1
|
Ndlovu SP, M Motaung SC, Adeyemi SA, Ubanako P, Ngema LM, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Sodium alginate/carboxymethylcellulose gel formulations containing Capparis sepieria plant extract for wound healing. Ther Deliv 2024; 15:921-937. [PMID: 39529611 PMCID: PMC11583625 DOI: 10.1080/20415990.2024.2418800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: Using appropriate wound dressings is crucial when treating burn wounds to promote accelerated healing.Materials & methods: Sodium alginate (SA)-based gels containing Carboxymethyl cellulose (CMC) and Pluronic F127 were prepared. The formulations. SA/CMC/Carbopol and SA/CMC/PluronicF127 were loaded with aqueous root extract of Capparis sepiaria. The formulations were characterized using appropriate techniques.Results: The gels' viscosity was in the range of 676.33 ± 121.76 to 20.00 ± 9.78 cP and in vitro whole blood kinetics showed their capability to induce a faster clotting rate. They also supported high cell viability of 80% with cellular migration and proliferation. Their antibacterial activity was significant against most bacteria strains used in the study.Conclusion: The gels' distinct features reveal their potential application as wound dressings for burn wounds.
Collapse
Affiliation(s)
- Sindi P Ndlovu
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice Eastern Cape, 5700, South Africa
| | | | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Thierry Youmbi Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, Gauteng, 2028, South Africa
| | - Derek Tantoh Ndinteh
- Drug Discovery and SmartMolecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice Eastern Cape, 5700, South Africa
| |
Collapse
|
2
|
Wang Y, Yang X, Liu M, Yan Y, Kong F, Wang J, Zhang Z, Chen Y, Chen L, Liang Z, Peng X, Liu F. Mesenchymal stem cell-loaded hydrogel to inhibit inflammatory reaction in surgical brain injury via mitochondria transfer. J Control Release 2024; 376:231-240. [PMID: 39389366 DOI: 10.1016/j.jconrel.2024.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/01/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Neurosurgical procedures are the key therapeutic interventions for the cerebral hemorrhage and brain tumors. However, neurosurgical procedures inevitably cause surgical brain injury (SBI), which will induce hemorrhage and inflammation. Gelatin Sponges are still the primary hemostatic materials used in clinical, but their anti-inflammatory efficacy is poor. Herein, we developed a cross-linked gelatin hydrogel (GelMA) to load mesenchymal stem cells (MSC) and directly implant them to the SBI site. Upon contacting the SBI site, the GelMA showed better clotting performance than Gelatin Sponges. Moreover, the MSC can reduce oxidative stress and enhance mitochondrial fusion via mitochondria transfer, resulting in ameliorating mitochondrial damage and reducing inflammation. Thus, the GelMA containing MSC can effectively reduce brain edema and inflammation and improve neurological function in SBI mouse models. In addition, GelMA exhibits excellent hemocompatibility and low cytotoxicity. It also enhances the proliferation of MSCs and decelerates the rapid depletion of MSCs. Therefore, MSC-loaded GelMA exhibits excellent hemostatic and anti-inflammatory effects, making it a potential new-generation biomaterial for SBI.
Collapse
Affiliation(s)
- Yunzhi Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Xin Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Menghui Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yang Yan
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Fangen Kong
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jikai Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Zichen Zhang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yanlv Chen
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Lei Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Zibin Liang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Xin Peng
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Fei Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
3
|
Ndlovu SP, Motaung KSCM, Razwinani M, Alven S, Adeyemi SA, Ubanako PN, Ngema LM, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Capparis sepiaria-Loaded Sodium Alginate Single- and Double-Layer Membrane Composites for Wound Healing. Pharmaceutics 2024; 16:1313. [PMID: 39458642 PMCID: PMC11510319 DOI: 10.3390/pharmaceutics16101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Effective wound dressing is the key solution to combating the increased death rate and prolonged hospital stay common to patients with wounds. Methods: Sodium alginate-based single- and double-layer membranes incorporated with Capparis sepiaria root extract were designed using the solvent-casting method from a combination of polyvinyl alcohol (PVA), Pluronic F127 (PF127), and gum acacia. Results: The successful preparation of the membranes and loading of the extract were confirmed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The prepared membranes were biodegradable and non-toxic to human skin cells (HaCaT), with high biocompatibility of 92 to 112% cell viability and good hemocompatibility with absorbance ranging from 0.17 to 0.30. The membrane's highest water vapor transmission rate was 1654.7333 ± 0.736 g/m2/day and the highest % porosity was 76%. The membranes supported cellular adhesion and migration, with the highest closure being 68% after 4 days compared with the commercial wound dressings. This membrane exhibited enhanced antimicrobial activity against the pathogens responsible for wound infections. Conclusions: The distinct features of the membranes make them promising wound dressings for treating infected wounds.
