1
|
Ziebarth J, da Silva LM, Lorenzett AKP, Figueiredo ID, Carlstrom PF, Cardoso FN, de Freitas ALF, Baviera AM, Mainardes RM. Oral Delivery of Liraglutide-Loaded Zein/Eudragit-Chitosan Nanoparticles Provides Pharmacokinetic and Glycemic Outcomes Comparable to Its Subcutaneous Injection in Rats. Pharmaceutics 2024; 16:634. [PMID: 38794296 PMCID: PMC11125159 DOI: 10.3390/pharmaceutics16050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Liraglutide (LIRA) is a glucagon-like peptide-1 (GLP-1) receptor agonist renowned for its efficacy in treating type 2 diabetes mellitus (T2DM) and is typically administered via subcutaneous injections. Oral delivery, although more desirable for being painless and potentially enhancing patient adherence, is challenged by the peptide's low bioavailability and vulnerability to digestive enzymes. This study aimed to develop LIRA-containing zein-based nanoparticles stabilized with eudragit RS100 and chitosan for oral use (Z-ERS-CS/LIRA). These nanoparticles demonstrated a spherical shape, with a mean diameter of 238.6 nm, a polydispersity index of 0.099, a zeta potential of +40.9 mV, and an encapsulation efficiency of 41%. In vitro release studies indicated a prolonged release, with up to 61% of LIRA released over 24 h. Notably, the nanoparticles showed considerable resistance and stability in simulated gastric and intestinal fluids, suggesting protection from pH and enzymatic degradation. Pharmacokinetic analysis revealed that orally administered Z-ERS-CS/LIRA paralleled the pharmacokinetic profile seen with subcutaneously delivered LIRA. Furthermore, in vivo tests on a diabetic rat model showed that Z-ERS-CS/LIRA significantly controlled glucose levels, comparable to the results observed with free LIRA. The findings underscore Z-ERS-CS/LIRA nanoparticles as a promising approach for oral LIRA delivery in T2DM management.
Collapse
Affiliation(s)
- Jeferson Ziebarth
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, PR, Brazil; (J.Z.); (L.M.d.S.); (A.K.P.L.)
| | - Letícia Marina da Silva
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, PR, Brazil; (J.Z.); (L.M.d.S.); (A.K.P.L.)
| | - Ariane Krause Padilha Lorenzett
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, PR, Brazil; (J.Z.); (L.M.d.S.); (A.K.P.L.)
| | - Ingrid Delbone Figueiredo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara Jaú, Km 1–s/n, Araraquara 14800-903, SP, Brazil; (I.D.F.); (P.F.C.); (F.N.C.); (A.L.F.d.F.); (A.M.B.)
| | - Paulo Fernando Carlstrom
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara Jaú, Km 1–s/n, Araraquara 14800-903, SP, Brazil; (I.D.F.); (P.F.C.); (F.N.C.); (A.L.F.d.F.); (A.M.B.)
| | - Felipe Nunes Cardoso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara Jaú, Km 1–s/n, Araraquara 14800-903, SP, Brazil; (I.D.F.); (P.F.C.); (F.N.C.); (A.L.F.d.F.); (A.M.B.)
| | - André Luiz Ferreira de Freitas
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara Jaú, Km 1–s/n, Araraquara 14800-903, SP, Brazil; (I.D.F.); (P.F.C.); (F.N.C.); (A.L.F.d.F.); (A.M.B.)
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara Jaú, Km 1–s/n, Araraquara 14800-903, SP, Brazil; (I.D.F.); (P.F.C.); (F.N.C.); (A.L.F.d.F.); (A.M.B.)
| | - Rubiana Mara Mainardes
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, PR, Brazil; (J.Z.); (L.M.d.S.); (A.K.P.L.)
