1
|
Fang L, Cheng H, Chen W, Peng C, Liu Y, Zhang C. Therapeutic effects of Tanshinone IIA and Tetramethylpyrazine nanoemulsions on cognitive impairment and neuronal damage in Alzheimer's disease rat models. J Pharm Pharmacol 2024; 76:1169-1177. [PMID: 38934298 DOI: 10.1093/jpp/rgae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the therapeutic effects and related mechanisms of Tanshinone IIA and Tetramethylpyrazine O/W composite nanoemulsions on Alzheimer's disease (AD) rats. METHODS The therapeutic effect of TSN/TMP O/W NEs on AD rats was evaluated by behavioral tests, H&E, Nissl, and Immunohistochemistry staining. ELISA and Western blot were used to analyze the mechanism. KEY FINDINGS The results showed that TSN/TMP O/W NEs could down-regulate the expression of Bax and Caspase-3 proteins, decrease the level of MDA, increase the expression of SOD and GSH-Px, and alleviate cognitive impairment in AD rats. CONCLUSIONS TSN/TMP O/W NEs can inhibit MAPK/ERK/CREB signaling pathway and effectively alleviate cognitive impairment, oxidative stress injury, and neuronal apoptosis in AD rats.
Collapse
Affiliation(s)
- Liang Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Hongyan Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Weidong Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Can Peng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Yuanxu Liu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| |
Collapse
|
2
|
Yin C, Zhang M, Jin S, Zhou Y, Ding L, Lv Q, Huang Z, Zhou J, Chen J, Wang P, Zhang S, You Q. Mechanism of Salvia miltiorrhiza Bunge extract to alleviate Chronic Sleep Deprivation-Induced cognitive dysfunction in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155725. [PMID: 38772181 DOI: 10.1016/j.phymed.2024.155725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/16/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Bidirectional communication between the gut microbiota and the brain may play an essential role in the cognitive dysfunction associated with chronic sleep deprivation(CSD). Salvia miltiorrhiza Bunge (Danshen, DS), a famous Chinese medicine and functional tea, is extensively used to protect learning and memory capacities, although the mechanism of action remains unknown. PURPOSE The purpose of this research was to explore the efficacy and the underlying mechanism of DS in cognitive dysfunction caused by CSD. METHODS DS chemical composition was analyzed by UPLC-QTOF-MS/MS. Forty rats were randomly assigned to five groups (n = 8): control (CON), model (MOD), low- (1.35 g/kg, DSL), high-dose (2.70 g/kg, DSH) DS group, and Melatonin(100 mg/kg, MT) group. A CSD rat model was established over 21 days. DS's effects and the underlying mechanism were explored using the open-field test(OFT), Morris water-maze(MWM), tissue staining(Hematoxylin and Eosin Staining, Nissl staining, Alcian blue-periodic acid SCHIFF staining, and Immunofluorescence), enzyme-linked immunosorbent assay, Western blot, quantitative real-time polymerase chain reaction(qPCR), and 16S rRNA sequencing. RESULTS We demonstrated that CSD caused gut dysbiosis and cognitive dysfunction. Furthermore, 16S rRNA sequencing demonstrated that Firmicutes and Proteobacteria were more in fecal samples from model group rats, whereas Bacteroidota and Spirochaetota were less. DS therapy, on the contrary hand, greatly restored the gut microbial community, consequently alleviating cognitive impairment in rats. Further research revealed that DS administration reduced systemic inflammation via lowering intestinal inflammation and barrier disruption. Following that, DS therapy reduced Blood Brain Barrier(BBB) and neuronal damage, further decreasing neuroinflammation in the hippocampus(HP). Mechanistic studies revealed that DS therapy lowered lipopolysaccharide (LPS) levels in the HP, serum, and colon, consequently blocking the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products(IL-1β, IL-6, TNF-α, iNOS, and COX2) in the HP and colon. CONCLUSION DS treatment dramatically improved spatial learning and memory impairments in rats with CSD by regulating the composition of the intestinal flora, preserving gut and brain barrier function, and reducing inflammation mediated by the LPS-TLR4 signaling pathway. Our findings provide novel insight into the mechanisms by which DS treats cognitive dysfunction caused by CSD.
Collapse
Affiliation(s)
- Chao Yin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Meiya Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Shuna Jin
- Hubei Shizhen Laboratory, Wuhan 430065, PR China; School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yuan Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Li Ding
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Qing Lv
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Zixuan Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Jiaqi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Jianmei Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Ping Wang
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China.
| | - Shunbo Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Qiuyun You
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China.
| |
Collapse
|
3
|
Zhao B, Wei D, Long Q, Chen Q, Wang F, Chen L, Li Z, Li T, Ma T, Liu W, Wang L, Yang C, Zhang X, Wang P, Zhang Z. Altered synaptic currents, mitophagy, mitochondrial dynamics in Alzheimer's disease models and therapeutic potential of Dengzhan Shengmai capsules intervention. J Pharm Anal 2024; 14:348-370. [PMID: 38618251 PMCID: PMC11010627 DOI: 10.1016/j.jpha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 04/16/2024] Open
Abstract
Emerging research suggests a potential association of progression of Alzheimer's disease (AD) with alterations in synaptic currents and mitochondrial dynamics. However, the specific associations between these pathological changes remain unclear. In this study, we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models. The investigations included behavioural tests, brain magnetic resonance imaging (MRI), liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, Nissl staining, thioflavin-S staining, enzyme-linked immunosorbent assay, Golgi-Cox staining, transmission electron microscopy (TEM), immunofluorescence staining, proteomics, adenosine triphosphate (ATP) detection, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) assessment, mitochondrial morphology analysis, electrophysiological studies, Western blotting, and molecular docking. The results revealed changes in synaptic currents, mitophagy, and mitochondrial dynamics in the AD models. Remarkably, intervention with Dengzhan Shengmai (DZSM) capsules emerged as a pivotal element in this investigation. Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention, which notably amplified the frequency and amplitude of synaptic transmission. The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions, including the hippocampal CA3, primary cingular cortex, prelimbic system, and dysgranular insular cortex. DZSM intervention led to increased IDE levels, augmented long-term potential (LTP) amplitude, and enhanced dendritic spine density and length. Moreover, DZSM intervention led to favourable changes in mitochondrial parameters, including ROS expression, MMP and ATP contents, and mitochondrial morphology. In conclusion, our findings delved into the realm of altered synaptic currents, mitophagy, and mitochondrial dynamics in AD, concurrently highlighting the therapeutic potential of DZSM intervention.