Collapse
Affiliation(s)
- Sindi P. Ndlovu
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| | | | - Mapula Razwinani
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa;
| | - Sibusiso Alven
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa;
| | - Samson A. Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Philemon N. Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Lindokuhle M. Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Thierry Y. Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa;
| | - Derek T. Ndinteh
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa;
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| |
Collapse
|
4
|
Chen X, Tang J, Dong Y, Xuan M, Tian Y, Liu Y, Peng N, Cheng B. A novel hydrogel with inherent antibacterial and hemostatic properties for burn wound healing. Colloids Surf B Biointerfaces 2024; 245:114250. [PMID: 39303388 DOI: 10.1016/j.colsurfb.2024.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
The skin is the immune system's first line of defense. Extensive skin burns can lead to tissue necrosis, sepsis, and even death. Anti-infectious care of burn wounds is a major challenge in clinical medicine. However, the extensive use of antibiotics led to the emergence of multi-drug-resistant bacteria and silver dressings with antibacterial effects are also cytotoxic. We used the natural cationic antibacterial agent ε-polylysine (EPL) to graft Epigallocatechin-3-gallate (EGCG) to synthesize EPL-EGCG. Then, we used methacrylated gelatin (GelMA) with arginine-glycine-aspartate-rich acid (RGD) sequence and EPL-EGCG form interpenetrating polymer network hydrogels with excellent swelling properties. The hydrogel's inherent antibacterial properties and photo-cross-linking properties can cover irregular burn wounds and isolate bacteria to prevent infection. In addition, we used polydopamine (PDA) to coat GelMA microspheres with excellent hemostatic efficacy and load platelet-rich plasma (PRP) to enhance the hemostatic efficacy of the microspheres and impart inflammation-regulating functions. The hydrogel showed excellent hemostatic efficacy in rat liver injury and tail vein injury models. In the rat infected burn model, the hydrogel exhibited favorable antimicrobial, pro-angiogenic, and anti-inflammatory phenotype polarization of macrophages. Our study shows that GelMA/EPL-EGCG/GM-PDA@PRP hydrogel application has excellent antibacterial, hemostatic and anti-inflammatory effects, providing a new treatment strategy for wound care before burn skin grafting.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Jianbing Tang
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Yunqing Dong
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Min Xuan
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Yan Tian
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Yijie Liu
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Na Peng
- Department of Emergency Surgery, Southern Theater General Hospital, Guangzhou 510010, China.
| | - Biao Cheng
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China.
| |
Collapse
|
5
|
Kim HJ, Lee SK, Ko YJ, Jeon SH, Kim EJ, Kwon OH, Cho YH. Novel Flowable Hemostatic Agent ActiClot: Efficacy and Safety Assessment in Rat and Porcine Models. J Clin Med 2024; 13:4770. [PMID: 39200912 PMCID: PMC11355466 DOI: 10.3390/jcm13164770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: This study evaluated the hemostatic performance and safety of ActiClot (ATC), a new flowable hemostatic agent, through in vivo tests. Methods: ATC was compared with the commercially available FLOSEAL®. ATC consists of carboxymethyl starch, thrombin, and sorbitol powders in Syringe I, and a calcium chloride solution in Syringe II. In vivo evaluation used rat liver bleeding and porcine heart bleeding models. Safety was assessed using a rat subcutaneous implantation model. Results: ATC significantly reduced hemostasis time (70.00 ± 7.35 s) compared to gauze control (240.63 ± 32.31 s) in the rat liver model, showing a 70% reduction. There was no significant difference between ATC and FLOSEAL® (58.75 ± 13.42 s). In the porcine heart model, both agents achieved 100% hemostasis within 3 min, with no significant difference in success rates within 2 min (ATC 87.5%, FLOSEAL® 75%). The gauze control group failed in all tests. The rat subcutaneous implantation model showed no visual ATC observation after 48 h, indicating biocompatibility, with no inflammation observed. Conclusions: ATC demonstrated effective hemostatic performance similar to FLOSEAL® in two in vivo models, with faster hemostasis in the rat liver model. It also showed excellent safety and biocompatibility, indicating its potential for surgical and emergency bleeding control.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea;
| | - Su-Kyoung Lee
- Korea Artificial Organ Center, Korea University, Seoul 02841, Republic of Korea;
| | - Yun-Jeh Ko
- Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea;
| | - Soo-Hyeon Jeon
- Theracion Biomedical Co., Ltd., Seongnam 13201, Gyeonggi, Republic of Korea; (S.-H.J.); (E.-J.K.)
