1
|
Koohi-Hosseinabadi O, Shahriarirad R, Dehghanian A, Amini L, Barzegar S, Daneshparvar A, Alavi O, Khazraei SP, Hosseini S, Arabi Monfared A, Khorram R, Tanideh N, Ashkani-Esfahani S. In-vitro and in-vivo assessment of biocompatibility and efficacy of ostrich eggshell membrane combined with platelet-rich plasma in Achilles tendon regeneration. Sci Rep 2025; 15:841. [PMID: 39755875 DOI: 10.1038/s41598-025-85131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025] Open
Abstract
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role. Ostrich eggshell membrane (ESM), characterized by a strong preferential orientation of calcite crystals, forms a semipermeable polymer network with excellent mechanical properties compared to membranes from other bird species, emerging as a potential natural scaffold candidate. Coupled with platelet-rich plasma (PRP), known for its regenerative properties, ESM holds promise for improving tendon repair. This study aims to evaluate the biocompatibility and efficacy of an ESM-PRP scaffold in treating Achilles tendon ruptures, employing in vitro and in vivo assessments to gauge its potential in tendon regeneration in living organisms. Ostrich ESM was prepared from pathogen-free ostrich eggs, sterilized with UV radiation and prepared in desired dimensions before implantation (1.5 × 1 cm). High-resolution scanning electron microscopy (HRSEM) was utilized to visualize the sample morphology and fiber bonding. In vitro biocompatibility was assessed using the MTT assay and DAPI staining, while in vivo biocompatibility was evaluated in a rat model. For the in vivo Achilles tendinopathy assay, rats were divided into groups and subjected to AT rupture followed by treatment with ESM, PRP, or a combination. SEM was employed to evaluate tendon morphology, and real-time PCR was conducted to analyze gene expression levels. The in vivo assay indicated that the ESM scaffold was safe for an extended period of 8 weeks, showing no signs of inflammation based on histopathological analysis. In the Achilles tendon rupture model, combining ESM with PRP enhanced tendon healing after 14 weeks post-surgery. This finding was supported by histopathological, morphological, and mechanical evaluations of tendon tissues compared to normal tendons, untreated tendinopathy, and injured tendons treated with the ESM scaffold. Gene expression analysis revealed significantly increased expression of Col1a1, Col3a1, bFGF, Scleraxis (Scx), and tenomodulin in the ESM-PRP groups. The findings of our study demonstrate that the combination of Ostrich ESM with PRP significantly enhances AT repair and is a biocompatible scaffold for the application in living organisms.
Collapse
Affiliation(s)
- Omid Koohi-Hosseinabadi
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amireza Dehghanian
- Department of Pathology, School of Medicine, Shiraz University, Shiraz, Iran
| | - Laleh Amini
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sajjad Barzegar
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Afrooz Daneshparvar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Alavi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Ali Arabi Monfared
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, P. O. Box: 7134845794, Shiraz, Iran.
- Pharmacology Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Soheil Ashkani-Esfahani
- Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Foot and Ankle Division, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Liang X, Guo S, Kuang X, Wan X, Liu L, Zhang F, Jiang G, Cong H, He H, Tan SC. Recent advancements and perspectives on processable natural biopolymers: Cellulose, chitosan, eggshell membrane, and silk fibroin. Sci Bull (Beijing) 2024; 69:3444-3466. [PMID: 39244421 DOI: 10.1016/j.scib.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
With the rapid development of the global economy and the continuous consumption of fossil resources, sustainable and biodegradable natural biomass has garnered extensive attention as a promising substitute for synthetic polymers. Due to their hierarchical and nanoscale structures, natural biopolymers exhibit remarkable mechanical properties, along with excellent innate biocompatibility and biodegradability, demonstrating significant potential in various application scenarios. Among these biopolymers, proteins and polysaccharides are the most commonly studied due to their low cost, abundance, and ease of use. However, the direct processing/conversion of proteins and polysaccharides into their final products has been a long-standing challenge due to their natural morphology and compositions. In this review, we emphasize the importance of processing natural biopolymers into high-value-added products through sustainable and cost-effective methods. We begin with the extraction of four types of natural biopolymers: cellulose, chitosan, eggshell membrane, and silk fibroin. The processing and post-functionalization strategies for these natural biopolymers are then highlighted. Alongside their unique structures, the versatile potential applications of these processable natural biopolymers in biomedical engineering, biosensors, environmental engineering, and energy applications are illustrated. Finally, we provide a summary and future outlook on processable natural biopolymers, underscoring the significance of converting natural biopolymers into valuable biomaterial platforms.
Collapse
Affiliation(s)
- Xinhua Liang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Shuai Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xiaoju Kuang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Xiaoqian Wan
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Lu Liu
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Fei Zhang
- Department of Sport Medicine, The Ninth People's Hospital affiliated to Soochow University, Wuxi 215200, China
| | - Gaoming Jiang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Honglian Cong
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Haijun He
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China.
