically effective for cellular stimulation. The Sr-MBN is internalized to most MSCs via an ATP dependent macropinocytosis within hours, increasing the intracellular levels of Sr, Ca and Si ions. Phenamil is loaded maximally ∼30% into Sr-MBN and then released slowly for up to 7days. The co-delivered molecules (Sr ion and Phenamil drug) have profound effects on the differentiation and maturation of cells, i.e., significantly enhancing expression of osteo/odontogenic genes, alkaline phosphatase activity, and mineralization of cells. Of note, the stimulation is a result of a synergism of Sr and Phenamil, through a Trb3-dependent BMP signaling pathway. This biological synergism is further evidenced in vivo in a mal-calcification condition involving an extracted tooth implantation in dorsal subcutaneous tissues of rats. Six weeks post operation evidences the osseous-dentinal hard tissue formation, which is significantly stimulated by the Sr/Phenamil delivery, based on histomorphometric and micro-computed tomographic analyses. The bioactive nanoparticles releasing both Sr ion and Phenamil drug are considered to be a promising therapeutic nanocarrier platform for hard tissue regeneration. Furthermore, this novel ion/drug co-delivery concept through nanoparticles can be extensively used for other tissues that require different therapeutic treatment. STATEMENT OF SIGNIFICANCE This study reports a novel design concept in inorganic nanoparticle delivery system for hard tissues - the co-delivery of therapeutic molecules comprised of ion (Sr) and drug (Phenamil) through a unique nanoparticle of mesoporous bioactive glass (MBN). The physico-chemical and biological properties of MBN enabled an effective loading of both therapeutic molecules and a subsequently sustained/controlled release. The co-delivered Sr and Phenamil demonstrated significant stimulation of adult stem cell differentiation in vitro and osseous/dentinal regeneration in vivo, through BMP signaling pathways. We consider the current combination of Sr ion with Phenamil is suited for the osteo/odontogenesis of stem cells for hard tissue regeneration, and further, this ion/drug co-delivery concept can extend the applications to other areas that require specific cellular and tissue functions.
Collapse
|
10
|
Lee JH, El-Fiqi A, Mandakhbayar N, Lee HH, Kim HW. Drug/ion co-delivery multi-functional nanocarrier to regenerate infected tissue defect. Biomaterials 2017; 142:62-76. [PMID: 28727999 DOI: 10.1016/j.biomaterials.2017.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 02/08/2023]
Abstract
Regeneration of infected tissues is a globally challenging issue in medicine and dentistry. Common clinical therapies involving a complete removal of infected areas together with a treatment of antimicrobial drugs are often suboptimal. Biomaterials with anti-bacterial and pro-regenerative potential can offer a solution to this. Here we design a novel nanocarrier based on a mesoporous silicate-calcium glass by doping with Ag ions and simultaneously loading antimicrobial drugs onto mesopores. The nanocarriers could controllably release multiple ions (silver, calcium, and silicate) and drugs (tetracycline or chlorohexidine) to levels therapeutically relevant, and effectively internalize to human dental stem cells (∼90%) with excellent viability, ultimately stimulating odontogenic differentiation. The release of Ag ions had profound effects on most oral bacteria species through a membrane rupture, and the antibiotic delivery complemented the antibacterial functions by inhibiting protein synthesis. Of note, the nanocarriers easily anchored to bacteria membrane helping the delivery of molecules to an intra-bacterial space. When administered to an infected dentin-pulp defect in rats, the therapeutic nanocarriers effectively regenerated tissues following a complete bacterial killing. This novel concept of multiple-delivering ions and drug can be extensively applied to other infectious tissues that require relayed biological functions (anti-bacterial then pro-regenerative) for successful healing.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea; Glass Research Department, National Research Center, Cairo 12622, Egypt; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea.
| |
Collapse
|
11
|
Rangel-Argote M, Claudio-Rizo JA, Castellano LE, Vega-González A, Mata-Mata JL, Mendoza-Novelo B. ECM–oligourethene–silica hydrogels as a local drug release system of dexamethasone for stimulating macrophages. RSC Adv 2017. [DOI: 10.1039/c6ra25989h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The incorporation of silica particles inside of extracellular matrix hydrogels supports the loading and releasing of dexamethasone, a therapeutic for modulating macrophage.
Collapse
Affiliation(s)
| | - Jesús A. Claudio-Rizo
- Departamento de Ingenierías Química
- Electrónica y Biomédica
- DCI
- Universidad de Guanajuato
- León
| | - Laura E. Castellano
- Departamento de Ingenierías Química
- Electrónica y Biomédica
- DCI
- Universidad de Guanajuato
- León
| | - Arturo Vega-González
- Departamento de Ingenierías Química
- Electrónica y Biomédica
- DCI
- Universidad de Guanajuato
- León
| | - José L. Mata-Mata
- Departamento de Química
- DCNE
- Universidad de Guanajuato
- Guanajuato
- Mexico
| | | |
Collapse
|