1
|
Keshavarz R, Olsen S, Almeida B. Using biomaterials to improve mesenchymal stem cell therapies for chronic, nonhealing wounds. Bioeng Transl Med 2024; 9:e10598. [PMID: 38193114 PMCID: PMC10771568 DOI: 10.1002/btm2.10598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 01/10/2024] Open
Abstract
Historically, treatment of chronic, nonhealing wounds has focused on managing symptoms using biomaterial-based wound dressings, which do not adequately address the underlying clinical issue. Mesenchymal stem cells (MSCs) are a promising cell-based therapy for the treatment of chronic, nonhealing wounds, yet inherent cellular heterogeneity and susceptibility to death during injection limit their clinical use. Recently, researchers have begun to explore the synergistic effects of combined MSC-biomaterial therapies, where the biomaterial serves as a scaffold to protect the MSCs and provides physiologically relevant physicochemical cues that can direct MSC immunomodulatory behavior. In this review, we highlight recent progress in this field with a focus on the most commonly used biomaterials, classified based on their source, including natural biomaterials, synthetic biomaterials, and the combination of natural and synthetic biomaterials. We also discuss current challenges regarding the clinical translation of these therapies, as well as a perspective on the future outlook of the field.
Collapse
Affiliation(s)
- Romina Keshavarz
- Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew YorkUSA
| | - Sara Olsen
- Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew YorkUSA
| | - Bethany Almeida
- Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew YorkUSA
| |
Collapse
|
2
|
Ahmed KK, Wongrakpanich A. Particles-based medicated wound dressings: a comprehensive review. Ther Deliv 2023; 13:489-505. [PMID: 36779372 DOI: 10.4155/tde-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Wound healing is a dynamic process that is controlled by many factors. The interest in developing wound dressings capable of providing the required environment for the proper wound healing process is ever expanding, and particles occupy a sizable share of the research area. This comprehensive review reports 10 years of research in terms of current advances, delivery system evaluation, outcomes and future directions. The review follows a clearly defined method of article search and screening. Retrieved papers are reviewed regarding the materials, formulation development, and in vitro/in vivo testing of particles-based wound dressings. The review summarized the current status of medicated wound dressing research, identifies gaps to be addressed, and represents a reference for researchers working on wound dressings.
Collapse
Affiliation(s)
- Kawther Khalid Ahmed
- University of Baghdad, College of Pharmacy, Department of Pharmaceutics, Bab-almoadham, P.O.Box 14026, Baghdad, Iraq
- University of Iowa College of Pharmacy, IA, USA
| | - Amaraporn Wongrakpanich
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| |
Collapse
|
3
|
Kovacevic B, Jones M, Ionescu C, Walker D, Wagle S, Chester J, Foster T, Brown D, Mikov M, Mooranian A, Al-Salami H. The emerging role of bile acids as critical components in nanotechnology and bioengineering: Pharmacology, formulation optimizers and hydrogel-biomaterial applications. Biomaterials 2022; 283:121459. [PMID: 35303546 DOI: 10.1016/j.biomaterials.2022.121459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
|
4
|
Lipreri MV, Baldini N, Graziani G, Avnet S. Perfused Platforms to Mimic Bone Microenvironment at the Macro/Milli/Microscale: Pros and Cons. Front Cell Dev Biol 2022; 9:760667. [PMID: 35047495 PMCID: PMC8762164 DOI: 10.3389/fcell.2021.760667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
As life expectancy increases, the population experiences progressive ageing. Ageing, in turn, is connected to an increase in bone-related diseases (i.e., osteoporosis and increased risk of fractures). Hence, the search for new approaches to study the occurrence of bone-related diseases and to develop new drugs for their prevention and treatment becomes more pressing. However, to date, a reliable in vitro model that can fully recapitulate the characteristics of bone tissue, either in physiological or altered conditions, is not available. Indeed, current methods for modelling normal and pathological bone are poor predictors of treatment outcomes in humans, as they fail to mimic the in vivo cellular microenvironment and tissue complexity. Bone, in fact, is a dynamic network including differently specialized cells and the extracellular matrix, constantly subjected to external and internal stimuli. To this regard, perfused vascularized models are a novel field of investigation that can offer a new technological approach to overcome the limitations of traditional cell culture methods. It allows the combination of perfusion, mechanical and biochemical stimuli, biological cues, biomaterials (mimicking the extracellular matrix of bone), and multiple cell types. This review will discuss macro, milli, and microscale perfused devices designed to model bone structure and microenvironment, focusing on the role of perfusion and encompassing different degrees of complexity. These devices are a very first, though promising, step for the development of 3D in vitro platforms for preclinical screening of novel anabolic or anti-catabolic therapeutic approaches to improve bone health.