Collapse
Affiliation(s)
- Binbin Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qinghua Long
- Medical School, Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Qingjie Chen
- HuBei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, China
| | - Linlin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zefei Li
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tong Li
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Ping Wang
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
5
|
Yan H, Feng L, Li M. The Role of Traditional Chinese Medicine Natural Products in β-Amyloid Deposition and Tau Protein Hyperphosphorylation in Alzheimer's Disease. Drug Des Devel Ther 2023; 17:3295-3323. [PMID: 38024535 PMCID: PMC10655607 DOI: 10.2147/dddt.s380612] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease is a prevalent form of dementia among elderly individuals and is characterized by irreversible neurodegeneration. Despite extensive research, the exact causes of this complex disease remain unclear. Currently available drugs for Alzheimer's disease treatment are limited in their effectiveness, often targeting a single aspect of the disease and causing significant adverse effects. Moreover, these medications are expensive, placing a heavy burden on patients' families and society as a whole. Natural compounds and extracts offer several advantages, including the ability to target multiple pathways and exhibit high efficiency with minimal toxicity. These attributes make them promising candidates for the prevention and treatment of Alzheimer's disease. In this paper, we provide a summary of the common natural products used in Chinese medicine for different pathogeneses of AD. Our aim is to offer new insights and ideas for the further development of natural products in Chinese medicine and the treatment of AD.
Collapse
Affiliation(s)
- Huiying Yan
- Department of Neurology, the Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Lina Feng
- Shandong Key Laboratory of TCM Multi-Targets Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, People’s Republic of China
| | - Mingquan Li
- Department of Neurology, the Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
6
|
Hu KB, Lu XM, Wang HY, Liu HL, Wu QY, Liao P, Li S, Long ZY, Wang YT. Effects and mechanisms of tanshinone IIA on PTSD-like symptoms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155032. [PMID: 37611463 DOI: 10.1016/j.phymed.2023.155032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/02/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND In recent years, Salvia miltiorrhiza and its active substances have remarkably progressed in treating central neurological disorders. Tanshinone IIA (TSA) is an active ingredient derived from the rhizome of Salvia miltiorrhiza that has been found to alleviate the symptoms of several psychiatric illnesses. Post-traumatic stress disorder (PTSD) is a mental disorder that results after experiencing a serious physical or psychological injury. The currently used drugs are not satisfactory for the treatment of PTSD. However, it has been reported that TSA can improve PTSD-like symptoms like learning and memory, cognitive disorder, and depression through multi-target regulation. PURPOSE This paper discusses the ameliorative effects of TSA on PTSD-like symptoms and the possible mechanisms of action in terms of inhibition of neuronal apoptosis, anti-neuroinflammation, and anti-oxidative stress. Based on the pathological changes and clinical observations of PTSD, we hope to provide some reference for the clinical transformation of Chinese medicine in treating PTSD. METHODS A large number of literatures on tanshinone in the treatment of neurological diseases and PTSD were retrieved from online electronic PubMed and Web of Science databases. CONCLUSION TSA is a widely studied natural active ingredient against mental illness. This review will contribute to the future development of TSA as a new clinical candidate drug for improving PTSD-like symptoms.
Collapse
Affiliation(s)
- Kai-Bin Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
7
|
Valipour M. Therapeutic prospects of naturally occurring p38 MAPK inhibitors tanshinone IIA and pinocembrin for the treatment of SARS-CoV-2-induced CNS complications. Phytother Res 2023; 37:3724-3743. [PMID: 37282807 DOI: 10.1002/ptr.7902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
P38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is closely related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication and hyperinflammatory responses in coronavirus disease 2019 (COVID-19). Therefore, blood-brain barrier-penetrating p38 MAPK inhibitors have good potential for the treatment of central nervous system (CNS) complications of COVID-19. The aim of the present study is the characterization of the therapeutic potential of tanshinone IIA and pinocembrin for the treatment of CNS complications of COVID-19. Studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so forth were used to review the therapeutic capabilities of selected compounds. In continuation of our previous efforts to identify agents with favorable activity/toxicity profiles for the treatment of COVID-19, tanshinone IIA and pinocembrin were identified with a high ability to penetrate the CNS. Considering the nature of the study, no specific time frame was determined for the selection of studies, but the focus was strongly on studies published after the emergence of COVID-19. By describing the association of COVID-19-induced CNS disorders with p38 MAPK pathway disruption, this study concludes that tanshinone IIA and pinocembrin have great potential for better treatment of these complications. The inclusion of these compounds in the drug regimen of COVID-19 patients requires confirmation of their effectiveness through the conduction of high-quality clinical trials.