| | - Eun-Jin Kim
- Theracion Biomedical Co., Ltd., Seongnam 13201, Gyeonggi, Republic of Korea; (S.-H.J.); (E.-J.K.)
| | - Oh-Hyeong Kwon
- Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea;
| | - Yang-Hyun Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 16419, Republic of Korea
| |
Collapse
|
6
|
Poongodi R, Yang TH, Huang YH, Yang KD, Chen HZ, Chu TY, Wang TY, Lin HC, Cheng JK. Stem cell exosome-loaded Gelfoam improves locomotor dysfunction and neuropathic pain in a rat model of spinal cord injury. Stem Cell Res Ther 2024; 15:143. [PMID: 38764049 PMCID: PMC11103960 DOI: 10.1186/s13287-024-03758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a debilitating illness in humans that causes permanent loss of movement or sensation. To treat SCI, exosomes, with their unique benefits, can circumvent limitations through direct stem cell transplantation. Therefore, we utilized Gelfoam encapsulated with exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-EX) in a rat SCI model. METHODS SCI model was established through hemisection surgery in T9 spinal cord of female Sprague-Dawley rats. Exosome-loaded Gelfoam was implanted into the lesion site. An in vivo uptake assay using labeled exosomes was conducted on day 3 post-implantation. Locomotor functions and gait analyses were assessed using Basso-Beattie-Bresnahan (BBB) locomotor rating scale and DigiGait Imaging System from weeks 1 to 8. Nociceptive responses were evaluated through von Frey filament and noxious radiant heat tests. The therapeutic effects and potential mechanisms were analyzed using Western blotting and immunofluorescence staining at week 8 post-SCI. RESULTS For the in vivo exosome uptake assay, we observed the uptake of labeled exosomes by NeuN+, Iba1+, GFAP+, and OLIG2+ cells around the injured area. Exosome treatment consistently increased the BBB score from 1 to 8 weeks compared with the Gelfoam-saline and SCI control groups. Additionally, exosome treatment significantly improved gait abnormalities including right-to-left hind paw contact area ratio, stance/stride, stride length, stride frequency, and swing duration, validating motor function recovery. Immunostaining and Western blotting revealed high expression of NF200, MBP, GAP43, synaptophysin, and PSD95 in exosome treatment group, indicating the promotion of nerve regeneration, remyelination, and synapse formation. Interestingly, exosome treatment reduced SCI-induced upregulation of GFAP and CSPG. Furthermore, levels of Bax, p75NTR, Iba1, and iNOS were reduced around the injured area, suggesting anti-inflammatory and anti-apoptotic effects. Moreover, exosome treatment alleviated SCI-induced pain behaviors and reduced pain-associated proteins (BDNF, TRPV1, and Cav3.2). Exosomal miRNA analysis revealed several promising therapeutic miRNAs. The cell culture study also confirmed the neurotrophic effect of HucMSCs-EX. CONCLUSION Implantation of HucMSCs-EX-encapsulated Gelfoam improves SCI-induced motor dysfunction and neuropathic pain, possibly through its capabilities in nerve regeneration, remyelination, anti-inflammation, and anti-apoptosis. Overall, exosomes could serve as a promising therapeutic alternative for SCI treatment.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Ya-Hsien Huang
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Kuender D Yang
- Institute of Long-Term Care, MacKay Medical College, New Taipei City, 25245, Taiwan.