Collapse
Affiliation(s)
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Biomedical Science and Technologies Lab, IRCSS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gabriela Graziani
- Laboratory for NanoBiotechnology (NaBi), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Sevastianov VI, Basok YB, Kirsanova LA, Grigoriev AM, Kirillova AD, Nemets EA, Subbot AM, Gautier SV. A Comparison of the Capacity of Mesenchymal Stromal Cells for Cartilage Regeneration Depending on Collagen-Based Injectable Biomimetic Scaffold Type. Life (Basel) 2021; 11:life11080756. [PMID: 34440500 PMCID: PMC8400656 DOI: 10.3390/life11080756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have shown a high potential for cartilage repair. Collagen-based scaffolds are used to deliver and retain cells at the site of cartilage damage. The aim of the work was a comparative analysis of the capacity of the MSCs from human adipose tissue to differentiate into chondrocytes in vitro and to stimulate the regeneration of articular cartilage in an experimental model of rabbit knee osteoarthrosis when cultured on microheterogenic collagen-based hydrogel (MCH) and the microparticles of decellularized porcine articular cartilage (DPC). The morphology of samples was evaluated using scanning electron microscopy and histological staining methods. On the surface of the DPC, the cells were distributed more uniformly than on the MCH surface. On day 28, the cells cultured on the DPC produced glycosaminoglycans more intensely compared to the MCH with the synthesis of collagen type II. However, in the experimental model of osteoarthrosis, the stimulation of the cartilage regeneration was more effective when the MSCs were administered to the MCH carrier. The present study demonstrates the way to regulate the action of the MSCs in the area of cartilage regeneration: the MCH is more conducive to stimulating cartilage repair by the MSCs, while the DPC is an inducer for a formation of a cartilage-like tissue by the MSCs in vitro.
Collapse
Affiliation(s)
- Victor I. Sevastianov
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 1 Shchukinskaja St., 123182 Moscow, Russia; (Y.B.B.); (L.A.K.); (A.M.G.); (A.D.K.); (E.A.N.); (S.V.G.)
- Correspondence: ; Tel.: +7-916-173-41-84
| | - Yulia B. Basok
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 1 Shchukinskaja St., 123182 Moscow, Russia; (Y.B.B.); (L.A.K.); (A.M.G.); (A.D.K.); (E.A.N.); (S.V.G.)
| | - Ludmila A. Kirsanova
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 1 Shchukinskaja St., 123182 Moscow, Russia; (Y.B.B.); (L.A.K.); (A.M.G.); (A.D.K.); (E.A.N.); (S.V.G.)
| | - Alexey M. Grigoriev
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 1 Shchukinskaja St., 123182 Moscow, Russia; (Y.B.B.); (L.A.K.); (A.M.G.); (A.D.K.); (E.A.N.); (S.V.G.)
| | - Alexandra D. Kirillova
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 1 Shchukinskaja St., 123182 Moscow, Russia; (Y.B.B.); (L.A.K.); (A.M.G.); (A.D.K.); (E.A.N.); (S.V.G.)