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.
| |
Collapse
|
3
|
Rafiei S, Ghanbari-Abdolmaleki M, Zeinali R, Heidari-Keshel S, Rahimi A, Royanian F, Zaeifi D, Taheri K, Pourtaghi K, Khaleghi M, Biazar E. Silk fibroin/vitreous humor hydrogel scaffold modified by a carbodiimide crosslinker for wound healing. Biopolymers 2024; 115:e23612. [PMID: 38994706 DOI: 10.1002/bip.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Natural-derived biomaterials can be used as substrates for the growth, proliferation, and differentiation of cells. In this study, bovine vitreous humor as a biological material was cross-linked to silk fibroin with different concentration ratios to design a suitable substrate for corneal tissue regeneration. The cross-linked samples were evaluated with different analyses such as structural, physical (optical, swelling, and degradation), mechanical, and biological (viability, cell adhesion) assays. The results showed that all samples had excellent transparency, especially those with higher silk fibroin content. Increasing the ratio of vitreous humor to silk fibroin decreased mechanical strength and increased swelling and degradation, respectively. There was no significant difference in the toxicity of the samples, and with the increase in vitreous humor ratio, adhesion and cell proliferation increased. Generally, silk fibroin with vitreous humor can provide desirable characteristics as a transparent film for corneal wound healing.
Collapse
Affiliation(s)
- Sepideh Rafiei
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | | | - Reza Zeinali
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universität Politècnica de Catalunya, Terrassa, Spain
| | - Saeed Heidari-Keshel
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Royanian
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Davood Zaeifi
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kiana Taheri
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Kimia Pourtaghi
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maryam Khaleghi
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
4
|
Esmaeili S, Rahmati M, Zamani S, Djalilian AR, Arabpour Z, Salehi M. A comparison of several separation processes for eggshell membrane powder as a natural biomaterial for skin regeneration. Skin Res Technol 2024; 30:e70038. [PMID: 39256190 PMCID: PMC11387111 DOI: 10.1111/srt.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Numerous studies have focused on skin damage, the most prevalent physical injury, aiming to improve wound healing. The exploration of biomaterials, specifically eggshell membranes (ESMs), is undertaken to accelerate the recovery of skin injuries. The membrane must be separated from the shell to make this biomaterial usable. Hence, this investigation aimed to identify more about the methods for membrane isolation and determine the most efficient one for usage as a biomaterial. METHODS AND MATERIALS For this purpose, ESM was removed from eggs using different protocols (with sodium carbonate, acetic acid, HCl, calcium carbonate, and using forceps for separation). Consequently, we have examined the membranes' mechanical and morphological qualities. RESULTS According to the analysis of microscopic surface morphology, the membranes have appropriate porosity. MTT assay also revealed that the membranes have no cytotoxic effect on 3T3 cells. The results indicated that the ESM had acquired acceptable coagulation and was compatible with blood. Based on the obtained results, Provacol 4 (0.5-mol HCl and neutralized with 0.1-mol NaOH) was better than other methods of extraction and eggshell separation because it was more cell-compatible and more compatible with blood. CONCLUSION This study demonstrates that ESMs can be used as a suitable biomaterial in medical applications.
Collapse
Affiliation(s)
- Samaneh Esmaeili
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Majid Rahmati
- Department of Medical BiotechnologySchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Sepehr Zamani
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research CenterShahroud University of Medical SciencesShahroudIran
- Department of Tissue EngineeringSchool of MedicineShahroud University of Medical SciencesShahroudIran
| |
Collapse
|
5
|
Roy AP, Jana S, Das H, Das P, Chakraborty B, Mukherjee P, Datta P, Mondal S, Kundu B, Nandi SK. Stimulated Full-Thickness Cutaneous Wound Healing with Bioactive Dressings of Zinc and Cobalt Ion-Doped Bioactive Glass-Coated Eggshell Membranes in a Diabetic Rabbit Model. ACS Biomater Sci Eng 2024; 10:4510-4524. [PMID: 38826128 DOI: 10.1021/acsbiomaterials.4c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Eggshell membrane-based biomedical applications have recently received great attention for their wound-healing properties. However, there are limited studies on diabetic wound healing. In this regard, we devised four types of composite eggshell membrane mats with nanoscale coatings of bioactive glass/Zn/Co-doped bioactive glass (ESM + BAG, ESM + ZnBAG, ESM + CoBAG, and ESM + ZnCoBAG) as wound-dressing materials for chronic nonhealing diabetic wounds. A detailed study of the physicochemical properties of the mats was conducted. In vitro studies demonstrated cytocompatibility and viability of human dermal fibroblasts on all four types of mats. The cells also attached finely on the mats with the help of cellular extensions, as evident from scanning electron microscopy (SEM) and rhodamine-phalloidin and Hoechst 33342 staining of cellular components. Endowed with bioactive properties, these mats influenced all aspects of full-thickness skin wound healing in diabetic animal model studies. All of the mats, especially the ESM + ZnCoBAG mat, showed the earliest wound closure, effective renewal, and restructuring of the extracellular matrix in terms of an accurate and timely accumulation of collagen, elastin, and reticulin fibers. Hydroxyproline and sulfated glycosaminoglycans were significantly (p < 0.01, p < 0.05) higher in ESM-ZnCoBAG-treated wounds in comparison to ESM-BAG-treated wounds, which suggests that these newly developed mats have potential as an affordable diabetic wound care solution in biomedical research.
