1
|
Cao X, Wang C, Yuan D, Chen S, Wang X. The effect of implants loaded with stem cells from human exfoliated deciduous teeth on early osseointegration in a canine model. BMC Oral Health 2022; 22:238. [PMID: 35715777 PMCID: PMC9206344 DOI: 10.1186/s12903-022-02264-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background This in vivo experimental study investigated the effect of stem cells from human exfoliated deciduous teeth (SHEDs) on early osteogenesis around implants. Methods In four healthy adult male Beagle dogs, the left mandibular received implants and SHED as the experimental group, and the right mandibular received implants and phosphate-buffered saline as the control group. The Beagle dogs were randomly divided into groups A and B, which were sacrificed at 2 and 4 weeks after implantation. Micro-computed tomography and histological analysis were used to investigate the effect of SHED-loading on the early osseointegration around the implants. Results The total bone-to-implant contact (BIC%) and interthread bone improved significantly. The analysis of the bone volume fraction and trabecular thickness showed that the bone trabecula around the implants in the SHEDs group was thicker and denser than that in the control group, suggesting a better osseointegration. Conclusions The application of implants pre-adhered with SHEDs improved and accelerated early osseointegration around the implant, resulting in thicker and denser trabecular bone.
Collapse
Affiliation(s)
- Xu Cao
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Caiyun Wang
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Dingxiang Yuan
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Su Chen
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xin Wang
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Leferink A, Tibbe M, Bossink E, de Heus L, van Vossen H, van den Berg A, Moroni L, Truckenmüller R. Shape-defined solid micro-objects from poly(d,l-lactic acid) as cell-supportive counterparts in bottom-up tissue engineering. Mater Today Bio 2019; 4:100025. [PMID: 32159154 PMCID: PMC7061620 DOI: 10.1016/j.mtbio.2019.100025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023] Open
Abstract
In bottom-up tissue engineering, small modular units of cells and biomaterials are assembled toward larger and more complex ones. In conjunction with a new implementation of this approach, a novel method to fabricate microscale objects from biopolymers by thermal imprinting on water-soluble sacrificial layers is presented. By this means, geometrically well-defined objects could be obtained without involving toxic agents in the form of photoinitiators. The micro-objects were used as cell-adhesive substrates and cell spacers in engineered tissues created by cell-guided assembly of the objects. Such constructs can be applied both for in vitro studies and clinical treatments. Clinically relevantly sized aggregates comprised of cells and micro-objects retained their viability up to 2 weeks of culture. The aggregation behavior of cells and objects showed to depend on the type and number of cells applied. To demonstrate the micro-objects' potential for engineering vascularized tissues, small aggregates of human bone marrow stromal cells (hMSCs) and micro-objects were coated with a layer of human umbilical vein endothelial cells (HUVECs) and fused into larger tissue constructs, resulting in HUVEC-rich regions at the aggregates' interfaces. This three-dimensional network-type spatial cellular organization could foster the establishment of (premature) vascular structures as a vital prerequisite of, for example, bottom-up-engineered bone-like tissue.