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Pan S, Lan Y, Chen B, Zhou Y, Ying X, Hua Y. Tanshinone IIA changed the amniotic fluid volume and regulated expression of AQP1 and AQP3 in amniotic epithelium cells: a promising drug treating abnormal amniotic fluid volume. Mol Med 2023; 29:83. [PMID: 37386378 DOI: 10.1186/s10020-023-00687-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Many studies have confirmed the association of aquaporins (AQPs) with abnormal amniotic fluid volume (AFV). In our previous experiments, we found that Tanshinone IIA was able to regulate the expression of AQP1 and AQP3. However, the exact mechanism by which Tanshinone IIA regulates AQPs protein expression and its effect on AFV remains unclear. The purpose of this study was to investigate the effects of Tanshinone IIA on AFV and the possible molecular mechanism of regulation of AQP1 and AQP3. METHODS The expression of AQPs protein in the amniotic membranes was compared between pregnant women with normal pregnancy and those with isolated oligohydramnios. The AQP1 knockout (AQP1-KO) mice and wild-type (WT) mice were treated with saline or Tanshinone IIA (10 mg/kg) at 13.5GD and 16.5GD. Human amniotic epithelium cells (hAECs) from pregnant women with normal AFV and isolated oligohydramnios were incubated with 35 μmmol/L Tanshinone IIA or 25 mmol/L LiCl [inhibitor of glycogen synthetic kinase 3β (GSK-3β)]. The protein expressions of AQPs, GSK-3β, phospho-GSK-3β (Ser9) in fetal membranes of mice and human amniotic epithelium cells were detected by western blotting. RESULTS The expression of AQP1 protein in the amniotic membrane of isolated oligohydramnios was increased compared with normal pregnancy. The AFV in AQP1-KO mice is higher than that in WT mice. In wild-type mice, AFV in Tanshinone IIA group was significantly higher than that in control group, and AQP1 protein expression was significantly lower than that in control group, but in AQP1 knockout mice, Tanshinone IIA reduced amniotic fluid volume and AQP3 protein expression at 16.5GD. Tanshinone IIA reduced AQP1, AQP3 and p-GSK-3β (Ser9) protein expression in normal hAECs, and this effect was inhibited by LiCl. In hAECs with oligohydramnios, the down-regulation of AQP1 and up-regulation of AQP3 by Tanshinone IIA was independent of GSK-3β signaling pathway. CONCLUSIONS Tanshinone IIA may increase AFV in normal pregnancy by downregulating AQP1 protein expression in the fetal membranes, which may be associated with p-GSK-3β signaling pathway. But a larger AFV in AQP1-KO mice was significantly attenuated by Tanshinone IIA, which may be related to AQP3. Tanshinone IIA is a promising drug for the treatment of amniotic fluid abnormality.
Collapse
Affiliation(s)
- Shuangjia Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yehui Lan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Baoyi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yujia Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinxin Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
9
|
Robinson MJ, Newbury S, Singh K, Leonenko Z, Beazely MA. The Interplay Between Cholesterol and Amyloid-β on HT22 Cell Viability, Morphology, and Receptor Tyrosine Kinase Signaling. J Alzheimers Dis 2023; 96:1663-1683. [PMID: 38073391 DOI: 10.3233/jad-230753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND There is a lack of understanding in the molecular and cellular mechanisms of Alzheimer's disease that has hindered progress on therapeutic development. The focus has been on targeting toxic amyloid-β (Aβ) pathology, but these therapeutics have generally failed in clinical trials. Aβ is an aggregation-prone protein that has been shown to disrupt cell membrane structure in molecular biophysics studies and interfere with membrane receptor signaling in cell and animal studies. Whether the lipid membrane or specific receptors are the primary target of attack has not been determined. OBJECTIVE This work elucidates some of the interplay between membrane cholesterol and Aβ42 on HT22 neuronal cell viability, morphology, and platelet-derived growth factor (PDGF) signaling pathways. METHODS The effects of cholesterol depletion by methyl-β-cyclodextrin followed by treatment with Aβ and/or PDGF-AA were assessed by MTT cell viability assays, western blot, optical and AFM microscopy. RESULTS Cell viability studies show that cholesterol depletion was mildly protective against Aβ toxicity. Together cholesterol reduction and Aβ42 treatment compounded the disruption of the PDGFα receptor activation. Phase contrast optical microscopy and live cell atomic force microscopy imaging revealed that cytotoxic levels of Aβ42 caused morphological changes including cell membrane damage, cytoskeletal disruption, and impaired cell adhesion; cell damage was ameliorated by cellular cholesterol depletion. CONCLUSIONS Cholesterol depletion impacted the effects of Aβ42 on HT22 cell viability, morphology, and receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Morgan J Robinson
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Sean Newbury
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Kartar Singh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Michael A Beazely
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
10
|
Zhang X, Kang X, Du L, Zhang L, Huang Y, Wang J, Wang S, Chang Y, Liu Y, Zhao Y. Tanshinone IIA loaded chitosan nanoparticles decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer's disease. Free Radic Biol Med 2022; 193:81-94. [PMID: 36195161 DOI: 10.1016/j.freeradbiomed.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases that characterized by the accumulation of β-amyloid peptide (Aβ). Overexpressions of Aβ could induce oxidative stress that might be a key insult to initiate the cascades of Aβ accumulation. As a result, anti-oxidative stress and attenuating Aβ accumulation might be one promising intervention for AD treatment. Tanshinone IIA (Tan IIA), a major component of lipophilic tanshinones in Danshen, is proven to be effective in several diseases, including AD. Due to the poor solubility in water, the clinical application of Tan IIA was limited. Therefore, a great number of nanoparticles were designed to overcome this issue. In the current study, we choose chitson as delivery carrier to load Tanshinone IIA (CS@Tan IIA) and explore the protective effects of CS@Tan IIA on the CL2006 strain, a transgenic C. elegans of AD model organism. Compared with Tan IIA monomer, CS@Tan IIA could significantly prolong the lifespan and attenuate the AD-like symptoms, including reducing paralysis and the Aβ deposition by inhibiting the oxidative stress. The mechanism study showed that the protection of CS@Tan IIA was attenuated by knockdown of daf-16 gene, but not skn-1. The results indicated that DAF-16/SOD-3 pathway was required in the protective effects of CS@Tan IIA. Besides DAF-16/SOD-3 pathway, the Tan IIA-loaded CS nanoparticles might protect the C. elegans against the AD insults via promoting autophagy. All the results consistently suggested that coating by chitosan could improve the solubility of Tan IIA and effectively enhance the protective effects of Tan IIA on AD, which might provide a potential drug loading approach for the hydrophobic drugs as Tan IIA.