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Hong-Zhao Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Tsuei-Yu Chu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Tao-Yeuan Wang
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
- Department of Pathology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS 2 B), National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Jen-Kun Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan.
| |
Collapse
|
7
|
Sucandy I, Ross S, DeLong J, Tran M, Qafiti F, Pechman D, Snow T, Docimo S, Lim-Dy A, Christodoulou M, Renton D. TAVAC: comprehensive review of currently available hemostatic products as adjunct to surgical hemostasis. Surg Endosc 2024; 38:2331-2343. [PMID: 38630180 DOI: 10.1007/s00464-024-10806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND The use of hemostatic agents by general surgeons during abdominal operations is commonplace as an adjunctive measure to minimize risks of postoperative bleeding and its downstream complications. Proper selection of products can be hampered by marginal understanding of their pharmacokinetics and pharmacodynamics. While a variety of hemostatic agents are currently available on the market, the choice of those products is often confusing for surgeons. This paper aims to summarize and compare the available hemostatic products for each clinical indication and to ultimately better guide surgeons in the selection and proper use of hemostatic agents in daily clinical practice. METHODS We utilized PubMed electronic database and published product information from the respective pharmaceutical companies to collect information on the characteristics of the hemostatic products. RESULTS All commercially available hemostatic agents in the US are described with a description of their mechanism of action, indications, contraindications, circumstances in which they are best utilized, and expected results. CONCLUSION Hemostatic products come with many different types and specifications. They are valuable tools to serve as an adjunct to surgical hemostasis. Proper education and knowledge of their characteristics are important for the selection of the right agent and optimal utilization.
Collapse
Affiliation(s)
- Iswanto Sucandy
- Digestive Health Institute, AdventHealth Tampa, Tampa, FL, USA.
| | - Sharona Ross
- Digestive Health Institute, AdventHealth Tampa, Tampa, FL, USA
| | | | - Michael Tran
- University of California Irvine, Irvine, CA, USA
| | - Fred Qafiti
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - David Pechman
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Bayshore, NY, USA
| | - Tim Snow
- Sentara Martha Jefferson Medical And Surgical Associates, Charlottesville, VA, USA
| | | | | | | | - David Renton
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
8
|
Zhang S, Lei X, Lv Y, Wang L, Wang LN. Recent advances of chitosan as a hemostatic material: Hemostatic mechanism, material design and prospective application. Carbohydr Polym 2024; 327:121673. [PMID: 38171686 DOI: 10.1016/j.carbpol.2023.121673] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Uncontrolled hemorrhage arising from surgery or trauma may cause morbidity and even mortality. Therefore, facilitating control of severe bleeding is imperative for health care worldwide. Among diverse hemostatic materials, chitosan (CS) is becoming the most promising material owing to its non-toxic feature, as well as inherently hemostatic performance. However, further enhancing hemostatic property of CS-based materials without compromising more beneficial functions remains a challenge. In this review, representative hemostatic mechanisms of CS-based materials are firstly discussed in detail, mostly including red blood cells (RBCs) aggregation, platelet adherence and aggregation, as well as interaction with plasma proteins. Also, various forms (involving powder/particle, sponge, hydrogel, nanofiber, and other forms) of CS-based hemostatic materials are systematically summarized, mainly focusing on their design and preparation, characteristics, and comparative analysis of various forms. In addition, varied hemostatic applications are described in detail, such as skin wound hemostasis, liver hemostasis, artery hemostasis, and heart hemostasis. Finally, current challenges and future directions of functional design of CS-based hemostatic materials in diverse hemostatic applications are proposed to inspire more intensive researches.
Collapse
Affiliation(s)
- Shuxiang Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiuxue Lei
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yongle Lv
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lei Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, PR China.
| |
Collapse
|
9
|
Wang Y, Nie X, Lv Z, Hao Y, Wang Q, Wei Q. A fast hemostatic and enhanced photodynamic 2-dimensional metal-organic framework loaded aerogel patch for wound management. J Colloid Interface Sci 2024; 656:376-388. [PMID: 38000250 DOI: 10.1016/j.jcis.2023.11.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Achieving rapid hemostasis and highly effective antibacterial holds significant importance in the early-stage treatment of wounds. In this study, a hybrid aerogel patch comprising carbon quantum dots (CQDs) modified 2-dimensional (2D) porphyrinic metal-organic framework (MOF) nanosheets was designed by incorporating gelatin methacrylate (GelMA) and polyacrylamide (PAM) based matrix. On one hand, CQDs were stably doped onto the surface of the 2D MOF nanosheets, thereby enhancing the photodynamic activity through fluorescence resonance energy transfer (FRET) process. After the preparation of hybrid aerogel patch, the patch loaded with CQDs-doped 2D MOF exhibited excellent photodynamic bactericidal activity against Gram-positive Staphylococcus aureus (>99.99 %) and Gram-negative Escherichia coli (>99.99 %). On the other hand, the hybrid patch with highly porous and absorbent structure can rapidly absorb blood to aggregate clotting components and form a hydration barrier covering the wound to enhance hemostasis. Besides, the hemolysis and cytotoxicity assays demonstrated a good biocompatibility of this designed patch. In summary, this 2D MOF-loaded aerogel patch holds a potential to achieve rapid hemostasis and effective anti-infection in the early-stage treatment of traumatic wounds.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaolin Nie
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zihao Lv
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yi Hao
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; Jiangxi Institute of Fashion Technology, Nanchang 330201, China.