Collapse
Affiliation(s)
- A.M. Leferink
- Applied Stem Cell Technologies Group, TechMed Centre, University of Twente, 7500 AE, Enschede, the Netherlands
- BIOS/Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, the Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - M.P. Tibbe
- BIOS/Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, the Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - E.G.B.M. Bossink
- BIOS/Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, the Netherlands
| | - L.E. de Heus
- Applied Stem Cell Technologies Group, TechMed Centre, University of Twente, 7500 AE, Enschede, the Netherlands
- BIOS/Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, the Netherlands
| | - H. van Vossen
- MESA+ NanoLab, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, the Netherlands
| | - A. van den Berg
- BIOS/Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, the Netherlands
| | - L. Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - R.K. Truckenmüller
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, the Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, the Netherlands
| |
Collapse
|
3
|
Damanik FFR, van Blitterswijk C, Rotmans J, Moroni L. Enhancement of synthesis of extracellular matrix proteins on retinoic acid loaded electrospun scaffolds. J Mater Chem B 2018; 6:6468-6480. [PMID: 32254654 DOI: 10.1039/c8tb01244j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electrospinning is a renowned technique for the generation of ultrafine, micro- and nanoscale fibres due to its simplicity, versatility and tunability. Owing to its adaptability to a wide selection of materials and scaffold architectures, electrospun meshes have been developed as biocompatible scaffolds and drug delivery systems for tissue engineering. Here, we developed a drug delivery scaffold by electrospinning poly(ε-caprolactone) (PCL) directly blended with a therapeutic agent, retinoic acid (RA), at different concentrations. The release profile, DNA, and elastin analysis of direct and transwell seeded RA-loaded PCL electrospun scaffolds showed desirable controlled release at 15 kV fabrication, with 0.01% RA as the optimum concentration. The selected 0.01% (w/v) RA-loaded PCL meshes were further analysed using five different seeding cultures to investigate and extensively distinguish the effects of RA release with or without cell contact to the PCL electrospun meshes for cell morphology, proliferation and extracellular matrix (ECM) protein secretion of collagen and elastin. Upon exposure to RA-loaded PCL scaffolds, an increase of human dermal fibroblast (HDF) proliferation was observed. In contrast, human mesenchymal stromal cell (hMSC) cultures showed a decrease in cell proliferation. For both hMSC and HDF cultures, exposure to RA-loaded PCL scaffolds provided a significant increase in elastin production per cell. For collagen expression, a slight increase was measured and was outperformed by the 3D geometry stimulation from PCL scaffolds. In contrast to hMSCs, HDFs showed enhanced stress actin fibres in cultures with RA-loaded PCL scaffolds. Both cell types exhibited more vinculin expression when seeded to RA-loaded PCL scaffolds. Hence, electrospun scaffolds releasing RA in a controlled manner were able to regulate cell proliferation, morphology and ECM secretion, and present an attractive approach for optimizing tissue regeneration.
Collapse
Affiliation(s)
- Febriyani F R Damanik
- University of Twente, Drienerlolaan 5, Zuidhorst 145, 7522 NB Enschede, The Netherlands
| | | | | | | |
Collapse
|
4
|
Gürpinar ÖA, Onur MA. In Vitro Investigation of Cell Compatibility of Pure β-TCP Granules. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911505051660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, osteoblastic cells were isolated from rat bone marrow and characterized. The cells were cultured on β-TCP granules and the osteoblast/ β-TCP constructs. For this purpose, bone marrow was harvested under sterile conditions. Cell aggregates were broken up by pipetting and a cell suspension was cultured in DMEM/F12. After three days, the cells that adhered to the surface of the flask were cultured in osteoblast medium. When the cells became confluent, they were passaged and cultured in 24-well polystyrene cell culture dishes. Characterization of the osteoblasts, cell proliferation and alkaline phosphatase activity were measured on days 1, 7, 14, 21 and 30. To investigate the cell compatibility of the β-TCP granules, osteoblastic cells were cultured on β-TCP granules and a polystyrene cell culture dish (control group). Cell proliferation and alkaline phosphatase (ALP) activity were measured on days 1, 7, 14, 21 and 30 in both groups. Cell growth significantly increased at each time point, but on day 30 a decrease was observed. The ALP activity also increased at each time point and also decreased on day 30. This study may be regarded as the first step leading to a therapy for various bone defects.
