1
|
Yang Y, Zhu X, Liu X, Chen K, Hu Y, Liu P, Xu Y, Xiao X, Liu X, Song N, Feng Q. Injectable and self-healing sulfated hyaluronic acid/gelatin hydrogel as dual drug delivery system for circumferential tracheal repair. Int J Biol Macromol 2024; 279:134978. [PMID: 39182860 DOI: 10.1016/j.ijbiomac.2024.134978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Stem cell-based therapies show promise for clinically addressing circumferential tracheal defects (CTD) through tissue engineering. However, creating a tissue-engineered tracheal tube possesses a healthy cartilage matrix and intact tube structure remains a challenge. A solution lies in the use of an injectable hydrogel with shape adaptability and chondrogenic capacity, serving as a practical and dependable platform for tubular tracheal cartilage regeneration. In this study, we developed an injectable hydrogel using modified natural polymers-hydrazide-grafted gelatin (Gelatin-ADH) and aldehyde-modified hyaluronic acid with sulfated groups (HA-CHO-SO3) via Schiff Base interaction. Additionally, aldehyde-modified β-cyclodextrin (β-CD-CHO) was introduced into the network during hydrogel formation. The negative sulfated groups and hydrophobic cavities of β-cyclodextrin facilitated the efficient encapsulation and sustained release of transforming growth factor-β1 (TGF-β1) and kartogenin (KGN) within our hydrogel. This synergistically promoted the chondrogenesis of loaded bone marrow stem cells (BMSCs). Subsequently, we employed this TGF-β1, KGN, and BMSCs loaded hydrogel to form a cartilage ring. This ring was then assembled into an engineered tracheal cartilage tube using our previously reported ring-to-tube strategy. Our results demonstrated that the engineered tracheal cartilage tube effectively repaired CTD in a rabbit model. Hence, this study introduces a novel hydrogel with significant clinical application potential for tracheal tissue engineering.
Collapse
Affiliation(s)
- YaYan Yang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuezhe Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kai Chen
- School of Resources and Chemical Engineering, Sanming University, Fuzhou, China
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Pei Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.
| | - Xiaogang Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Nan Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Sompunga P, Rodprasert W, Srisuwatanasagul S, Techangamsuwan S, Jirajessada S, Hanchaina R, Kangsamaksin T, Yodmuang S, Sawangmake C. Preparation of Decellularized Tissue as Dual Cell Carrier Systems: A Step Towards Facilitating Re-epithelization and Cell Encapsulation for Tracheal Reconstruction. Ann Biomed Eng 2024; 52:1222-1239. [PMID: 38353908 DOI: 10.1007/s10439-024-03448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/09/2024] [Indexed: 04/06/2024]
Abstract
Surgical treatment of tracheal diseases, trauma, and congenital stenosis has shown success through tracheal reconstruction coupled with palliative care. However, challenges in surgical-based tracheal repairs have prompted the exploration of alternative approaches for tracheal replacement. Tissue-based treatments, involving the cultivation of patient cells on a network of extracellular matrix (ECM) from donor tissue, hold promise for restoring tracheal structure and function without eliciting an immune reaction. In this study, we utilized decellularized canine tracheas as tissue models to develop two types of cell carriers: a decellularized scaffold and a hydrogel. Our hypothesis posits that both carriers, containing essential biochemical niches provided by ECM components, facilitate cell attachment without inducing cytotoxicity. Canine tracheas underwent vacuum-assisted decellularization (VAD), and the ECM-rich hydrogel was prepared through peptic digestion of the decellularized trachea. The decellularized canine trachea exhibited a significant reduction in DNA content and major histocompatibility complex class II, while preserving crucial ECM components such as collagen, glycosaminoglycan, laminin, and fibronectin. Scanning electron microscope and fluorescent microscope images revealed a fibrous ECM network on the luminal side of the cell-free trachea, supporting epithelial cell attachment. Moreover, the ECM-rich hydrogel exhibited excellent viability for human mesenchymal stem cells encapsulated for 3 days, indicating the potential of cell-laden hydrogel in promoting the development of cartilage rings of the trachea. This study underscores the versatility of the trachea in producing two distinct cell carriers-decellularized scaffold and hydrogel-both containing the native biochemical niche essential for tracheal tissue engineering applications.
Collapse
Affiliation(s)
- Pensuda Sompunga
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sayamon Srisuwatanasagul
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Sirinee Jirajessada
- Biology Program, Faculty of Science, Buriram Rajabhat University, Muang, Buriram, 31000, Thailand
| | - Rattanavinan Hanchaina
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Thaned Kangsamaksin
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Ananda Mahidol Building, 1873 Rama 4 Rd, Pathumwan, Bangkok, 10330, Thailand.
- Center of Excellence in Biomaterial Engineering for Medical and Health, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
- Clinical Excellence Center for Advanced Therapy Medicinal Products, King Chulalongkorn Memorial Hospital, Pathumwan, Bangkok, 10330, Thailand.