| | - Evgeniy A. Nemets
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 1 Shchukinskaja St., 123182 Moscow, Russia; (Y.B.B.); (L.A.K.); (A.M.G.); (A.D.K.); (E.A.N.); (S.V.G.)
| | - Anastasia M. Subbot
- Laboratory of Fundamental Research in Ophtalmology, The Research Institute of Eye Diseases, 11A, B Rossolimo St., 119021 Moscow, Russia;
| | - Sergey V. Gautier
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 1 Shchukinskaja St., 123182 Moscow, Russia; (Y.B.B.); (L.A.K.); (A.M.G.); (A.D.K.); (E.A.N.); (S.V.G.)
- Department of Transplantology and Artificial Organs, Faculty of Medicine, The Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| |
Collapse
|
6
|
Zhang Q, Chang C, Qian C, Xiao W, Zhu H, Guo J, Meng Z, Cui W, Ge Z. Photo-crosslinkable amniotic membrane hydrogel for skin defect healing. Acta Biomater 2021; 125:197-207. [PMID: 33676048 DOI: 10.1016/j.actbio.2021.02.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/06/2021] [Accepted: 02/25/2021] [Indexed: 01/23/2023]
Abstract
The human amniotic membrane (HAM) collagen matrix derived from human placenta can be decellularized (dHAM) to form a natural biocompatible material. dHAM has different bioactive substances and has been used widely in human tissue engineering research. However, dHAM has some disadvantages, e.g., poor mechanical properties, easy degradation and inconvenient operation and use, so it is not conducive to large-area or full-thickness skin defect healing. To overcome these limitations, for the first time, dHAM was grafted with methacrylic anhydride (MA) to form photocrosslinked dHAM methacrylate (dHAMMA); dHAMMA was then blended with methacrylated gelatin (GelMA), followed by the addition of a photosensitizer for photocrosslinking to obtain the fast-forming GelMA-dHAMMA composite hydrogel. Further, GelMA-dHAMMA was found to have the porous structure of a bicomponent polymer network and good physical and chemical properties. In vitro experiments, GelMA-dHAMMA was found to promote fibroblast proliferation and α-smooth muscle actin (α-SMA) expression. In vivo investigations also demonstrated that GelMA-dHAMMA promotes wound collagen deposition and angiogenesis, and accelerates tissue healing. GelMA-dHAMMA inherits the good mechanical properties of GelMA and maintains the biological activity of the amniotic membrane, promoting the reconstruction and regeneration of skin wounds. Thus, GelMA-dHAMMA can serve as a promising biomaterial in skin tissue engineering. STATEMENT OF SIGNIFICANCE: Since the early 20th century, the human amniotic membrane (HAM) has been successfully used for trauma treatment and reconstruction purposes. dHAM has different bioactive substances and has been used widely in human tissue-engineering research. In this work, the dHAM and gelatin were grafted and modified by using methacrylic anhydride (MA) to form photocrosslinked dHAMMA and methacrylated gelatin (GelMA). Then, the dHAMMA and GelMA were blended with a photosensitizer to form the GelMA-dHAMMA composite hydrogel derived from gelatin-dHAM. GelMA-dHAMMA exhibits a bicomponent-network (BCN) interpenetrating structure. dHAM dydrogel has advantages, e.g., good mechanical properties, slow degradation and convenient operation, so it is conducive to large-area or full-thickness skin defect healing.