Collapse
Affiliation(s)
- Arka Pravo Roy
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Himanka Das
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Bijayashree Chakraborty
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Pradyot Datta
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Biswanath Kundu
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| |
Collapse
|
6
|
Kang D. Advancing Fingertip Regeneration: Outcomes from a New Conservative Treatment Protocol. J Clin Med 2024; 13:3646. [PMID: 38999212 PMCID: PMC11242295 DOI: 10.3390/jcm13133646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Background Fingertip injuries with volar pulp tissue defects present a significant challenge in management. This study aimed to evaluate the efficacy of a conservative treatment protocol using artificial dermis and semi-occlusive dressings for these injuries. Methods A single-center, prospective study was conducted on 31 patients with fingertip injuries involving volar pulp defects. The treatment protocol included wound debridement, application of artificial dermis (Pelnac®), and a semi-occlusive dressing (IV3000®). The outcomes were assessed using subjective questionnaires and objective measures, including fingerprint regeneration, sensory function, pain, and cosmetic appearance. Results The mean treatment duration was 45.29 days (SD = 17.53). Complications were minimal, with only one case (3.22%) directly attributable to the treatment. Fingerprint regeneration was considerable (mean score = 2.58, SD = 0.67). The sensory disturbances were minimal, with no significant differences across injury types. Post-treatment pain was low (mean = 0.45, SD = 0.67), and cosmetic satisfaction was high (mean = 4.09, SD = 0.94). The overall patient satisfaction was high (mean = 4.41, SD = 0.67), regardless of injury severity. Conclusions The conservative treatment protocol using artificial dermis and semi-occlusive dressings is a promising strategy for managing fingertip injuries with volar pulp defects. This approach minimizes surgical morbidity and achieves excellent functional and aesthetic outcomes.
Collapse
Affiliation(s)
- Daihun Kang
- Department of Plastic and Reconstructive Surgery, Ewha Womans University Seoul Hospital, Seoul 03760, Republic of Korea
| |
Collapse
|
7
|
Zhang Y, Pham HM, Tran SD. The Chicken Egg: An Advanced Material for Tissue Engineering. Biomolecules 2024; 14:439. [PMID: 38672456 PMCID: PMC11048217 DOI: 10.3390/biom14040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
The chicken egg, an excellent natural source of proteins, has been an overlooked native biomaterial with remarkable physicochemical, structural, and biological properties. Recently, with significant advances in biomedical engineering, particularly in the development of 3D in vitro platforms, chicken egg materials have increasingly been investigated as biomaterials due to their distinct advantages such as their low cost, availability, easy handling, gelling ability, bioactivity, and provision of a developmentally stimulating environment for cells. In addition, the chicken egg and its by-products can improve tissue engraftment and stimulate angiogenesis, making it particularly attractive for wound healing and tissue engineering applications. Evidence suggests that the egg white (EW), egg yolk (EY), and eggshell membrane (ESM) are great biomaterial candidates for tissue engineering, as their protein composition resembles mammalian extracellular matrix proteins, ideal for cellular attachment, cellular differentiation, proliferation, and survivability. Moreover, eggshell (ES) is considered an excellent calcium resource for generating hydroxyapatite (HA), making it a promising biomaterial for bone regeneration. This review will provide researchers with a concise yet comprehensive understanding of the chicken egg structure, composition, and associated bioactive molecules in each component and introduce up-to-date tissue engineering applications of chicken eggs as biomaterials.
Collapse
Affiliation(s)
- Yuli Zhang
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.)
| | - Hieu M. Pham
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.)
- Department of Periodontology, Eastman Institute for Oral Health, University of Rochester Medical Center, 625 Elmwood Avenue, Rochester, NY 14620, USA
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.)