- Department of Pharmacy, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, PR, Brazil
| |
Collapse
|
2
|
Pinto SFT, Santos HA, Sarmento BFCC. New insights into nanomedicines for oral delivery of glucagon-like peptide-1 analogs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1952. [PMID: 38500351 DOI: 10.1002/wnan.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that arises when the body cannot respond fully to insulin, leading to impaired glucose tolerance. Currently, the treatment embraces non-pharmacological actions (e.g., diet and exercise) co-associated with the administration of antidiabetic drugs. Metformin is the first-line treatment for T2DM; nevertheless, alternative therapeutic strategies involving glucagon-like peptide-1 (GLP-1) analogs have been explored for managing the disease. GLP-1 analogs trigger insulin secretion and suppress glucagon release in a glucose-dependent manner thereby, reducing the risk of hyperglycemia. Additionally, GLP-1 analogs have an extended plasma half-life compared to the endogenous peptide due to their high resistance to degradation by dipeptidyl peptidase-4. However, GLP-1 analogs are mainly administered via subcutaneous route, which can be inconvenient for the patients. Even considering an oral delivery approach, GLP-1 analogs are exposed to the harsh conditions of the gastrointestinal tract (GIT) and the intestinal barriers (mucus and epithelium). Hereupon, there is an unmet need to develop non-invasive oral transmucosal drug delivery strategies, such as the incorporation of GLP-1 analogs into nanoplatforms, to overcome the GIT barriers. Nanotechnology has the potential to shield antidiabetic peptides against the acidic pH and enzymatic activity of the stomach. In addition, the nanoparticles can be coated and/or surface-conjugated with mucodiffusive polymers and target intestinal ligands to improve their transport through the intestinal mucus and epithelium. This review focuses on the main hurdles associated with the oral administration of GLP-1 and GLP-1 analogs, and the nanosystems developed to improve the oral bioavailability of the antidiabetic peptides. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soraia Filipa Tavares Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Hélder Almeida Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Filipe Carmelino Cardoso Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Gandra, Portugal
| |
Collapse
|
3
|
Pratap-Singh A, Guo Y, Baldelli A, Singh A. Concept for a Unidirectional Release Mucoadhesive Buccal Tablet for Oral Delivery of Antidiabetic Peptide Drugs Such as Insulin, Glucagon-like Peptide 1 (GLP-1), and their Analogs. Pharmaceutics 2023; 15:2265. [PMID: 37765234 PMCID: PMC10534625 DOI: 10.3390/pharmaceutics15092265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
Injectable peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists are being increasingly used for the treatment of diabetes. Currently, the most common route of administration is injection, which is linked to patient discomfort as well as being subjected to refrigerated storage and the requirement for efficient supply chain logistics. Buccal and sublingual routes are recognized as valid alternatives due to their high accessibility and easy administration. However, there can be several challenges, such as peptide selection, drug encapsulation, and delivery system design, which are linked to the enhancement of drug efficacy and efficiency. By using hydrophobic polymers that do not dissolve in saliva, and by using neutral or positively charged nanoparticles that show better adhesion to the negative charges generated by the sialic acid in the mucus, researchers have attempted to improve drug efficiency and efficacy in buccal delivery. Furthermore, unidirectional films and tablets seem to show the highest bioavailability as compared to sprays and other buccal delivery vehicles. This advantageous attribute can be attributed to their capability to mitigate the impact of saliva and inadvertent gastrointestinal enzymatic digestion, thereby minimizing drug loss. This is especially pertinent as these formulations ensure a more directed drug delivery trajectory, leading to heightened therapeutic outcomes. This communication describes the current state of the art with respect to the creation of nanoparticles containing peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists, and theorizes the production of mucoadhesive unidirectional release buccal tablets or films. Such an approach is more patient-friendly and can improve the lives of millions of diabetics around the world; in addition, these shelf-stable formulations ena a more environmentally friendly and sustainable supply chain network.
Collapse
Affiliation(s)
- Anubhav Pratap-Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yigong Guo
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| | - Alberto Baldelli
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Anika Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| |
Collapse
|
4
|
Fang J, Miller P, Grigson PS. Sleep is increased by liraglutide, a glucagon-like peptide-1 receptor agonist, in rats. Brain Res Bull 2023; 192:142-155. [PMID: 36410565 DOI: 10.1016/j.brainresbull.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Sleep disturbances are prominent in drug use disorders, including those involving opioids in both humans and animals. Recent studies have shown that administration of liraglutide, a glucagon-like peptide-1 agonist, significantly reduces heroin taking and seeking in rats. In an effort to further understand the action of this substance on physiological functions and to evaluate safety issues for its potential clinical use, the aim of the present study was to determine whether the dose of liraglutide found effective in reducing responding for an opioid also could improve sleep in drug-naïve rats. METHODS Using a within-subjects design, adult male rats chronically implanted with EEG and EMG electrodes received subcutaneous injection of saline or 0.06, 0.10, 0.30 or 0.60 mg/kg liraglutide. The 0.10 and 0.30 mg/kg doses are known to be most effective in reducing responding for heroin in rats at light or dark onset during a 12:12 h light-dark cycle (0.10 mg/kg for taking and seeking, 0.30 mg/kg for seeking). EEG and EMG were recorded across the 24 h period following each injection. RESULTS After both dark and light onset injections, liraglutide dose-dependently decreased wakefulness and increased non-rapid eye movement (NREM) sleep except at the lowest dose. The bout length of wakefulness and NREM sleep were decreased and increased, respectively. Whether administered at light or dark onset, the above alterations occurred primarily during the dark period (i.e., during the active period). The animals' body weight was decreased after liraglutide treatments as expected since it is clinically used for the treatment of obesity. CONCLUSION These data indicate that liraglutide, at doses known to reduce responding for heroin and fentanyl, also increases NREM sleep, suggesting that the increase in sleep may contribute to the protective effects of liraglutide and may promote overall general health.