- Avatar Biotech for Oral Health & Healthy Longevity Research Unit, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Shen Z, Xia T, Zhao J, Pan S. Current status and future trends of reconstructing a vascularized tissue-engineered trachea. Connect Tissue Res 2023; 64:428-444. [PMID: 37171223 DOI: 10.1080/03008207.2023.2212052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Alternative treatment of long tracheal defects remains one of the challenges faced by thoracic surgeons. Tissue engineering has shown great potential in addressing this regenerative medicine conundrum and the technology to make tracheal grafts using this technique is rapidly maturing, leading to unique therapeutic approaches. However, the clinical application of tissue-engineered tracheal implants is limited by insufficient revascularization. Among them, realizing the vascularization of a tissue-engineered trachea is the most challenging problem to overcome. To achieve long-term survival after tracheal transplantation, an effective blood supply must be formed to support the metabolism of seeded cells and promote tissue healing and regeneration. Otherwise, repeated infection, tissue necrosis, lumen stenosis lack of effective epithelialization, need for repeated bronchoscopy after surgery, and other complications will be inevitable and lead to graft failure and a poor outcome. Here we review and analyze various tissue engineering studies promoting angiogenesis in recent years. The general situation of reconstructing a vascularized tissue-engineered trachea, including current problems and future development trends, is elaborated from the perspectives of seed cells, scaffold materials, growth factors and signaling pathways, surgical interventions in animal models and clinical applications. This review also provides ideas and methods for the further development of better biocompatible tracheal substitutes in the future.
Collapse
Affiliation(s)
- Ziqing Shen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Wang Y, Li J, Qian J, Sun Y, Xu J, Sun J. Comparison of the biological properties between 3D-printed and decellularized tracheal grafts. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02867-4. [PMID: 37171579 DOI: 10.1007/s00449-023-02867-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/21/2023] [Indexed: 05/13/2023]
Abstract
This study sought to characterize the differences between the 3D-printed and decellularized tracheal grafts, providing the basis for the synthesis of the more reasonable and effective tissue-engineered trachea. We compared the biomechanical properties and biocompatibility of the 3D-printed tracheal graft and decellularized tracheal graft in vitro and evaluated the biocompatibility, immune rejection and inflammation of the two materials through in vivo implantation experiments. Compared with the decellularized tracheal graft, the 3D-printed tracheal graft was associated with obviously higher biomechanical properties. The results demonstrated enhanced growth of BMSCs in the decellularized tracheal graft compared to the 3D-printed one when co-culture with two tracheal graft groups. Moreover, the CCK-8 assay demonstrated significant cell proliferation on the decellularized tracheal graft. Serum IgG and IgM measured in vivo by implantation testing indicated that the 3D-Printed tracheal graft exhibited the most significant inflammatory response. HE staining indicated that the inflammatory response in the 3D-printed tracheal graft consisted mainly of eosinophils, while little inflammatory cell infiltrates were observed in the decellularized tracheal graft. CD68 immunohistochemical analysis indicated that the infiltration of macrophages was not significant in both tracheal grafts. Our findings suggest that the biomechanical properties of the 3D-printed tracheal grafts are better than the decellularized tracheal grafts. Nonetheless, the decellularized tracheal graft exhibited better biocompatibility than the 3D-printed tracheal graft.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China
| | - Jianfeng Li
- Yizheng Hospital, Drum Tower Hospital Group of Nanjing, Yizheng, 211900, China
| | - Jun Qian
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China
| | - Yunhao Sun
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China
| | - Jianning Xu
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China
| | - Jian Sun
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China.
| |
Collapse
|
5
|
Stocco E, Barbon S, Mammana M, Zambello G, Contran M, Parnigotto PP, Macchi V, Conconi MT, Rea F, De Caro R, Porzionato A. Preclinical and clinical orthotopic transplantation of decellularized/engineered tracheal scaffolds: A systematic literature review. J Tissue Eng 2023; 14:20417314231151826. [PMID: 36874984 PMCID: PMC9974632 DOI: 10.1177/20417314231151826] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 03/07/2023] Open
Abstract
Severe tracheal injuries that cannot be managed by mobilization and end-to-end anastomosis represent an unmet clinical need and an urgent challenge to face in surgical practice; within this scenario, decellularized scaffolds (eventually bioengineered) are currently a tempting option among tissue engineered substitutes. The success of a decellularized trachea is expression of a balanced approach in cells removal while preserving the extracellular matrix (ECM) architecture/mechanical properties. Revising the literature, many Authors report about different methods for acellular tracheal ECMs development; however, only few of them verified the devices effectiveness by an orthotopic implant in animal models of disease. To support translational medicine in this field, here we provide a systematic review on studies recurring to decellularized/bioengineered tracheas implantation. After describing the specific methodological aspects, orthotopic implant results are verified. Furtherly, the only three clinical cases of compassionate use of tissue engineered tracheas are reported with a focus on outcomes.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Silvia Barbon
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Marco Mammana
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Giovanni Zambello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Martina Contran
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Veronica Macchi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Maria Teresa Conconi