| |
Collapse
|
8
|
Kalluri L, Griggs JA, Janorkar AV, Xu X, Chandran R, Mei H, Nobles KP, Yang S, Alberto L, Duan Y. Preparation and optimization of an eggshell membrane-based biomaterial for GTR applications. Dent Mater 2024; 40:728-738. [PMID: 38401993 DOI: 10.1016/j.dental.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVES Guided Tissue Regeneration (GTR) is a popular clinical procedure for periodontal tissue regeneration. However, its key component, the barrier membrane, is largely collagen-based and is still quite expensive, posing a financial burden to the patients as well as healthcare systems and negatively impacting the patient's decision-making. Thus, our aim is to prepare a novel biomimetic GTR membrane utilizing a natural biomaterial, soluble eggshell membrane protein (SEP), which is economical as it comes from an abundant industrial waste from food and poultry industries, unlike collagen. Additive polymer, poly (lactic-co-glycolic acid) (PLGA), and a bioceramic, nano-hydroxyapatite (HAp), were added to improve its mechanical and biological properties. METHODS For this barrier membrane preparation, we initially screened the significant factors affecting its mechanical properties using Taguchi orthogonal array design and further optimized the significant factors using response surface methodology. Furthermore, this membrane was characterized using SEM, EDAX, and ATR-FTIR, and tested for proliferation activity of human periodontal ligament fibroblasts (HPLFs). RESULTS Optimization using response surface methodology predicted that the maximal tensile strength of 3.1 MPa and modulus of 39.9 MPa could be obtained at membrane composition of 8.9 wt% PLGA, 7.2 wt% of SEP, and 2 wt% HAp. Optimized PLGA/SEP/HAp membrane specimens that were electrospun on a static collector showed higher proliferation activity of HPLFs compared to tissue culture polystyrene and a commercial collagen membrane. SIGNIFICANCE From the results observed, we can conclude that SEP-based nanofibrous GTR membrane could be a promising, environment-friendly, and cost-effective alternative for commercial collagen-based GTR membrane products.
Collapse
Affiliation(s)
- Lohitha Kalluri
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jason A Griggs
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Xiaoming Xu
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA
| | - Ravi Chandran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hao Mei
- Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kadie P Nobles
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shan Yang
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Laura Alberto
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yuanyuan Duan
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
9
|
Flechas Becerra C, Barrios Silva LV, Ahmed E, Bear JC, Feng Z, Chau DY, Parker SG, Halligan S, Lythgoe MF, Stuckey DJ, Patrick PS. X-Ray Visible Protein Scaffolds by Bulk Iodination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306246. [PMID: 38145968 PMCID: PMC10933627 DOI: 10.1002/advs.202306246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/18/2023] [Indexed: 12/27/2023]
Abstract
Protein-based biomaterial use is expanding within medicine, together with the demand to visualize their placement and behavior in vivo. However, current medical imaging techniques struggle to differentiate between protein-based implants and surrounding tissue. Here a fast, simple, and translational solution for tracking transplanted protein-based scaffolds is presented using X-ray CT-facilitating long-term, non-invasive, and high-resolution imaging. X-ray visible scaffolds are engineered by selectively iodinating tyrosine residues under mild conditions using readily available reagents. To illustrate translatability, a clinically approved hernia repair mesh (based on decellularized porcine dermis) is labeled, preserving morphological and mechanical properties. In a mouse model of mesh implantation, implants retain marked X-ray contrast up to 3 months, together with an unchanged degradation rate and inflammatory response. The technique's compatibility is demonstrated with a range of therapeutically relevant protein formats including bovine, porcine, and jellyfish collagen, as well as silk sutures, enabling a wide range of surgical and regenerative medicine uses. This solution tackles the challenge of visualizing implanted protein-based biomaterials, which conventional imaging methods fail to differentiate from endogenous tissue. This will address previously unanswered questions regarding the accuracy of implantation, degradation rate, migration, and structural integrity, thereby accelerating optimization and safe translation of therapeutic biomaterials.
Collapse
Affiliation(s)
- Carlos Flechas Becerra
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonPaul O'Gorman Building, 72 Huntley StreetLondonWC1E 6DDUK
| | - Lady V. Barrios Silva
- Division of Biomaterials and Tissue EngineeringEastman Dental InstituteUniversity College LondonRoyal Free HospitalRowland Hill StreetLondonNW3 2PFUK
| | - Ebtehal Ahmed
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonPaul O'Gorman Building, 72 Huntley StreetLondonWC1E 6DDUK
| | - Joseph C. Bear
- School of Life SciencePharmacy & ChemistryKingston UniversityPenrhyn RoadKingston upon ThamesKT1 2EEUK
| | - Zhiping Feng
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonPaul O'Gorman Building, 72 Huntley StreetLondonWC1E 6DDUK
| | - David Y.S. Chau
- Division of Biomaterials and Tissue EngineeringEastman Dental InstituteUniversity College LondonRoyal Free HospitalRowland Hill StreetLondonNW3 2PFUK
| | - Samuel G. Parker
- Centre for Medical Imaging, Division of MedicineUniversity College London UCLCharles Bell House, 43–45 Foley StreetLondonW1W 7TSUK
| | - Steve Halligan
- Centre for Medical Imaging, Division of MedicineUniversity College London UCLCharles Bell House, 43–45 Foley StreetLondonW1W 7TSUK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonPaul O'Gorman Building, 72 Huntley StreetLondonWC1E 6DDUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonPaul O'Gorman Building, 72 Huntley StreetLondonWC1E 6DDUK
| | - P. Stephen Patrick