Collapse
Affiliation(s)
- Jidong Fang
- The Pennsylvania State University College of Medicine, Department of Psychiatry, USA.
| | - Patti Miller
- The Pennsylvania State University College of Medicine, Department of Psychiatry, USA.
| | | |
Collapse
|
5
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
6
|
Zhang K, Sun Q, Liu P, Bai X, Gao X, Liu K, Li A, LYu Z, Li Q. Studies on chitosan-. Aust J Chem 2022. [DOI: 10.1071/ch22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PolyI:C is an immunomodulatory agent that can be used in immunotherapy, but its transportation in the body is hindered. In this study, a chitosan (CS)-graft-polyethyleneimine (PEI) copolymer (C-g-P) is prepared by an N,N′-carbonyl diimidazole (CDI) coupling method as a drug carrier for PolyI:C and simulated antigen ovalbumin (OVA). The results of FT-IR, 1H NMR, elemental analysis and cytotoxicity studies show that PEI is successfully grafted onto CS, and a low cytotoxicity of C-g-P-x (x = 1, 2, 3) with different PEI grafting rates are obtained. C-g-P-x-PolyI:C/OVA (C-g-P-x-PO) (x = 1, 2, 3) nanoparticles are prepared by combining C-g-P-x (x = 1, 2, 3), PolyI:C and OVA by electrostatic self-assembly. The results of agarose gel electrophoresis show that PolyI:C is well coated by the graft copolymer and protected from nuclease degradation. The results show that C-g-P-1-PO nanoparticles with graft copolymer to PolyI:C (N/P) ratios of 80:1 have the best solution stability, and the OVA encapsulation efficiency is 60.6%. The nanoparticles also have a suitable size and regular shape to be absorbed by cells. In vitro immunoassay results show that PolyI:C and OVA-loaded nanoparticles promote the secretion of tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ). CS-g-PEI is a reliable drug carrier for the delivery of PolyI:C and OVA, and it also provides the possibility to carry other drugs.
Collapse
|
7
|
Liu L, Yuan G, Sun F, Shi J, Chen H, Hu Y. Treg Cell Evaluation in Patients with Acquired Immune Deficiency Syndrome with Poor Immune Reconstitution and Human Immunodeficiency Virus-Infected Treg Cell Prevention by Polymeric Nanoparticle Drug Delivery System. J Biomed Nanotechnol 2022; 18:818-827. [PMID: 35715913 DOI: 10.1166/jbn.2022.3294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To better deliver antiretroviral drugs for treating patients with acquired immune deficiency syndrome (AIDS) with poor immune reconstitution, a novel nanopole capsule was designed in this study. Forty-eight patients with AIDS with poor immune reconstitution were chosen as subjects to test their immune state. CD4+ T and Regulatory T cells (Treg) infected with HIV were cultured to test polyethyleneimine (PEI) and polychitosan (PC) drug delivery system efficiency. The infiltration efficiency test was performed to study the drug delivery efficiency of the delivery systems, and the cell numbers of CD4+ T and Treg cells infected with HIV were calculated to evaluate the therapeutic effect. The results showed that patients with AIDS with poor immune reconstitution had lower CD4+ T cell count and higher Treg cell count. Furthermore, the infiltration efficiency of the PC drug delivery system was higher than that of the PEI drug delivery system, and the therapy efficiency of antiretroviral drugs was greatly improved in the PC group. Additionally, the improvement of CD4+ T and Treg cells damaged by HIV was greater in the PC group. Sequentially, the PC system can better deliver and release loaded antiretroviral drugs and may be a better choice for treating patients with AIDS with poor immune reconstitution in the future.
