1
|
Hia EM, Jang SR, Maharjan B, Park J, Park CH. Cu-MSNs and ZnO nanoparticles incorporated poly(ethylene glycol) diacrylate/sodium alginate double network hydrogel for simultaneous enhancement of osteogenic differentiation. Colloids Surf B Biointerfaces 2024; 236:113804. [PMID: 38428209 DOI: 10.1016/j.colsurfb.2024.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
In this study, a double network (DN) hydrogel was synthesized using poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA), incorporating copper-doped mesoporous silica nanospheres (Cu-MSNs) and zinc oxide nanoparticles (ZnO NPs). The blending of PEGDA and SA (PS) facilitates the double network and improves the less porous microstructure of pure PEGDA hydrogel. Furthermore, the incorporation of ZnO NPs and Cu-MSNs into the hydrogel network (PS@ZnO/Cu-MSNs) improved the mechanical properties of the hydrogel (Compressive strength = ⁓153 kPa and Young's modulus = ⁓ 1.66 kPa) when compared to PS hydrogel alone (Compressive strength = ⁓ 103 kPa and Young's modulus = ⁓ 0.95 kPa). In addition, the PS@ZnO/Cu-MSNs composite hydrogel showed antibacterial activities against Staphylococcus aureus and Escherichia coli. Importantly, the PS@ZnO/Cu-MSNs hydrogel demonstrated excellent biocompatibility, enhanced MC3T3-E1 cell adhesion, proliferation, and significant early-stage osteoblastic differentiation, as evidenced by increased alkaline phosphatase (ALP), and improved calcium mineralization, as evidenced by increased alizarin red staining (ARS) activities. These findings point to the possible use of the PS@ZnO/Cu-MSNs composite hydrogel in bone tissue regeneration.
Collapse
Affiliation(s)
- Esensil Man Hia
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Se Rim Jang
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Bikendra Maharjan
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Jeesoo Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, the Republic of Korea.
| |
Collapse
|
2
|
Sun S, Cui Y, Yuan B, Dou M, Wang G, Xu H, Wang J, Yin W, Wu D, Peng C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol 2023; 11:1117647. [PMID: 36793443 PMCID: PMC9923112 DOI: 10.3389/fbioe.2023.1117647] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Drug delivery systems composed of osteogenic substances and biological materials are of great significance in enhancing bone regeneration, and appropriate biological carriers are the cornerstone for their construction. Polyethylene glycol (PEG) is favored in bone tissue engineering due to its good biocompatibility and hydrophilicity. When combined with other substances, the physicochemical properties of PEG-based hydrogels fully meet the requirements of drug delivery carriers. Therefore, this paper reviews the application of PEG-based hydrogels in the treatment of bone defects. The advantages and disadvantages of PEG as a carrier are analyzed, and various modification methods of PEG hydrogels are summarized. On this basis, the application of PEG-based hydrogel drug delivery systems in promoting bone regeneration in recent years is summarized. Finally, the shortcomings and future developments of PEG-based hydrogel drug delivery systems are discussed. This review provides a theoretical basis and fabrication strategy for the application of PEG-based composite drug delivery systems in local bone defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dankai Wu
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Zheng BD, Xiao MT. Polysaccharide-based hydrogel with photothermal effect for accelerating wound healing. Carbohydr Polym 2023; 299:120228. [PMID: 36876827 DOI: 10.1016/j.carbpol.2022.120228] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Polysaccharide-based hydrogel has excellent biochemical function, abundant sources, good biocompatibility and other advantages, and has a broad application prospect in biomedical fields, especially in the field of wound healing. With its inherent high specificity and low invasive burden, photothermal therapy has shown great application prospect in preventing wound infection and promoting wound healing. Combining polysaccharide-based hydrogel with photothermal therapy (PTT), multifunctional hydrogel with photothermal, bactericidal, anti-inflammatory and tissue regeneration functions can be designed, so as to achieve better therapeutic effect. This review first focuses on the basic principles of hydrogel and PTT, and the types of polysaccharides that can be used to design hydrogels. In addition, according to the different materials that produce photothermal effects, the design considerations of several representative polysaccharide-based hydrogels are emphatically introduced. Finally, the challenges faced by polysaccharide-based hydrogels with photothermal properties are discussed, and the future prospects of this field are put forward.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
4
|