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonPaul O'Gorman Building, 72 Huntley StreetLondonWC1E 6DDUK
| |
Collapse
|
10
|
Mensah RA, Cook MT, Kirton SB, Hutter V, Chau DYS. A drug-incorporated-microparticle-eggshell-membrane-scaffold (DIMES) dressing: A novel biomaterial for localised wound regeneration. Eur J Pharm Biopharm 2023; 190:258-269. [PMID: 37463633 DOI: 10.1016/j.ejpb.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
Chronic wounds affect millions of people annually and have emotional and financial implications in addition to health issues. The current treatment for chronic wounds involves the repeated use of bandages and drugs such as antibiotics over an extended period. A cost-effective and convenient solution for wound healing is the development of drug-incorporated bandages. This study aimed to develop a biocompatible bandage made of drug-incorporated poly (lactic-co-glycolic acid) (PLGA) microparticles (MPs) and eggshell membrane (ESM) for cornea wound healing. ESM has desirable properties for wound healing and can be isolated from eggshells using acetic acid or ethylenediaminetetraacetic acid (EDTA) protocols. Fluorescein isothiocyanate-labelled Bovine Serum Albumin (FITC-BSA) was used as a model drug, and the PLGA MPs were fabricated using a solvent extraction method. The MPs were successfully attached to the fibrous layer of the ESM using NaOH. The surface features of the ESM samples containing MPs were studied using a field emission scanning electron microscope (FESEM) and compared with blank ESM images. The findings indicated that the MPs were attached to the ESM fibres and had similar shapes and sizes as the control MPs. The fibre diameters of the MPs samples were assessed using Fiji-ImageJ software, and no significant changes were observed compared to the blank ESM. The surface roughness, Ra values, of the MPs incorporated ESM samples were evaluated and compared to the blank ESM, and no significant changes were found. Fourier transform infrared (FTIR) spectroscopy was used to analyse the chemical Composition of the bandage, and the spectra showed that the FBM were effectively incorporated into the ESM. The FTIR spectra identified the major peaks of the natural ESM and the PLGA polymer in the bandage. The bandage was transparent but had a reduced visibility in the waterproof test card method. The bandage achieved sustained drug release up to 10 days and was found to be biocompatible and non-toxic in a chorioallantoic membrane (CAM) assay. Overall, the drug-incorporated PLGA MPs-ESM bandage has great potential for treating chronic wounds.
Collapse
Affiliation(s)
- Rosemond A Mensah
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK; Eastman Dental Institute, University College London, London, UK
| | - Michael T Cook
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK; School of Pharmacy, University College London, London, UK
| | - Stewart B Kirton
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - Victoria Hutter
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - David Yi San Chau
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK; Eastman Dental Institute, University College London, London, UK.
| |
Collapse
|
11
|
Mensah RA, Trotta F, Briggs E, Sharifulden NS, Silva LVB, Keskin-Erdogan Z, Diop S, Kureshi AK, Chau DYS. A Sustainable, Green-Processed, Ag-Nanoparticle-Incorporated Eggshell-Derived Biomaterial for Wound-Healing Applications. J Funct Biomater 2023; 14:450. [PMID: 37754864 PMCID: PMC10531947 DOI: 10.3390/jfb14090450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
The eggshell membrane (ESM) is a natural biomaterial with unique physical and mechanical properties that make it a promising candidate for wound-healing applications. However, the ESM's inherent properties can be enhanced through incorporation of silver nanoparticles (AgNPs), which have been shown to have antimicrobial properties. In this study, commercially produced AgNPs and green-processed AgNPs were incorporated into ESM and evaluated for their physical, biological, and antimicrobial properties for potential dermal application. The ESM was extracted using various techniques, and then treated with either commercially produced AgNPs (Sigma-Aldrich, Poole, UK) or green-synthesized AgNPs (Metalchemy, London, UK) to produce AgNPs-ESM samples. The physical characteristics of the samples were evaluated using scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, and the biological properties were assessed through in vitro studies using human dermal fibroblasts (HDFs) and BJ cells. The SEM analysis of the AgNPs-ESM samples showed localization of AgNPs on the ESM surface, and that the ESM maintained its structural integrity following AgNP incorporation. The FTIR confirmed loading of AgNPs to ESM samples. The biological studies showed that the 5 μg/mL AgNPs-ESM samples were highly biocompatible with both HDFs and BJ cells, and had good viability and proliferation rates. Additionally, the AgNPs-ESM samples demonstrated pro-angiogenic properties in the CAM assay, indicating their potential for promoting new blood vessel growth. Assessment of the antimicrobial activity of the enhanced AgNPs/ESMs was validated using the International Standard ISO 16869:2008 methodology and exploited Cladosporium, which is one of the most commonly identified fungi in wounds, as the test microorganism (≥5 × 106 cells/mL). The AgNPs-ESM samples displayed promising antimicrobial efficacy as evidenced by the measured zone of inhibition. Notably, the green-synthesized AgNPs demonstrated greater zones of inhibition (~17 times larger) compared to commercially available AgNPs (Sigma-Aldrich). Although both types of AgNP exhibited long-term stability, the Metalchemy-modified samples demonstrated a slightly stronger inhibitory effect. Overall, the AgNPs-ESM samples developed in this study exhibited desirable physical, biological, and antimicrobial properties for potential dermal wound-dressing applications. The use of green-processed AgNPs in the fabrication of the AgNPs-ESM samples highlights the potential for sustainable and environmentally friendly wound-healing therapies. Further research is required to assess the long-term biocompatibility and effectiveness of these biomaterials in vivo.