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; Jiangxi Institute of Fashion Technology, Nanchang 330201, China.
| |
Collapse
|
10
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Gelatin-based hemostatic agents for medical and dental application at a glance: A narrative literature review. Saudi Dent J 2022; 34:699-707. [PMID: 36570577 PMCID: PMC9767835 DOI: 10.1016/j.sdentj.2022.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Uncontrolled bleeding is linked to higher treatment costs, risk of post-surgical infection and increased disease and death. Hemostatic agents are used to treat excessive bleeding. A good hemostatic agent controls bleeding effectively, reduces the need for blood transfusion, removes the need for systemic drugs to control bleeding, results in shorter surgery time, and reduces the cost and length of hospital stay of the patient. Gelatin-based hemostatic agents have been widely used in medical and dental procedures, owing to their biodegradability and biocompatibility, as well as availability and low cost of raw materials. In this narrative literature review, we discuss the background and different types of gelatin-based hemostatic agents in medical and dental procedures, the comparison of gelatin-based and non-gelatin-based hemostatic agents, and the usage and development of enhanced or novel gelatin-based hemostatic agents. Gelatin-based hemostatic agents are effective and important part of bleeding control, as evidenced by its wide application in medicine and dentistry. The development of novel combination gelatin-based hemostatic agents has much potential for effective control of excessive bleeding.
Collapse
|
12
|
Qiu H, Lan G, Ding W, Wang X, Wang W, Shou D, Lu F, Hu E, Yu K, Shang S, Xie R. Dual-Driven Hemostats Featured with Puncturing Erythrocytes for Severe Bleeding in Complex Wounds. RESEARCH 2022; 2022:9762746. [PMID: 35707050 PMCID: PMC9178490 DOI: 10.34133/2022/9762746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Achieving rapid hemostasis in complex and deep wounds with secluded hemorrhagic sites is still a challenge because of the difficulty in delivering hemostats to these sites. In this study, a Janus particle, SEC-Fe@CaT with dual-driven forces, bubble-driving, and magnetic field– (MF–) mediated driving, was prepared via in situ loading of Fe3O4 on a sunflower sporopollenin exine capsule (SEC), and followed by growth of flower-shaped CaCO3 clusters. The bubble-driving forces enabled SEC-Fe@CaT to self-diffuse in the blood to eliminate agglomeration, and the MF-mediated driving force facilitated the SEC-Fe@CaT countercurrent against blood to access deep bleeding sites in the wounds. During the movement in blood flow, the meteor hammer-like SEC from SEC-Fe@CaT can puncture red blood cells (RBCs) to release procoagulants, thus promoting activation of platelet and rapid hemostasis. Animal tests suggested that SEC-Fe@CaT stopped bleeding in as short as 30 and 45 s in femoral artery and liver hemorrhage models, respectively. In contrast, the similar commercial product Celox™ required approximately 70 s to stop the bleeding in both bleeding modes. This study demonstrates a new hemostat platform for rapid hemostasis in deep and complex wounds. It was the first attempt integrating geometric structure of sunflower pollen with dual-driven movement in hemostasis.
Collapse
Affiliation(s)
- Haoyu Qiu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu Province, China
| | - Xinyu Wang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu Province, China
| | - Wenyi Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Dahua Shou
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Songmin Shang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
13
|
Ghimire S, Sarkar P, Rigby K, Maan A, Mukherjee S, Crawford KE, Mukhopadhyay K. Polymeric Materials for Hemostatic Wound Healing. Pharmaceutics 2021; 13:2127. [PMID: 34959408 PMCID: PMC8708336 DOI: 10.3390/pharmaceutics13122127] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 02/04/2023] Open
Abstract
Hemorrhage is one of the greatest threats to life on the battlefield, accounting for 50% of total deaths. Nearly 86% of combat deaths occur within the first 30 min after wounding. While external wound injuries can be treated mostly using visual inspection, abdominal or internal hemorrhages are more challenging to treat with regular hemostatic dressings because of deep wounds and points of injury that cannot be located properly. The need to treat trauma wounds from limbs, abdomen, liver, stomach, colon, spleen, arterial, venous, and/or parenchymal hemorrhage accompanied by severe bleeding requires an immediate solution that the first responders can apply to reduce rapid exsanguinations from external wounds, including in military operations. This necessitates the development of a unique, easy-to-use, FDA-approved hemostatic treatment that can deliver the agent in less than 30 s and stop bleeding within the first 1 to 2 min at the point of injury without application of manual pressure on the wounded area.