Sousa AC, Biscaia S, Alvites R, Branquinho M, Lopes B, Sousa P, Valente J, Franco M, Santos JD, Mendonça C, Atayde L, Alves N, Maurício AC. Assessment of 3D-Printed Polycaprolactone, Hydroxyapatite Nanoparticles and Diacrylate Poly(ethylene glycol) Scaffolds for Bone Regeneration. Pharmaceutics 2022; 14:pharmaceutics14122643. [PMID: 36559137 PMCID: PMC9782524 DOI: 10.3390/pharmaceutics14122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Notwithstanding the advances achieved in the last decades in the field of synthetic bone substitutes, the development of biodegradable 3D-printed scaffolds with ideal mechanical and biological properties remains an unattained challenge. In the present work, a new approach to produce synthetic bone grafts that mimic complex bone structure is explored. For the first time, three scaffolds of various composition, namely polycaprolactone (PCL), PCL/hydroxyapatite nanoparticles (HANp) and PCL/HANp/diacrylate poly(ethylene glycol) (PEGDA), were manufactured by extrusion. Following the production and characterisation of the scaffolds, an in vitro evaluation was carried out using human dental pulp stem/stromal cells (hDPSCs). Through the findings, it was possible to conclude that, in all groups, the scaffolds were successfully produced presenting networks of interconnected channels, adequate porosity for migration and proliferation of osteoblasts (approximately 50%). Furthermore, according to the in vitro analysis, all groups were considered non-cytotoxic in contact with the cells. Nevertheless, the group with PEGDA revealed hydrophilic properties (15.15° ± 4.06) and adequate mechanical performance (10.41 MPa ± 0.934) and demonstrated significantly higher cell viability than the other groups analysed. The scaffolds with PEGDA suggested an increase in cell adhesion and proliferation, thus are more appropriate for bone regeneration. To conclude, findings in this study demonstrated that PCL, HANp and PEGDA scaffolds may have promising effects on bone regeneration and might open new insights for 3D tissue substitutes.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Sara Biscaia
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Rui Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Mariana Branquinho
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Bruna Lopes
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Patrícia Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Joana Valente
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Margarida Franco
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carla Mendonça
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Luís Atayde
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Ana Colette Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- Correspondence: or
| |
Collapse
|
6
|
Zuo Y, Xiong Q, Li Q, Zhao B, Xue F, Shen L, Li H, Yuan Q, Cao S. Osteogenic growth peptide (OGP)-loaded amphiphilic peptide (NapFFY) supramolecular hydrogel promotes osteogenesis and bone tissue reconstruction. Int J Biol Macromol 2022; 195:558-564. [PMID: 34920074 DOI: 10.1016/j.ijbiomac.2021.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 02/08/2023]
Abstract
Efficient bone reconstruction after bone injury remains a great challenge. Injectable supramolecular hydrogels based on amphiphilic peptide have been widely used due to their good biocompatability, non-immunogenicity, and manipulable physicochemical properties by sequence design. Herein, we used a well-studied hydrogelator, NapFFY, to coassemble with osteogenic growth peptide (OGP) to prepare a supramolecular hydrogel, NapFFY-OGP. Both in vitro and in vivo studies demonstrate that OGP was ideally synchronously, and continuously released from the hydrogel to effectively promote the regeneration and reconstruction of skull bone defects. More specifically, after the embedding the rat skull defect area with NapFFY-OGP hydrogels, a bone regeneration rate of 37.54% bone volume fraction (BV/TV) was achieved compared to that of NapFFY hydrogel group (25.09%). NapFFY-OGP hydrogel shows great promise in the clinic repair of bone defects in the future.
Collapse
Affiliation(s)
- Yanping Zuo
- Department of Prosthodontics, School of Stomatology, Xi'an Medical University, Xi'an, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Luxuan Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Hanwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Zhang X, Tan B, Wu Y, Zhang M, Liao J. A Review on Hydrogels with Photothermal Effect in Wound Healing and Bone Tissue Engineering. Polymers (Basel) 2021; 13:2100. [PMID: 34202237 PMCID: PMC8271463 DOI: 10.3390/polym13132100] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 02/05/2023] Open
Abstract
Photothermal treatment (PTT) is a promising strategy to deal with multidrug-resistant bacteria infection and promote tissue regeneration. Previous studies demonstrated that hyperthermia can effectively inhibit the growth of bacteria, whereas mild heat can promote cell proliferation, further accelerating wound healing and bone regeneration. Especially, hydrogels with photothermal properties could achieve remotely controlled drug release. In this review, we introduce a photothermal agent hybrid in hydrogels for a photothermal effect. We also summarize the potential mechanisms of photothermal hydrogels regarding antibacterial action, angiogenesis, and osteogenesis. Furthermore, recent developments in photothermal hydrogels in wound healing and bone regeneration applications are introduced. Finally, future application of photothermal hydrogels is discussed. Hydrogels with photothermal effects provide a new direction for wound healing and bone regeneration, and this review will give a reference for the tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Z.); (B.T.); (Y.W.); (M.Z.)
| |
Collapse
|