Collapse
Affiliation(s)
- Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoxuan Kang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei, Shijiazhuang, China; Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yan Huang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jihan Wang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Sihan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei, Shijiazhuang, China.
| | - Yang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuming Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Tanshinone IIA ameliorates chronic unpredictable mild stress-induced depression-like behavior and cognitive impairment in rats through the BDNF/TrkB/GAT1 signaling pathway. Eur J Pharmacol 2022; 938:175385. [PMID: 36379259 DOI: 10.1016/j.ejphar.2022.175385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Depression is a common disorder with a complex pathogenesis. Tanshinone IIA (TAN IIA) is a botanical agent with neuroprotective and antidepressant properties. OBJECTIVE To examine the effects of TAN IIA on chronic unpredictable mild stress (CUMS)-induced depression-like behavior and cognitive impairment in rats. METHODS Rats were exposed to CUMS for 4 weeks, followed by the oral administration of TAN IIA, Deanxit (DEAN), or normal saline for an additional 4 weeks. The control rats were fed with regular chow and administered with normal saline for 4 weeks. Behavioral tests were performed to assess the effects of TAN IIA on depression-like behavior and cognitive impairment in rats with CUMS. The morphology of dendrites was analyzed by Golgi staining. Immunofluorescence staining was performed to determine protein localization. RESULTS TAN IIA treatment ameliorated CUMS-induced depression-like behavior and cognitive impairment in rats. TAN IIA treatment also reversed the effects of CUMS on dendritic complexity and the levels of gamma-aminobutyric acid (GABA) in the hippocampus and prefrontal cortex. Rats with CUMS showed decreased levels of brain-derived neurotrophic factor (BDNF) and phosphorylated tropomyosin receptor kinase B (TrkB), upregulated expression of GABA transporter 1 (GAT1), and reduced expression of synaptic proteins in the hippocampus, while TAN IIA treatment significantly diminished the effects of CUMS exposure. In addition, GAT1 was colocalized with N-methyl-D-aspartate receptor 2B. CONCLUSION TAN IIA ameliorates CUMS-induced depression-like behavior and cognitive impairment in rats by regulating the BDNF/TrkB/GAT1 signaling pathway, suggesting that TAN IIA may be a candidate drug for the treatment of depression.
Collapse
|
12
|
Wang KC, Yang LY, Lee JE, Wu V, Chen TF, Hsieh ST, Kuo MF. Combination of indirect revascularization and endothelial progenitor cell transplantation improved cerebral perfusion and ameliorated tauopathy in a rat model of bilateral ICA ligation. Stem Cell Res Ther 2022; 13:516. [PMID: 36371197 PMCID: PMC9652785 DOI: 10.1186/s13287-022-03196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objective
Endothelial progenitor cells (EPCs) contribute to the recovery of neurological function after ischemic stroke. Indirect revascularization has exhibited promising effects in the treatment of cerebral ischemia related to moyamoya disease and intracranial atherosclerotic disease. The role of EPCs in augmenting the revascularization effect is not clear. In this study, we investigated the therapeutic effects of indirect revascularization combined with EPC transplantation in rats with chronic cerebral ischemia.
Methods
Chronic cerebral ischemia was induced by bilateral internal carotid artery ligation (BICAL) in rats, and indirect revascularization by encephalo-myo-synangiosis (EMS) was performed 1 week later. During the EMS procedure, intramuscular injection of EPCs and the addition of stromal cell-derived factor 1 (SDF-1), and AMD3100, an SDF-1 inhibitor, were undertaken, respectively, to investigate their effects on indirect revascularization. Two weeks later, the cortical microcirculation, neuronal damage, and functional outcome were evaluated according to the microvasculature density and partial pressure of brain tissue oxygen (PbtO2), regional blood flow, expression of phosphorylated Tau (pTau), TUNEL staining and the rotarod performance test, respectively.
Results
The cortical microcirculation, according to PbtO2 and regional blood flow, was impaired 3 weeks after BICAL. These impairments were improved by the EMS procedure. The regional blood flow was further increased by the addition of SDF-1 and decreased by the addition of AMD3100. Intramuscular injection of EPCs further increased the regional blood flow as compared with the EMS group. The rotarod test results showed that the functional outcome was best in the EMS combined with EPC injection group. Western blot analysis showed that the EMS combined with EPC treatment group had significantly decreased expressions of phosphorylated Tau and phosphorylated glycogen synthase kinase 3 beta (Y216 of GSK-3β). pTau and TUNEL-positive cells were markedly increased at 3 weeks after BICAL induction. Furthermore, the groups treated with EMS combined with SDF-1 or EPCs exhibited marked decreases in the pTau expression and TUNEL-positive cells, whereas AMD3100 treatment increased TUNEL-positive cells.
Conclusion
The results of this study suggested that indirect revascularization ameliorated the cerebral ischemic changes. EPCs played a key role in augmenting the effect of indirect revascularization in the treatment of chronic cerebral ischemia.