Collapse
Affiliation(s)
- Suvash Ghimire
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA; (S.G.); (P.S.); (K.R.); (A.M.); (S.M.)
| | - Pritha Sarkar
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA; (S.G.); (P.S.); (K.R.); (A.M.); (S.M.)
| | - Kasey Rigby
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA; (S.G.); (P.S.); (K.R.); (A.M.); (S.M.)
| | - Aditya Maan
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA; (S.G.); (P.S.); (K.R.); (A.M.); (S.M.)
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Santanu Mukherjee
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA; (S.G.); (P.S.); (K.R.); (A.M.); (S.M.)
| | - Kaitlyn E. Crawford
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA; (S.G.); (P.S.); (K.R.); (A.M.); (S.M.)
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32816, USA
- Biionix Cluster, University of Central Florida, Orlando, FL 32816, USA
| | - Kausik Mukhopadhyay
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA; (S.G.); (P.S.); (K.R.); (A.M.); (S.M.)
| |
Collapse
|
14
|
Guo B, Dong R, Liang Y, Li M. Haemostatic materials for wound healing applications. Nat Rev Chem 2021; 5:773-791. [PMID: 37117664 DOI: 10.1038/s41570-021-00323-z] [Citation(s) in RCA: 394] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Wounds are one of the most common health issues, and the cost of wound care and healing has continued to increase over the past decade. The first step in wound healing is haemostasis, and the development of haemostatic materials that aid wound healing has accelerated in the past 5 years. Numerous haemostatic materials have been fabricated, composed of different active components (including natural polymers, synthetic polymers, silicon-based materials and metal-containing materials) and in various forms (including sponges, hydrogels, nanofibres and particles). In this Review, we provide an overview of haemostatic materials in wound healing, focusing on their chemical design and operation. We describe the physiological process of haemostasis to elucidate the principles that underpin the design of haemostatic wound dressings. We also highlight the advantages and limitations of the different active components and forms of haemostatic materials. The main challenges and future directions in the development of haemostatic materials for wound healing are proposed.
Collapse
|
15
|
Li MN, Yu HP, Ke QF, Zhang CQ, Gao YS, Guo YP. Gelatin methacryloyl hydrogels functionalized with endothelin-1 for angiogenesis and full-thickness wound healing. J Mater Chem B 2021; 9:4700-4709. [PMID: 34076027 DOI: 10.1039/d1tb00449b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural polymer hydrogels are widely used as wound dressings, but they do not have enough bioactivity to accelerate angiogenesis and re-epithelialization. Herein, a therapeutic system was firstly constructed in which endothelin-1 (ET-1), as an endogenous vasoconstrictor peptide, was embedded in a photo-crosslinking gelatin methacryloyl (GelMA) hydrogel for full-thickness wound healing. The multifunctional GelMA-ET-1 hydrogels contained the arginine-glycine-aspartate (RGD) motifs of gelatin that provided adhesive sites for cell proliferation and migration. The ET-1 was wrapped within the network of crosslinked GelMA hydrogels via intermolecular hydrogen bonding interactions, effectively avoiding oxidization by atmospheric oxygen and in vivo enzymatic biodegradation. Notably, the ET-1 in the functional hydrogels significantly promoted the proliferation, migration and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs) and fibroblasts. The full-thickness skin defect model of rats further revealed that the GelMA-ET-1 hydrogels significantly accelerated new blood vessel formation, collagen deposition and re-epithelialization. After 14 days, the full-thickness skin defects almost closed and were filled with the newly formed tissue. Hence, the photo-crosslinking GelMA-ET-1 hydrogels functionalized with ET-1 can be employed as a promising therapeutic system for wound healing.
Collapse
Affiliation(s)
- Meng-Na Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| | - Hong-Ping Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China. and The First Affiliated Hospital of Xiamen University, Xiamen 361005, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - You-Shui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|