Collapse
Affiliation(s)
| | - M. Ali Onur
- Hacettepe University, Faculty of Science, Department of Biology, Beytepe, 06532, Ankara, Turkey
| |
Collapse
|
5
|
Hendrikson WJ, Zeng X, Rouwkema J, van Blitterswijk CA, van der Heide E, Moroni L. Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene Terephthalate), Polycaprolactone, and Poly (L\DL) Lactic Acid Plotted Scaffolds for Skeletal Tissue Regeneration. Adv Healthc Mater 2016; 5:232-43. [PMID: 26775915 DOI: 10.1002/adhm.201500067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 09/08/2015] [Indexed: 12/22/2022]
Abstract
Additive manufactured scaffolds are fabricated from three commonly used biomaterials, polycaprolactone (PCL), poly (L\DL) lactic acid (P(L\DL)LA), and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT). Scaffolds are compared biologically and tribologically. Cell-seeded PEOT/PBT scaffolds cultured in osteogenic and chondrogenic differentiation media show statistical significantly higher alkaline phosphatase (ALP) activity/DNA and glycosaminoglycans (GAG)/DNA ratios, followed by PCL and P(L\DL)LA scaffolds, respectively. The tribological performance is assessed by determining the friction coefficients of the scaffolds at different loads and sliding velocities. With increasing load or decreasing sliding velocity, the friction coefficient value decreases. PEOT/PBT show to have the lowest friction coefficient value, followed by PCL and P(L\DL)LA. The influence of the scaffold architecture is further determined with PEOT/PBT. Reducing of the fiber spacing results in a lower friction coefficient value. The best and the worst performing scaffold architecture are chosen to investigate the effect of cell culture on the friction coefficient. Matrix deposition is low in the cell-seeded scaffolds and the effect is, therefore, undetermined. Taken together, our studies show that PEOT/PBT scaffolds support better skeletal differentiation of seeded stromal cells and lower friction coefficient compared to PCL and P(L/DL)A scaffolds.
Collapse
Affiliation(s)
- Wilhelmus J. Hendrikson
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede 7500 AE The Netherlands
| | - Xiangqiong Zeng
- Laboratory for Surface Technology and Tribology; Faculty of Engineering Technology; University of Twente; Enschede 7500 AE The Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede 7500 AE The Netherlands
| | - Clemens A. van Blitterswijk
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede 7500 AE The Netherlands
- Complex Tissue Regeneration; Maastricht University; Maastricht 6229ER The Netherlands
| | - Emile van der Heide
- Laboratory for Surface Technology and Tribology; Faculty of Engineering Technology; University of Twente; Enschede 7500 AE The Netherlands
- TNO; Eindhoven 5600 HE The Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede 7500 AE The Netherlands
- Complex Tissue Regeneration; Maastricht University; Maastricht 6229ER The Netherlands
| |
Collapse
|
6
|
Leferink AM, Chng YC, van Blitterswijk CA, Moroni L. Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds. Front Bioeng Biotechnol 2015; 3:169. [PMID: 26557644 PMCID: PMC4617101 DOI: 10.3389/fbioe.2015.00169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/08/2015] [Indexed: 12/28/2022] Open
Abstract
One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow-derived mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering-based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs) seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation.