Collapse
Affiliation(s)
- Linsong Liu
- Acute Infection Department of HuaMei Hospital, University of Chinese Academy of Science, Ningbo, 315000, Zhejiang, PR China
| | - Gang Yuan
- Acute Infection Department of HuaMei Hospital, University of Chinese Academy of Science, Ningbo, 315000, Zhejiang, PR China
| | - Fuyan Sun
- Acute Infection Department of HuaMei Hospital, University of Chinese Academy of Science, Ningbo, 315000, Zhejiang, PR China
| | - Jinchuan Shi
- The Second Department of Infection, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang, PR China
| | - Heling Chen
- Acute Infection Department of HuaMei Hospital, University of Chinese Academy of Science, Ningbo, 315000, Zhejiang, PR China
| | - Yaoren Hu
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, PR China
| |
Collapse
|
8
|
Chen H, Zhao Y, Li R, Chen B, Luo Z, Shi Y, Wang K, Zhang W, Lin S. Preparation and in vitro and in vivo Evaluation Of Panax Notoginseng Saponins-loaded Nanoparticles Coated with Trimethyl Chitosan Derivatives. J Pharm Sci 2021; 111:1659-1666. [PMID: 34752811 DOI: 10.1016/j.xphs.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/02/2023]
Abstract
In this study, novel Panax notoginseng saponins (PNS)-loaded nanoparticles coated with the Trimethyl chitosan (TMC) derivatives TMC-VB12 and TMC-Cys (PPTT-NPs) were developed to improve the oral absorption of the constituents. PPTT-NPs were prepared by the double emulsion method and showed different encapsulation effects on the major components, including Rg1, Rb1, and R1, in PNS. In vivo, the absorption rate constant and apparent absorption coefficient of PPTT-NPs were higher than PNS solution. These findings preliminarily proved that PPTT-NPs can promote intestinal absorption to a certain extent. The pharmacokinetic results indicated that the blood concentration and the area under the curve of Rg1 and Rb1 in the PPTT-NPs were higher than Xueshuantong capsules. The cell viability of PPTT-NPs was above 90% within 25-150 μg/mL. PPTT-NPs promoted the cellular uptake of PNS by receptor-mediated endocytosis. In summary, NPs coated with TMC-VB12 and TMC-Cys can be used as promising drug delivery systems.
Collapse
Affiliation(s)
- Hui Chen
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China.
| | - Ying Zhao
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Ran Li
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Bin Chen
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Zhiman Luo
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Yaling Shi
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Kaiqiu Wang
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Wei Zhang
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Shiyuan Lin
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China.
| |
Collapse
|
9
|
Wang H, Ding L, Xu F, He L, Ye L, Huang L, Zhang L, Luo B. Construction of novel amphiphilic chitosan-polylactide graft copolymer nanodroplets for contrast enhanced ultrasound tumor imaging. J Biomater Appl 2021; 36:613-625. [PMID: 33899561 DOI: 10.1177/08853282211011766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this experiment, a new amphiphilic chitosan-poly(lactide) graft copolymer was synthesized and characterized by IR, 1H-NMR, XRD, TGA. The obtained chitosan-poly (lactide) graft copolymer was used as the matrix material to prepare nanodroplets (NDs) encapsulating with liquid PFP by double-emulsion and solvent evaporation method. The resulting NDs were characterized by photon correlation spectroscopy and transmission electron microscopy (TEM). The biocompatibility was explored by cytotoxicity assay, cell migration assay and blood biochemistry analysis. The experiments of ultrasonic imaging in vitro and in vivo were carried out with a B-mode clinical ultrasound imaging system. The results of FI-IR and 1H-NMR confirmed the successful grafting reaction of polylactic acid(PLLA) to chitosan with a graft rate of 365%. The average size of the NDs was 101.1 ± 2.7 nm, with the polydispersity index (PDI) of 0.127 ± 0.020, and the zeta potential was -31.8 ± 1.5 mV. From the TEM results, NDs were highly dispersed and had a spherical shape with a distinct capsule structure. The NDs exhibited good stability during storage at 4°C. The NDs solution with different concentrations did not affect cell growth and showed good biocompatibility in cytotoxicity, cell migration and blood biochemistry studies. Under the irradiation of ultrasonic waves, the NDs formed an ultrasonic high signal, which could significantly enhance the ultrasound imaging of tumor tissue in vivo. Taken together, the NDs hold great potential for ultrasound imaging as a nanosized contrast agent.
Collapse
Affiliation(s)
- Huili Wang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Liqiong Ding
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Fengnan Xu
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Liu He
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Lin Ye
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Lingping Huang
- Department of Medical Ultrasound, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Ling Zhang
- School of Biomedical Engineering, Hubei University of Science and Technology, Xianning, China
| | - Binhua Luo
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|