Collapse
|
13
|
Le J, Xiao X, Zhang D, Feng Y, Wu Z, Mao Y, Mou C, Xie Y, Chen X, Liu H, Cui W. Neuroprotective Effects of an Edible Pigment Brilliant Blue FCF against Behavioral Abnormity in MCAO Rats. Pharmaceuticals (Basel) 2022; 15:ph15081018. [PMID: 36015166 PMCID: PMC9414705 DOI: 10.3390/ph15081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke leads to hypoxia-induced neuronal death and behavioral abnormity, and is a major cause of death in the modern society. However, the treatments of this disease are limited. Brilliant Blue FCF (BBF) is an edible pigment used in the food industry that with multiple aromatic rings and sulfonic acid groups in its structure. BBF and its derivatives were proved to cross the blood-brain barrier and have advantages on the therapy of neuropsychiatric diseases. In this study, BBF, but not its derivatives, significantly ameliorated chemical hypoxia-induced cell death in HT22 hippocampal neuronal cell line. Moreover, protective effects of BBF were attributed to the inhibition of the extracellular regulated protein kinase (ERK) and glycogen synthase kinase-3β (GSK3β) pathways as evidenced by Western blotting analysis and specific inhibitors. Furthermore, BBF significantly reduced neurological and behavioral abnormity, and decreased brain infarct volume and cerebral edema induced by middle cerebral artery occlusion/reperfusion (MCAO) in rats. MCAO-induced increase of p-ERK in ischemic penumbra was reduced by BBF in rats. These results suggested that BBF prevented chemical hypoxia-induced otoxicity and MCAO-induced behavioral abnormity via the inhibition of the ERK and GSK3β pathways, indicating the potential use of BBF for treating ischemic stroke
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wei Cui
- Correspondence: ; Tel./Fax: +86-574-8760-9589
| |
Collapse
|
14
|
Shao H, Pan S, Lan Y, Chen X, Dai D, Peng L, Hua Y. Tanshinone IIA increased amniotic fluid volume through down-regulating placental AQPs expression via inhibiting the activity of GSK-3β. Cell Tissue Res 2022; 389:547-558. [PMID: 35674921 DOI: 10.1007/s00441-022-03646-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
The mechanism of idiopathic oligohydramnios is still uncertain, and there is no effective and targeted treatment for it. Placental aquaporins (AQPs) were associated with idiopathic oligohydramnios. This study aimed to investigate the effect of tanshinone IIA on amniotic fluid volume (AFV) and its underlying molecular mechanisms related to placental AQPs (AQP1, AQP3, AQP8, AQP9). Results showed that compared with the women with normal AFV, placental AQP1, AQP3, AQP8, and AQP9 protein expressions were decreased in women with idiopathic oligohydramnios. Immunohistochemistry revealed localization of AQP1, AQP3, AQP8, and AQP9 mainly in trophoblast cells within labyrinth zone of mouse placenta. Also, AQP1 was located in fetal vascular endothelial cells. Pregnant mice were administered with tanshinone IIA (10 mg/kg or 50 mg/kg, n = 8, respectively) or vehicle (n = 8) from 9.5 to 18.5 gestational day (GD). Tanshinone IIA markedly increased the AFV in pregnant mice, without the effects on embryo numbers per litter, atrophic embryo rate, fetal weight, and placental weight, as well as increased the expressions of AQPs and inhibited the activity of GSK-3β in mice placenta. In JEG-3 cells, tanshinone IIA downregulated AQP1, AQP3, AQP8, AQP9 expressions and inhibited the activity of GSK-3β. Activating GSK-3β with MK-2206 eliminated these alterations. Thus, tanshinone IIA could increase AFV in pregnant mice, possibly through downregulating placental AQP1, AQP3, AQP8, and AQP9 expression via inhibiting the activity of GSK-3β. Tanshinone IIA may be optional for the treatment of idiopathic oligohydramnios.
Collapse
Affiliation(s)
- Hailing Shao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Shuangjia Pan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Yehui Lan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Xianjun Chen
- Taizhou Women and Childrens Hospital of Wenzhou Medical University, Taizhou, China
| | - Dongru Dai
- Department of Obstetrics and Gynecology, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou, China
| | - Lingli Peng
- Department of Obstetrics and Gynecology, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| |
Collapse
|
15
|
Peng X, Chen L, Wang Z, He Y, Ruganzu JB, Guo H, Zhang X, Ji S, Zheng L, Yang W. Tanshinone IIA regulates glycogen synthase kinase-3β-related signaling pathway and ameliorates memory impairment in APP/PS1 transgenic mice. Eur J Pharmacol 2022; 918:174772. [DOI: 10.1016/j.ejphar.2022.174772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
|
16
|
Zhong C, Lin Z, Ke L, Shi P, Li S, Huang L, Lin X, Yao H. Recent Research Progress (2015-2021) and Perspectives on the Pharmacological Effects and Mechanisms of Tanshinone IIA. Front Pharmacol 2021; 12:778847. [PMID: 34819867 PMCID: PMC8606659 DOI: 10.3389/fphar.2021.778847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is an important characteristic component and active ingredient in Salvia miltiorrhiza, and its various aspects of research are constantly being updated to explore its potential application. In this paper, we review the recent progress on pharmacological activities and the therapeutic mechanisms of Tan IIA according to literature during the years 2015-2021. Tan IIA shows multiple pharmacological effects, including anticarcinogenic, cardiovascular, nervous, respiratory, urinary, digestive, and motor systems activities. Tan IIA modulates multi-targets referring to Nrf2, AMPK, GSK-3β, EGFR, CD36, HO-1, NOX4, Beclin-1, TLR4, TNF-α, STAT3, Caspase-3, and bcl-2 proteins and multi-pathways including NF-κB, SIRT1/PGC1α, MAPK, SREBP-2/Pcsk9, Wnt, PI3K/Akt/mTOR pathways, TGF-β/Smad and Hippo/YAP pathways, etc., which directly or indirectly influence disease course. Further, with the reported targets, the potential effects and possible mechanisms of Tan IIA against diseases were predicted by bioinformatic analysis. This paper provides new insights into the therapeutic effects and mechanisms of Tan IIA against diseases.