Collapse
Affiliation(s)
- Anne M Leferink
- Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede , Netherlands ; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht , Netherlands
| | | | - Clemens A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede , Netherlands ; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht , Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede , Netherlands ; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht , Netherlands
| |
Collapse
|
7
|
Prado RFD, de Oliveira FS, Nascimento RD, de Vasconcellos LMR, Carvalho YR, Cairo CAA. Osteoblast response to porous titanium and biomimetic surface: In vitro analysis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 52:194-203. [DOI: 10.1016/j.msec.2015.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/21/2015] [Accepted: 03/22/2015] [Indexed: 01/08/2023]
|
8
|
Margulies BS, DeBoyace SD, Parsons AM, Policastro CG, Ee JSS, Damron TS. Functionally deficient mesenchymal stem cells reside in the bone marrow niche with M2-macrophages and amyloid-β protein adjacent to loose total joint implants. J Orthop Res 2015; 33:615-24. [PMID: 25418884 DOI: 10.1002/jor.22790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 11/20/2014] [Indexed: 02/04/2023]
Abstract
We sought to demonstrate whether there is a difference in the local mesenchymal stem cells (MSC) niche obtained from patients undergoing their first total joint replacement surgery versus those patients undergoing a revision surgery for an failing total joint implant. Bone marrow aspirates collected from patients undergoing revision total joint arthroplasty were observed to be less clonal and the expression of PDGFRα, CD51, ALCAM, endoglin, CXCL12, nestin, and nucleostemin were decreased. Revision MSC were also less able to commit to an osteoblast-lineage or an adipocyte-lineage. Further, in revision MSC, OPG, and IL6 expression were increased. Monocytes, derived from revision whole marrow aspirates, were less capable of differentiating into osteoclasts, the cells implicated in the pathologic degradation of bone. Osteoclasts were also not observed in tissue samples collected adjacent to the implants of revision patients; however, the alternatatively activated M2-macrophage phenotype was observed in parallel with pathologic accumulations of amyloid-β, τ-protien and 3-nitrotyrosine. Despite the limited numbers of patients examined, our data suggest that nucleostemin may be a useful functional marker for MSC while the observation of M2-macrophage infiltration around the implant lays the foundation for future investigation into a novel mechanism that we propose is associated with loose total joint implants.
Collapse
Affiliation(s)
- Bryan S Margulies
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, New York
| | | | | | | | | | | |
Collapse
|
9
|
Hendrikson WJ, Rouwkema J, van Blitterswijk CA, Moroni L. Influence of PCL molecular weight on mesenchymal stromal cell differentiation. RSC Adv 2015. [DOI: 10.1039/c5ra08048g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The molecular weight of polycaprolactone was varied to investigate its effect on stem cell activity. Results showed that polymer molecular weight is an additional parameter to consider when designing scaffolds for skeletal regeneration.
Collapse
Affiliation(s)
- W. J. Hendrikson
- Department of Tissue Regeneration
- MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
| | - J. Rouwkema
- Department of Biomechanical Engineering
- MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
| | - C. A. van Blitterswijk
- Department of Tissue Regeneration
- MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
| | - L. Moroni
- Department of Tissue Regeneration
- MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
| |
Collapse
|
10
|
Leferink AM, Santos D, Karperien M, Truckenmüller RK, van Blitterswijk CA, Moroni L. Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds. Integr Biol (Camb) 2015; 7:1574-86. [DOI: 10.1039/c5ib00177c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study shows that the classical validation of hMSC differentiation potential on 3D scaffolds might not be sufficient to ensure the maintenance of the cells functionality in the absence of differentiation inducing soluble factors.
Collapse
Affiliation(s)
- A. M. Leferink
- Department of Tissue Regeneration and MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
- Department of Complex Tissue Regeneration
| | - D. Santos
- Department of Tissue Regeneration and MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
| | - M. Karperien
- Department of Developmental Bioengineering
- MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
| | - R. K. Truckenmüller
- Department of Tissue Regeneration and MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
- Department of Complex Tissue Regeneration
| | - C. A. van Blitterswijk
- Department of Tissue Regeneration and MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
- Department of Complex Tissue Regeneration
| | - L. Moroni
- Department of Tissue Regeneration and MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
- Department of Complex Tissue Regeneration
| |
Collapse
|
11
|
Leferink AM, Fratila RM, Koenrades MA, van Blitterswijk CA, Velders A, Moroni L. An open source image processing method to quantitatively assess tissue growth after non-invasive magnetic resonance imaging in human bone marrow stromal cell seeded 3D polymeric scaffolds. PLoS One 2014; 9:e115000. [PMID: 25502022 PMCID: PMC4264848 DOI: 10.1371/journal.pone.0115000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/16/2014] [Indexed: 11/19/2022] Open
Abstract
Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional (3D) scaffolds for regenerative medicine and clinical purposes. This is even more important when multipotent human bone marrow stromal cells (hMSCs) are used, as it could offer a method to understand in real time the dynamics of stromal cell differentiation and eventually steer it into the desired lineage. Magnetic Resonance Imaging (MRI) is a promising tool to overcome the challenge of a limited transparency in opaque 3D scaffolds. Technical limitations of MRI involve non-uniform background intensity leading to fluctuating background signals and therewith complicating quantifications on the retrieved images. We present a post-imaging processing sequence that is able to correct for this non-uniform background intensity. To test the processing sequence we investigated the use of MRI for in vitro monitoring of tissue growth in three-dimensional poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) scaffolds. Results showed that MRI, without the need to use contrast agents, is a promising non-invasive tool to quantitatively monitor ECM production and cell distribution during in vitro culture in 3D porous tissue engineered constructs.