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Rea
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| |
Collapse
|
6
|
Scialla S, Gullotta F, Izzo D, Palazzo B, Scalera F, Martin I, Sannino A, Gervaso F. Genipin-crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization. J Biomed Mater Res A 2022; 110:1372-1385. [PMID: 35262240 DOI: 10.1002/jbm.a.37379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022]
Abstract
Articular cartilage degeneration is still an unsolved issue owing to its weak repairing capabilities, which usually result in fibrocartilage tissue formation. This fibrous tissue lacks of structural and bio-mechanical properties, degrading over time. Currently, arthroscopic techniques and autologous transplantation are the most used clinical procedures. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Therefore, tissue engineering strategies aimed at selecting scaffolds that remarkably support the chondrogenic differentiation of human mesenchymal stem cells (hMSCs) could represent a promising solution, but they are still challenging for researchers. In this study, the influence of two different genipin (Gp) crosslinking routes on collagen (Coll)-based scaffolds in terms of hMSCs chondrogenic differentiation and biomechanical performances was investigated. Three-dimensional (3D) porous Coll scaffolds were fabricated by freeze-drying techniques and were crosslinked with Gp following a "two-step" and an in "bulk" procedure, in order to increase the physico-mechanical stability of the structure. Chondrogenic differentiation efficacy of hMSCs and biomechanical behavior under compression forces through unconfined stress-strain tests were assessed. Coll/Gp scaffolds revealed an isotropic and highly homogeneous pore distribution along with an increase in the stiffness, also supported by the increase in the Coll denaturation temperature (Td = 57-63°C) and a significant amount of Coll and GAG deposition during the 3 weeks of chondrogenic culture. In particular, the presence of Gp in "bulk" led to a more uniform and homogenous chondral-like matrix deposition by hMSCs if compared to the results obtained from the Gp "two-step" functionalization procedure.
Collapse
Affiliation(s)
- Stefania Scialla
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,Institute of Polymers, Composites and Biomaterials - National Research Council, Naples, Italy
| | - Fabiana Gullotta
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Izzo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Barbara Palazzo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,ENEA, Division for Sustainable Materials - Research Centre of Brindisi, Brindisi, Italy
| | - Francesca Scalera
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,CNR Nanotec - Institute of Nanotechnology, Lecce, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,CNR Nanotec - Institute of Nanotechnology, Lecce, Italy
| |
Collapse
|
7
|
Pan S, Lu Y, Li J, Shi H. The biological properties of the decellularized tracheal scaffolds and
3D
printing biomimetic materials: A comparative study. J Biomed Mater Res A 2022; 110:1062-1076. [DOI: 10.1002/jbm.a.37352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 11/23/2021] [Accepted: 12/23/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Shu Pan
- Institute of Translational Medicine, Medical College Yangzhou University Yangzhou China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou China
- Department of Thoracic Surgery The First Affiliated Hospital of Soochow University Suzhou China
| | - Yi Lu
- Institute of Translational Medicine, Medical College Yangzhou University Yangzhou China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou China
| | - Jianfeng Li
- Institute of Translational Medicine, Medical College Yangzhou University Yangzhou China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou China
| | - Hongcan Shi
- Institute of Translational Medicine, Medical College Yangzhou University Yangzhou China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou China
| |
Collapse
|
8
|
Spencer H, Moshkbouymatin N, Webb WR, Joshi A, D'Souza A. Update on the role of emerging stem cell technology in head and neck medicine. Head Neck 2021; 43:1928-1938. [PMID: 33751726 DOI: 10.1002/hed.26674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Head and neck surgery is a broad discipline that involves the management of complex conditions such as burns, skin cancer, head and neck cancer, congenital abnormalities, and facial rejuvenation. For patients with cancer, surgery, radiotherapy, and chemotherapy are often the main modes of treatment. Many patients require follow-up reconstructive surgery, and the use of stem cells offers novel treatments that could aid recovery. Laryngeal, tracheal, and neuronal tissues are frequently damaged by surgery in the head and neck and these tissues have little intrinsic regenerative ability. Pluripotent embryonic stem cells retain the ability to differentiate into a wide variety of cells meaning that large tissue defects can be reduced by stimulating new cell growth. Research has demonstrated potential benefits of using stem cells in facial rejuvenation procedures and the management of burns sequelae. The advancements made in the use of adult progenitor stem cells as a possible source for pluripotent stem cells (induced pluripotent stem cells) mean that ethical considerations around the use of embryological tissue can be minimized, allowing for more research to take place. Currently, the evidence base for the use of stem cells in head and neck surgery is limited, but it has now been proven that stem cells can act as a source for lost or damaged tissue in the head and neck. With continuous advancements being made in the fields of tissue engineering, it is likely that stem cells will play a major role in head and neck surgery in the future.
Collapse
Affiliation(s)
- Harry Spencer
- Department of Vascular Surgery, St Georges Hospital, London, UK
| | | | - William Richard Webb
- Faculty of Medicine, Health and Social Sciences, Canterbury Christ Church University, Chatham, UK
| | - Anil Joshi
- Department of Ear, Nose and Throat Surgery, University Hospital Lewisham, London, UK
| | - Alwyn D'Souza
- Department of Ear, Nose and Throat Surgery, University Hospital Lewisham, London, UK
| |
Collapse
|
9
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|