Collapse
Affiliation(s)
- Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zuan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Yang SS, Shi HY, Zeng P, Xia J, Wang P, Lin L. Bushen-Huatan-Yizhi formula reduces spatial learning and memory challenges through inhibition of the GSK-3β/CREB pathway in AD-like model rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153624. [PMID: 34216932 DOI: 10.1016/j.phymed.2021.153624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND There is an increase in cases of Alzheimer's disease (AD) stemming from a globally ageing population demographic. Although substantial research efforts were performed for the scope of prophylaxis and therapeutic measure development against AD, based on its pathogenesis, most were unsuccessful. Bushen-Huatan-Yizhi formula (BSHTYZ) is extensively implemented to manage dementia. However, few studies have been carried out to understand how BSHTYZ enhances recovery of spatial learning and memory and how it modulates relevant molecular interplays in order to achieve this. PURPOSE To investigate neuroprotective function, ameliorating learning/memory capacity of BSHTYZ via GSK-3β / CREB signaling pathway in rat AD models influenced through Aβ1-42. METHODS A total of 60 male SD rats (3 months old) were randomized into six groups and treated with 2.6 μg/μl Aβ1-42 (5 μl) into the lateral ventricle, though the control group (Con) was administered an equivalent volume of vehicle. Consequently, the rat cohorts were administered either BSHTYZ or donepezil hydrochloride or normal saline, by intragastric administration, for four weeks. Spatial learning / memory were detected through the Morris water maze, and possible mechanisms detected by histomorphological examination and Western blot in the rat AD models induced by Aβ1-42. RESULTS Spatial learning/memory issues were monitored after Aβ1-42 infusion in rats. Simultaneously, neuron loss in cornuammonis1 (CA1) / dentate gyrus (DG) within hippocampus region were identified, together with enhanced black granule staining within the hippocampus and hyperphosphorylated tau within Ser202 and Ser396 sites. It was also elucidated that Aβ1-42 had the capacity to up-regulate glycogen synthase kinase-3β (GSK-3β) and down-regulate cAMP response element binding protein (CREB). BSHTYZ was found to reverse such molecular interplays. CONCLUSION The study suggested BSHTYZ could possibly provide neuroprotective role against learning / memory impairment, which provided a potential therapeutic tool delaying the progression of AD molecular interplays that includes the GSK-3β / CREB signaling pathway.
Collapse
Affiliation(s)
- Shu-Sheng Yang
- Department of Traditional Chinese Medicine, Wuhan Red Cross Hospital, Wuhan 430015, China
| | - He-Yuan Shi
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China; Department of Fundamental TCM, College of Basic Medical sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Brain Research Institute, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Xia
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ping Wang
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Li Lin
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
18
|
Küpeli Akkol E, Tatlı Çankaya I, Şeker Karatoprak G, Carpar E, Sobarzo-Sánchez E, Capasso R. Natural Compounds as Medical Strategies in the Prevention and Treatment of Psychiatric Disorders Seen in Neurological Diseases. Front Pharmacol 2021; 12:669638. [PMID: 34054540 PMCID: PMC8155682 DOI: 10.3389/fphar.2021.669638] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Psychiatric disorders are frequently encountered in many neurological disorders, such as Alzheimer’s and Parkinson diseases along with epilepsy, migraine, essential tremors, and stroke. The most common comorbid diagnoses in neurological diseases are depression and anxiety disorders along with cognitive impairment. Whether the underlying reason is due to common neurochemical mechanisms or loss of previous functioning level, comorbidities are often overlooked. Various treatment options are available, such as pharmacological treatments, cognitive-behavioral therapy, somatic interventions, or electroconvulsive therapy. However oral antidepressant therapy may have some disadvantages, such as interaction with other medications, low tolerability due to side effects, and low efficiency. Natural compounds of plant origin are extensively researched to find a better and safer alternative treatment. Experimental studies have shown that phytochemicals such as alkaloids, terpenes, flavonoids, phenolic acids as well as lipids have significant potential in in vitro and in vivo models of psychiatric disorders. In this review, various efficacy of natural products in in vitro and in vivo studies on neuroprotective and their roles in psychiatric disorders are examined and their neuro-therapeutic potentials are shed light.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Irem Tatlı Çankaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | - Elif Carpar
- Department of Psychiatry, Private French La Paix Hospital, Istanbul, Turkey
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile.,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Potici, Italy
| |
Collapse
|
19
|
Subedi L, Gaire BP. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol Res 2021; 169:105661. [PMID: 33971269 DOI: 10.1016/j.phrs.2021.105661] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Tanshinones, lipophilic diterpenes isolated from the rhizome of Salvia miltiorrhiza, have diverse pharmacological activities against human ailments including neurological diseases. In fact, tanshinones have been used to treat heart diseases, stroke, and vascular diseases in traditional Chinese medicine. During the last decade, tanshinones have been the most widely studied phytochemicals for their neuroprotective effects against experimental models of cerebral ischemia and Alzheimer's diseases. Importantly, tanshinone IIA, mostly studied tanshinone for biological activities, is recently reported to attenuate blood-brain barrier permeability among stroke patients, suggesting tanshinone IIA as an appealing therapeutic candidate for neurological diseases. Tanshinone I and IIA are also effective in experimental models of Parkinson's disease, Multiple sclerosis, and other neuroinflammatory diseases. In addition, several experimental studies suggested the pleiotropic neuroprotective effects of tanshinones such as anti-inflammatory, antioxidant, anti-apoptotic, and BBB protectant further value aiding to tanshinone as an appealing therapeutic strategy in neurological diseases. Therefore, in this review, we aimed to compile the recent updates and cellular and molecular mechanisms of neuroprotection of tanshinone IIA in diverse neurological diseases.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Long QH, Wu YG, He LL, Ding L, Tan AH, Shi HY, Wang P. Suan-Zao-Ren Decoction ameliorates synaptic plasticity through inhibition of the Aβ deposition and JAK2/STAT3 signaling pathway in AD model of APP/PS1 transgenic mice. Chin Med 2021; 16:14. [PMID: 33478552 PMCID: PMC7818567 DOI: 10.1186/s13020-021-00425-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/08/2021] [Indexed: 01/23/2023] Open
Abstract
Background Suan-Zao-Ren Decoction (SZRD) has been widely used to treat neurological illnesses, including dementia, insomnia and depression. However, the mechanisms underlying SZRD’s improvement in cognitive function remain unclear. In this study, we examined SZRD’s effect on APP/PS1 transgenic mice and mechanisms associated with SZRD’s action in alleviating neuroinflammation and improving synaptic plasticity. Methods
The APP/PS1 mice were treated with different dosages of SZRD (12.96 and 25.92 g/kg/day, in L-SZRD and H-SZRD groups, respectively) for 4 weeks. Morris water maze was conducted to determine changes in behaviors of the mice after the treatment. Meanwhile, in the samples of the hippocampus, Nissl staining and Golgi-Cox staining were used to detect synaptic plasticity. ELISA was applied to assess the expression levels of Aβ1−40 and Aβ1−42 in the hippocampus of mice. Western blot (WB) was employed to test the protein expression level of Aβ1−42, APP, ADAM10, BACE1, PS1, IDE, IBA1, GFAP, PSD95 and SYN, as well as the expressions of JAK2, STAT3 and their phosphorylation patterns to detect the involvement of JAK2/STAT3 pathway. Besides, we examined the serum and hippocampal contents of IL-1β, IL-6 and TNF-α through ELISA. Results Compared to the APP/PS1 mice without any treatment, SZRD, especially the L-SZRD, significantly ameliorated cognitive impairment of the APP/PS1 mice with decreases in the loss of neurons and Aβ plaque deposition as well as improvement of synaptic plasticity in the hippocampus (P < 0.05 or 0.01). Also, SZRD, in particular, the L-SZRD markedly inhibited the serum and hippocampal concentrations of IL-6, IL-1β and TNF-α, while reducing the expression of p-JAK2-Tyr1007 and p-STAT3-Tyr705 in the hippocampus of the APP/PS1 mice (P < 0.05 or 0.01). Conclusions The SZRD, especially the L-SZRD, may improve the cognitive impairment and ameliorate the neural degeneration in APP/PS1 transgenic mice through inhibiting Aβ accumulation and neuroinflammation via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Qing-Hua Long
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Yong-Gui Wu
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Li-Ling He
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Li Ding
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Ai-Hua Tan
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - He-Yuan Shi
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China.