Collapse
Affiliation(s)
- Rosemond A. Mensah
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Federico Trotta
- Metalchemy Limited, 71-75 Shelton Street, London WC2H 9JQ, UK
| | - Emily Briggs
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
- Department of Materials, Henry Royce Institute, The University of Manchester, Rumford Street, Manchester M13 9PL, UK
| | - Nik San Sharifulden
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Lady V. Barrios Silva
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Zalike Keskin-Erdogan
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
- Chemical Engineering Department, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK
| | - Seyta Diop
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Alvena K. Kureshi
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, Foley Street, London W1W 7TY, UK
| | - David Y. S. Chau
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
12
|
Yang Y, Ai C, Chen W, Zhen J, Kong X, Jiang Y. Recent Advances in Sources of Bio-Inspiration and Materials for Robotics and Actuators. SMALL METHODS 2023; 7:e2300338. [PMID: 37381685 DOI: 10.1002/smtd.202300338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Indexed: 06/30/2023]
Abstract
Bionic robotics and actuators have made dramatic advancements in structural design, material preparation, and application owing to the richness of nature and innovative material design. Appropriate and ingenious sources of bio-inspiration can stimulate a large number of different bionic systems. After millennia of survival and evolutionary exploration, the mere existence of life confirms that nature is constantly moving in an evolutionary direction of optimization and improvement. To this end, bio-inspired robots and actuators can be constructed for the completion of a variety of artificial design instructions and requirements. In this article, the advances in bio-inspired materials for robotics and actuators with the sources of bio-inspiration are reviewed. The specific sources of inspiration in bionic systems and corresponding bio-inspired applications are summarized first. Then the basic functions of materials in bio-inspired robots and actuators is discussed. Moreover, a principle of matching biomaterials is creatively suggested. Furthermore, the implementation of biological information extraction is discussed, and the preparation methods of bionic materials are reclassified. Finally, the challenges and potential opportunities involved in finding sources of bio-inspiration and materials for robotics and actuators in the future is discussed.
Collapse
Affiliation(s)
- Yue Yang
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Chao Ai
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
- Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Ministry of Education of China, Qinhuangdao, 066004, P.R. China
| | - Wenting Chen
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
- Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Ministry of Education of China, Qinhuangdao, 066004, P.R. China
| | - Jinpeng Zhen
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Xiangdong Kong
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
- Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Ministry of Education of China, Qinhuangdao, 066004, P.R. China
| | - Yunhong Jiang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| |
Collapse
|
13
|
Torres-Mansilla A, Hincke M, Voltes A, López-Ruiz E, Baldión PA, Marchal JA, Álvarez-Lloret P, Gómez-Morales J. Eggshell Membrane as a Biomaterial for Bone Regeneration. Polymers (Basel) 2023; 15:polym15061342. [PMID: 36987123 PMCID: PMC10057008 DOI: 10.3390/polym15061342] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The physicochemical features of the avian eggshell membrane play an essential role in the process of calcium carbonate deposition during shell mineralization, giving rise to a porous mineralized tissue with remarkable mechanical properties and biological functions. The membrane could be useful by itself or as a bi-dimensional scaffold to build future bone-regenerative materials. This review focuses on the biological, physical, and mechanical properties of the eggshell membrane that could be useful for that purpose. Due to its low cost and wide availability as a waste byproduct of the egg processing industry, repurposing the eggshell membrane for bone bio-material manufacturing fulfills the principles of a circular economy. In addition, eggshell membrane particles have has the potential to be used as bio-ink for 3D printing of tailored implantable scaffolds. Herein, a literature review was conducted to ascertain the degree to which the properties of the eggshell membrane satisfy the requirements for the development of bone scaffolds. In principle, it is biocompatible and non-cytotoxic, and induces proliferation and differentiation of different cell types. Moreover, when implanted in animal models, it elicits a mild inflammatory response and displays characteristics of stability and biodegradability. Furthermore, the eggshell membrane possesses a mechanical viscoelastic behavior comparable to other collagen-based systems. Overall, the biological, physical, and mechanical features of the eggshell membrane, which can be further tuned and improved, make this natural polymer suitable as a basic component for developing new bone graft materials.
Collapse
Affiliation(s)
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Ana Voltes
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Department of Health Sciences, Campus de las Lagunillas S/N, University of Jaén, 23071 Jaén, Spain
| | - Paula Alejandra Baldión
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
| | - Pedro Álvarez-Lloret
- Departamento de Geología, Universidad de Oviedo, 33005 Asturias, Spain
- Correspondence: (P.Á.-L.); (J.G.-M.)