Collapse
Affiliation(s)
- Anne M. Leferink
- Department of Tissue Regeneration, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Raluca M. Fratila
- NeuroImaging Group, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Maaike A. Koenrades
- Department of Tissue Regeneration, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Clemens A. van Blitterswijk
- Department of Tissue Regeneration, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Aldrik Velders
- Laboratory of SupraMolecular Chemistry and Technology of MESA – Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
- Department of BioNanotechnology, Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
12
|
Leferink AM, Hendrikson WJ, Rouwkema J, Karperien M, van Blitterswijk CA, Moroni L. Increased cell seeding efficiency in bioplotted three-dimensional PEOT/PBT scaffolds. J Tissue Eng Regen Med 2013; 10:679-89. [PMID: 24668928 DOI: 10.1002/term.1842] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/20/2013] [Accepted: 09/13/2013] [Indexed: 12/21/2022]
Abstract
In regenerative medicine studies, cell seeding efficiency is not only optimized by changing the chemistry of the biomaterials used as cell culture substrates, but also by altering scaffold geometry, culture and seeding conditions. In this study, the importance of seeding parameters, such as initial cell number, seeding volume, seeding concentration and seeding condition is shown. Human mesenchymal stem cells (hMSCs) were seeded into cylindrically shaped 4 × 3 mm polymeric scaffolds, fabricated by fused deposition modelling. The initial cell number ranged from 5 × 10(4) to 8 × 10(5) cells, in volumes varying from 50 µl to 400 µl. To study the effect of seeding conditions, a dynamic system, by means of an agitation plate, was compared with static culture for both scaffolds placed in a well plate or in a confined agarose moulded well. Cell seeding efficiency decreased when seeded with high initial cell numbers, whereas 2 × 10(5) cells seemed to be an optimal initial cell number in the scaffolds used here. The influence of seeding volume was shown to be dependent on the initial cell number used. By optimizing seeding parameters for each specific culture system, a more efficient use of donor cells can be achieved. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A M Leferink
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - W J Hendrikson
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - J Rouwkema
- Laboratory of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - M Karperien
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands.,Department of Developmental Bioengineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - C A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - L Moroni
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| |
Collapse
|
13
|
Mentink A, Hulsman M, Groen N, Licht R, Dechering KJ, van der Stok J, Alves HA, Dhert WJ, van Someren EP, Reinders MJ, van Blitterswijk CA, de Boer J. Predicting the therapeutic efficacy of MSC in bone tissue engineering using the molecular marker CADM1. Biomaterials 2013; 34:4592-601. [DOI: 10.1016/j.biomaterials.2013.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/01/2013] [Indexed: 12/17/2022]
|
14
|
Khlusov IA, Shevtsova NM, Khlusova MY. Detection in vitro and quantitative estimation of artificial microterritories which promote osteogenic differentiation and maturation of stromal stem cells. Methods Mol Biol 2013; 1035:103-19. [PMID: 23959985 DOI: 10.1007/978-1-62703-508-8_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular matrix can regulate multipotent mesenchymal stromal cells (MMSC) differentiation, with potential applications for tissue engineering. A relief of mineralized bone takes essential effect on MMSC fate. Nevertheless, delicate structure and a hierarchy of niches for stromal stem cells and its quantitative parameters are not practically known. Here, we describe the protocol to define the basic approach providing a guiding for in vitro identification of quantitative features of artificial calcium phosphate niches which promotes osteogenic differentiation and maturation of stromal stem cell.