Collapse
|
7
|
Rubí-Sans G, Cano-Torres I, Pérez-Amodio S, Blanco-Fernandez B, Mateos-Timoneda MA, Engel E. Development and Angiogenic Potential of Cell-Derived Microtissues Using Microcarrier-Template. Biomedicines 2021; 9:232. [PMID: 33669131 PMCID: PMC8025087 DOI: 10.3390/biomedicines9030232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Tissue engineering and regenerative medicine approaches use biomaterials in combination with cells to regenerate lost functions of tissues and organs to prevent organ transplantation. However, most of the current strategies fail in mimicking the tissue's extracellular matrix properties. In order to mimic native tissue conditions, we developed cell-derived matrix (CDM) microtissues (MT). Our methodology uses poly-lactic acid (PLA) and Cultispher® S microcarriers' (MCs') as scaffold templates, which are seeded with rat bone marrow mesenchymal stem cells (rBM-MSCs). The scaffold template allows cells to generate an extracellular matrix, which is then extracted for downstream use. The newly formed CDM provides cells with a complex physical (MT architecture) and biochemical (deposited ECM proteins) environment, also showing spontaneous angiogenic potential. Our results suggest that MTs generated from the combination of these two MCs (mixed MTs) are excellent candidates for tissue vascularization. Overall, this study provides a methodology for in-house fabrication of microtissues with angiogenic potential for downstream use in various tissue regenerative strategies.
Collapse
Affiliation(s)
- Gerard Rubí-Sans
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
| | - Irene Cano-Torres
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
| | - Soledad Pérez-Amodio
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
- IMEM-BRT Group, Department of Material Science, Escola d'Enginyeria de Barcelona Est (EEBE), Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| | - Barbara Blanco-Fernandez
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
| | - Miguel A Mateos-Timoneda
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Bioengineering Institute of Technology, Department of Basic Science, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
- IMEM-BRT Group, Department of Material Science, Escola d'Enginyeria de Barcelona Est (EEBE), Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| |
Collapse
|
8
|
Bello AB, Kim D, Kim D, Park H, Lee SH. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:164-180. [PMID: 31910095 DOI: 10.1089/ten.teb.2019.0256] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Health care and medicine were revolutionized in recent years by the development of biomaterials, such as stents, implants, personalized drug delivery systems, engineered grafts, cell sheets, and other transplantable materials. These materials not only support the growth of cells before transplantation but also serve as replacements for damaged tissues in vivo. Among the various biomaterials available, those made from natural biological sources such as extracellular proteins (collagen, fibronectin, laminin) have shown significant benefits, and thus are widely used. However, routine biomaterial-based research requires copious quantities of proteins and the use of pure and intact extracellular proteins could be highly cost ineffective. Gelatin is a molecular derivative of collagen obtained through the irreversible denaturation of collagen proteins. Gelatin shares a very close molecular structure and function with collagen and thus is often used in cell and tissue culture to replace collagen for biomaterial purposes. Recent technological advancements such as additive manufacturing, rapid prototyping, and three-dimensional printing, in general, have resulted in great strides toward the generation of functional gelatin-based materials for medical purposes. In this review, the structural and molecular similarities of gelatin to other extracellular matrix proteins are compared and analyzed. Current strategies for gelatin crosslinking and production are described and recent applications of gelatin-based biomaterials in cell culture and tissue regeneration are discussed. Finally, recent improvements in gelatin-based biomaterials for medical applications and future directions are elaborated. Impact statement In this study, we described gelatin's biochemical properties and compared its advantages and drawbacks over other extracellular matrix proteins and polymers used for biomaterial application. We also described how gelatin can be used with other polymers in creating gelatin composite materials that have enhanced mechanical properties, increased biocompatibility, and boosted bioactivity, maximizing its benefits for biomedical purposes. The article is relevant, as it discussed not only the chemistry of gelatin, but also listed the current techniques in gelatin/biomaterial manufacturing and described the most recent trends in gelatin-based biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Alvin Bacero Bello
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.,Department of Biomedical Science, Dongguk University, Gyeonggi, Republic of Korea
| | - Deogil Kim
- Department of Biomedical Science, CHA University, Seongnam-Si, Republic of Korea
| | - Dohyun Kim
- Department of Biomedical Science, Dongguk University, Gyeonggi, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, Dongguk University, Gyeonggi, Republic of Korea
| |
Collapse
|