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos IACT–CSIC–UGR, Avda. Las Palmeras, No. 4, Armilla, 18100 Granada, Spain
- Correspondence: (P.Á.-L.); (J.G.-M.)
| |
Collapse
|
14
|
Eggshell membrane-incorporated cell friendly tough hydrogels with ultra-adhesive property. Colloids Surf B Biointerfaces 2023; 223:113156. [PMID: 36682295 DOI: 10.1016/j.colsurfb.2023.113156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Adhesive and tough hydrogels have received increased attention for their potential biomedical applications. However, traditional hydrogels have limited utility in tissue engineering because they tend to exhibit low biocompatibility, low adhesiveness, and poor mechanical properties. Herein, the use of the eggshell membrane (ESM) for developing tough, cell-friendly, and ultra-adhesive hydrogels is described. The ESM enhances the performance of the hydrogel network in three ways. First, its covalent cross-linking with the polyacrylamide and alginate chains strengthens the hydrogel network. Second, it provides functional groups, such as amine and carboxyl moieties, which are well known for enhancing the surface adhesion of biomaterials, thereby increasing the adhesiveness of the hydrogel. Third, it is a bioactive agent and improves cell adhesion and proliferation on the constructed scaffold. In conclusion, this study proposes the unique design of ESM-incorporated hydrogels with high toughness, cell-friendly, and ultra-adhesive properties for various biomedical engineering applications.
Collapse
|
15
|
Accelerating full-thickness skin wound healing using Zinc and Cobalt doped-bioactive glass-coated eggshell membrane. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
16
|
Therapeutic Application of an Ag-Nanoparticle-PNIPAAm-Modified Eggshell Membrane Construct for Dermal Regeneration and Reconstruction. Pharmaceutics 2022; 14:pharmaceutics14102162. [PMID: 36297596 PMCID: PMC9607136 DOI: 10.3390/pharmaceutics14102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/28/2022] Open
Abstract
Current therapeutic treatments for the repair and/or replacement of damaged skin following disease or traumatic injury is severely limited. The chicken eggshell membrane (ESM) is a unique material: its innate physical and mechanical characteristics offer optimal barrier properties and, as a naturally derived extract, it demonstrates inherent biocompatibility/biodegradability. To further enhance its therapeutic and clinical potential, the ESM can be modified with the thermo-responsive polymer, poly(N-isopropylacrylAmide) (PNIPAAm) as well as the incorporation of (drug-loaded) silver nanoparticles (AgNP); essentially, by a simple change in temperature, the release and delivery of the NP can be targeted and controlled. In this study, ESM samples were isolated using a decellularization protocol, and the physical and mechanical characteristics were profiled using SEM, FT-IR, DSC and DMA. PNIPAAm was successfully grafted to the ESM via amidation reactions and confirmed using FT-IR, which demonstrated the distinctive peaks associated with Amide A (3275 cm−1), Amide B (2970 cm−1), Amide I (1630 cm−1), Amide II (1535 cm−1), CH2, CH3 groups, and Amide III (1250 cm−1) peaks. Confirmation of the incorporation of AgNP onto the stratified membrane was confirmed visually with SEM, qualitatively using FT-IR and also via changes in absorbance at 380 nm using UV-Vis spectrophotometry during a controlled release study for 72 h. The biocompatibility and cytotoxicity of the novel constructs were assessed using human dermal fibroblast (HDFa) and mouse dermal fibroblast (L929) cells and standard cell culture assays. Metabolic activity assessment (i.e., MTS assay), LDH-release profiles and Live/Dead staining demonstrated good attachment and spreading to the samples, and high cell viability following 3 days of culture. Interestingly, longer-term viability (>5 days), the ESM-PNIPAAm and ESM-PNIPAAm (AgNP) samples showed a greater and sustained cell viability profile. In summary, the modified and enhanced ESM constructs were successfully prepared and characterized in terms of their physical and mechanical profiles. AgNP were successfully loaded into the construct and demonstrated a desirable release profile dependent on temperature modulation. Fibroblasts cultured on the extracted ESM samples and ESM-PNIPAAm demonstrated high biocompatibility in terms of high cell attachment, spreading, viability and proliferation rates. As such, this work summarizes the development of an enhanced ESM-based construct which may be exploited as a clinical/therapeutic wound dressing as well as a possible application as a novel biomaterial scaffold for drug development.