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China.
| |
Collapse
|
21
|
Fang ZY, Zhang M, Liu JN, Zhao X, Zhang YQ, Fang L. Tanshinone IIA: A Review of its Anticancer Effects. Front Pharmacol 2021; 11:611087. [PMID: 33597880 PMCID: PMC7883641 DOI: 10.3389/fphar.2020.611087] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is a pharmacologically lipophilic active constituent isolated from the roots and rhizomes of the Chinese medicinal herb Salvia miltiorrhiza Bunge (Danshen). Tan IIA is currently used in China and other neighboring countries to treat patients with cardiovascular system, diabetes, apoplexy, arthritis, sepsis, and other diseases. Recently, it was reported that tan IIA could have a wide range of antitumor effects on several human tumor cell lines, but the research of the mechanism of tan IIA is relatively scattered in cancer. This review aimed to summarize the recent advances in the anticancer effects of tan IIA and to provide a novel perspective on clinical use of tan IIA.
Collapse
Affiliation(s)
- Zhong-Ying Fang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao Zhang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Jia-Ning Liu
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Xue Zhao
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Yong-Qing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Fang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
Moezzi SMI, Mozafari N, Fazel-Hoseini SM, Nadimi-Parashkoohi S, Abbasi H, Ashrafi H, Azadi A. Apolipoprotein J in Alzheimer's Disease: Shedding Light on Its Role with Cell Signaling Pathway Perspective and Possible Therapeutic Approaches. ACS Chem Neurosci 2020; 11:4060-4072. [PMID: 33251792 DOI: 10.1021/acschemneuro.0c00637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Apolipoprotein J (ApoJ), or clusterin, is one of the main apolipoproteins in the brain. It is synthesized and released from astrocytes in a healthy brain, and its expression increases in neurodegenerative disorders. Genetic evidence has suggested an association between ApoJ polymorphism and the risk of Alzheimer's disease (AD)-it is now considered the third main genetic risk factor for late-onset AD. However, the role of ApoJ overexpression in the state of disorder, toxicity, or protection is not yet clear. Since ApoJ plays different roles in AD, we review the function of ApoJ using different cell signaling pathways in AD and outline its paradoxical roles in AD. ApoJ helps in amyloid-beta (Aβ) clearance. Vice versa, ApoJ gene knock-out causes fibrillary Aβ reduction and prevents Aβ-induced neuron cell death. Understanding ApoJ, through various cellular signaling pathways, creates a new perspective on AD's cellular principles. The overall message is that ApoJ can be a valuable tool in controlling AD.
Collapse
Affiliation(s)
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sadra Nadimi-Parashkoohi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hosein Abbasi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Ansari MA, Khan FB, Safdari HA, Almatroudi A, Alzohairy MA, Safdari M, Amirizadeh M, Rehman S, Equbal MJ, Hoque M. Prospective therapeutic potential of Tanshinone IIA: An updated overview. Pharmacol Res 2020; 164:105364. [PMID: 33285229 DOI: 10.1016/j.phrs.2020.105364] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 01/03/2023]
Abstract
In the past decades, the branch of complementary and alternative medicine based therapeutics has gained considerable attention worldwide. Pharmacological efficacy of various traditional medicinal plants, their products and/or product derivatives have been explored on an increasing scale. Tanshinone IIA (Tan IIA) is a pharmacologically active lipophilic component of Salvia miltiorrhiza extract. Tan IIA shares a history of high repute in Traditional Chinese Medicine. Reckoning with these, the present review collates the pharmacological properties of Tan IIA with a special emphasis on its therapeutic potential against diverse diseases including cardiovascular diseases, cerebrovascular diseases, cancer, diabetes, obesity and neurogenerative diseases. Further, possible applications of various therapeutic preparations of Tan IIA were discussed with special emphasis on nano-based drug delivery formulations. Considering the tremendous advancement in the field of nanomedicine and the therapeutic potential of Tan IIA, the convergence of these two aspects can be foreseen with great promise in clinical application.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1881, Dammam 31441, Saudi Arabia
| | - Farheen Badrealam Khan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Haaris Ahsan Safdari
- New Technology Center, University of Warsaw, Stefana Banacha 2c, 02-097 Warszawa, Poland
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammadreza Safdari
- Imam Ali Hospital, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehran Amirizadeh
- Department of Pharmacotherapy, Faculty of Pharmacy, University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1881, Dammam 31441, Saudi Arabia
| | - Mohammad Javed Equbal
- Biomedical Institute for Regenerative Research, Texas A&M University Commerce, Commerce, TX 75429, United States.
| | - Mehboob Hoque
- Department of Biological Sciences, Aliah University, Kolkata 700 160, India.
| |
Collapse
|
24
|
Guo R, Li L, Su J, Li S, Duncan SE, Liu Z, Fan G. Pharmacological Activity and Mechanism of Tanshinone IIA in Related Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4735-4748. [PMID: 33192051 PMCID: PMC7653026 DOI: 10.2147/dddt.s266911] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
Salvia miltiorrhiza: (Danshen) is a significant (traditional Chinese medication) natural remedy, enhancing blood circulation and clear blood stasis. In this view, it is widely used against several heart diseases, eg, cardiomyopathy, arrhythmia, and congenital heart defects. Tanshinone IIA (tan-IIA) is the main fat-soluble component of Salvia miltiorrhiza. Modern pharmacological study shows that tan-IIA has anti-inflammatory and anti-oxidant activities. Tan-IIA induces remarkable cardioprotective effects via enhancing angiogenesis which may serve as an effective treatment against cardiovascular diseases (CVD). There is also evidence that tan-IIA has extensive immunomodulatory effects and plays a significant role in the development and function of immune cells. Tan-IIA reduces the production of inflammatory mediators and restores abnormal signaling pathways via regulating the function and activation of immune cells. It can also regulate signal transduction pathways, ie, TLR/NF-κB pathway and MAPKs/NF-κB pathway, thereby tan-IIA has an anti-inflammatory, anticoagulant, antithrombotic and neuroprotective role. It plays a protective role in the pathogenesis of cardiovascular disorders (ie, atherosclerosis, hypertension) and Alzheimer’s disease. It has also been revealed that tan-IIA has an anti-tumor role by killing various tumor cells, inducing differentiation and apoptosis, and has potential activity against carcinoma progression. In the review of this fact, the tan-IIA role in different diseases and its mechanism have been summarized while its clinical applications are also explored to provide a new perspective of Salvia miltiorrhiza. An extensive study on the mechanism of action of tan-IIA is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.
Collapse
Affiliation(s)
- Rui Guo
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lan Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jing Su
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Sheng Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Sophia Esi Duncan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhihao Liu
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Guanwei Fan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
25
|
Cai N, Chen J, Bi D, Gu L, Yao L, Li X, Li H, Xu H, Hu Z, Liu Q, Xu X. Specific Degradation of Endogenous Tau Protein and Inhibition of Tau Fibrillation by Tanshinone IIA through the Ubiquitin-Proteasome Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2054-2062. [PMID: 31995984 DOI: 10.1021/acs.jafc.9b07022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease which is partly characterized by the aggregation of hyperphosphorylated Tau proteins forming neurofibrillary tangles that promote AD pathogenesis. In this study, we investigated the effects of tanshinone IIA (Tan IIA) isolated from Salvia miltiorrhiza on Tau degradation in the treatment of AD. The results showed that Tan IIA reduced the Tau expression and attenuated Tau phosphorylation in N2a cells, Tau-overexpressing cells, and 3×Tg-AD mouse primary neuron cells. Moreover, Tan IIA increased polyubiquitinated Tau accumulation and induced proteasomal degradation of the Tau protein. Additionally, Tan IIA became bound to the Tau protein and inhibited the formation of heparin-induced Tau fibrils. In summary, Tan IIA can increase polyubiquitinated Tau accumulation and induce the proteasomal degradation of the Tau protein and the binding of Tan IIA to the Tau protein, inhibiting the formation of Tau fibrils. Tan IIA may be further explored as a potential candidate for AD treatment.
Collapse
Affiliation(s)
- Nan Cai
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , PR China
| | - Jiajie Chen
- Department of Biochemistry and Molecular Biology, School of Medicine , Shenzhen University , Shenzhen 518055 , PR China
| | - Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Liang Gu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University , Beijing 100000 , PR China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| |
Collapse
|
26
|
Liang S, Wang Z, Yuan J, Zhang J, Dai X, Qin F, Zhang J, Sun Y. Rapid Identification of Tanshinone IIA Metabolites in an Amyloid-β 1-42 Induced Alzherimer's Disease Rat Model using UHPLC-Q-Exactive Qrbitrap Mass Spectrometry. Molecules 2019; 24:molecules24142584. [PMID: 31315255 PMCID: PMC6680413 DOI: 10.3390/molecules24142584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that damages health and welfare of the elderly, and there has been no effective therapy for AD until now. It has been proved that tanshinone IIA (tan IIA) could alleviate pathological symptoms of AD via improving non-amyloidogenic cleavage of amyloid precursor protein, decreasing the accumulations of p-tau and amyloid-β1–42 (Aβ1–42), and so forth. However, the further biochemical mechanisms of tan IIA are not clear. The experiment was undertaken to explore metabolites of tan IIA in AD rats induced by microinjecting Aβ1-42 in the CA1 region of hippocampus. AD rats were orally administrated with tan IIA at 100 mg/kg weight, and plasma, urine, faeces, kidney, liver and brain were then collected for metabolites analysis by UHPLC-Q-Exactive Qrbitrap mass spectrometry. Consequently, a total of 37 metabolites were positively or putatively identified on the basis of mass fragmentation behavior, accurate mass measurements and retention times. As a result, methylation, hydroxylation, dehydration, decarbonylation, reduction reaction, glucuronidation, glycine linking and their composite reactions were characterized to illuminate metabolic pathways of tan IIA in vivo. Several metabolites presented differences in the distribution of tan IIA between the sham control and the AD model group. Overall, these results provided valuable references for research on metabolites of tan IIA in vivo and its probable active structure for exerting neuroprotection.
Collapse
Affiliation(s)
- Shuang Liang
- College of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Zijian Wang
- Beijing University of Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing 100191, China
| | - Jiaqi Yuan
- College of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Jing Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Fei Qin
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| |
Collapse
|