Collapse
|
17
|
Xu S, Lu T, Yang L, Luo S, Wang Z, Ye C. In situ cell electrospun using a portable handheld electrospinning apparatus for the repair of wound healing in rats. Int Wound J 2022; 19:1693-1704. [PMID: 35142063 PMCID: PMC9615271 DOI: 10.1111/iwj.13769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Slow or non‐healing wounds caused by full‐thickness skin wounds of various origins have become a difficult challenge in clinical wound treatment. In particular, large full‐thickness skin wounds often lead to serious chronic skin wounds that do not heal. Electrospinning technology and stem cell treatment for wound repair have attracted much attention due to its unique advantages. In the current study, we electrospun polyvinyl alcohol (PVA) and bone marrow–derived stem cells (BMSCs) by a handheld electrospinning device, the distribution and interaction of cells and fibres were determined by light and electron microscopy and the cell viability and proliferation were determined by live/dead cell staining. The tissues were analysed by histology with Haematoxylin and Eosin (H&E) and Masson staining and immunohistochemical staining. We found that the fibres were distributed uniformly and BMSCs were distributed between the fibres. Cytotoxicity and cell proliferation tests proved its good biocompatibility. Histological staining shows it can accelerate wound healing and appendages regeneration by promoting granulation tissue repair. The instant PVA/stem cell fibres prepared by a handheld electrospinning device strongly promote the repair of full‐thickness skin wounds in rats. The proposed electrospinning technology is expected to have great potential in household, outdoor and battlefield first aid.
Collapse
Affiliation(s)
- Shunen Xu
- Medical College of Soochow University, Suzhou, China.,Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Lu
- Department of Orthopaedics, The First People's Hospital of Guiyang, Guiyang, China
| | - Long Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Siwei Luo
- Guizhou Medical University, Guiyang, China
| | - Zhen Wang
- Guizhou Medical University, Guiyang, China
| | - Chuan Ye
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| |
Collapse
|
18
|
Mahdavi S, Amirsadeghi A, Jafari A, Niknezhad SV, Bencherif SA. Avian Egg: A Multifaceted Biomaterial for Tissue Engineering. Ind Eng Chem Res 2021; 60:17348-17364. [PMID: 35317347 PMCID: PMC8935878 DOI: 10.1021/acs.iecr.1c03085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most components in avian eggs, offering a natural and environmentally friendly source of raw materials, hold great potential in tissue engineering. An avian egg consists of several beneficial elements: the protective eggshell, the eggshell membrane, the egg white (albumen), and the egg yolk (vitellus). The eggshell is mostly composed of calcium carbonate and has intrinsic biological properties that stimulate bone repair. It is a suitable precursor for the synthesis of hydroxyapatite and calcium phosphate, which are particularly relevant for bone tissue engineering. The eggshell membrane is a thin protein-based layer with a fibrous structure and is constituted of several valuable biopolymers, such as collagen and hyaluronic acid, that are also found in the human extracellular matrix. As a result, the eggshell membrane has found several applications in skin tissue repair and regeneration. The egg white is a protein-rich material that is under investigation for the design of functional protein-based hydrogel scaffolds. The egg yolk, mostly composed of lipids but also diverse essential nutrients (e.g., proteins, minerals, vitamins), has potential applications in wound healing and bone tissue engineering. This review summarizes the advantages and status of each egg component in tissue engineering and regenerative medicine, but also covers their current limitations and future perspectives.
Collapse
Affiliation(s)
- Shahriar Mahdavi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Arman Jafari
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02128, United States
| |
Collapse
|
19
|
Tarafdar A, Gaur VK, Rawat N, Wankhade PR, Gaur GK, Awasthi MK, Sagar NA, Sirohi R. Advances in biomaterial production from animal derived waste. Bioengineered 2021; 12:8247-8258. [PMID: 34814795 PMCID: PMC8806998 DOI: 10.1080/21655979.2021.1982321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Animal derived waste, if not disposed properly, could pose a threat to the environment and its inhabitants. Recent advancements in biotechnological and biomedical interventions have enabled us to bioengineer these valuable waste substrates into biomaterials with diversified applications. Rearing and processing of poultry, cattle, sheep, goat, pig, and slaughterhouse waste can aid in effective waste valorization for the fabrication of biopolymers, composites, heart valves, collagen, scaffolds, pigments and lipids, among other industrially important biomaterials. Feathers and eggshell waste from the poultry industry can be used for producing keratinous proteins and biocomposites, respectively. Cattle dung, hoofs and cattle hide can be used for producing hydroxyapatite for developing scaffolds and drug delivery systems. Porcine derived collagen can be used for developing skin grafts, while porcine urinary bladder has antiangiogenic, neurotrophic, tumor-suppressive and wound healing properties. Sheep teeth can be used for the production of low-cost hydroxyapatite while goat tissue is still underutilized and requires more in-depth investigation. However, hydrolyzed tannery fleshings show promising potential for antioxidant rich animal feed production. In this review, the recent developments in the production and application of biomaterials from animal waste have been critically analyzed. Standardized protocols for biomaterial synthesis on a pilot scale, and government policy framework for establishing an animal waste supply chain for end users seem to be lacking and require urgent attention. Moreover, circular bioeconomy concepts for animal derived biomaterial production need to be developed for creating a sustainable system.
Collapse
Affiliation(s)
- Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environment Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Neha Rawat
- Department of Food Science and Technology, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Pratik Ramesh Wankhade
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&f University, Yangling, Shaanxi Province, China
| | - Narashans Alok Sagar
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|