Collapse
Affiliation(s)
- Igor A Khlusov
- Scientific Educational Center, Biocompatible Materials and Bioengineering, Siberian State Medical University, Tomsk, Russia
| | | | | |
Collapse
|
15
|
Doorn J, Leusink M, Groen N, van de Peppel J, van Leeuwen JPTM, van Blitterswijk CA, de Boer J. Diverse effects of cyclic AMP variants on osteogenic and adipogenic differentiation of human mesenchymal stromal cells. Tissue Eng Part A 2012; 18:1431-42. [PMID: 22646480 DOI: 10.1089/ten.tea.2011.0484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Osteogenic differentiation of human mesenchymal stromal cells (hMSCs) may potentially be used in cell-based bone tissue-engineering applications to enhance the bone-forming potential of these cells. Osteogenic differentiation and adipogenic differentiation are thought to be mutually exclusive, and although several signaling pathways and cues that induce osteogenic or adipogenic differentiation, respectively, have been identified, there is no general consensus on how to optimally differentiate hMSCs into the osteogenic lineage. Some pathways have also been reported to be involved in both adipogenic and osteogenic differentiation, as for example, the protein kinase A (PKA) pathway, and the aim of this study was to investigate the role of cAMP/PKA signaling in differentiation of hMSCs in more detail. We show that activation of this pathway with dibutyryl-cAMP results in enhanced alkaline phosphatase expression, whereas another cAMP analog induces adipogenesis in long-term mineralization cultures. Adipogenic differentiation, induced by 8-bromo-cAMP, was accompanied by stronger PKA activity and higher expression of cAMP-responsive genes, suggesting that stronger activation correlates with adipogenic differentiation. In addition, a whole-genome expression analysis showed an increase in expression of adipogenic genes in 8-br-cAMP-treated cells. Furthermore, by means of quantitative polymerase chain reaction, we show differences in peroxisome proliferator-activated receptor-γ activation, either alone or in combination with dexamethasone, thus demonstrating differential effects of the PKA pathway, most likely depending on its mode of activation.
Collapse
Affiliation(s)
- Joyce Doorn
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Szpalski C, Barbaro M, Sagebin F, Warren SM. Bone tissue engineering: current strategies and techniques--part II: Cell types. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:258-69. [PMID: 22224439 DOI: 10.1089/ten.teb.2011.0440] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone repair and regeneration is a dynamic process that involves a complex interplay between the (1) ground substance; (2) cells; and (3) milieu. Each constituent is integral to the final product, but it is often helpful to consider each component individually. While bone tissue engineering has capitalized on a number of breakthrough technologies, one of the most valued advancements is the incorporation of mesenchymal stem cells (SCs) into bone tissue engineering applications. With this new idea, however, came new found problems of guiding SC differentiation. Moreover, investigators are still working to understand which SCs source produces optimal bone formation in vitro and in vivo. Bone marrow-derived mesenchymal SCs and adipose-derived SCs have been researched most extensively, but other SC sources, including dental pulp, blood, umbilical cord blood, epithelial cells reprogrammed to become induced pluripotent SCs, among others, are being investigated. In Part II of this review series, we discuss the variety of cell types (e.g., osteocytes, osteoblasts, osteoclasts, chondrocytes, mesenchymal SCs, and vasculogenic cells) important in bone tissue engineering.
Collapse
Affiliation(s)
- Caroline Szpalski
- Department of Plastic Surgery, New York University Langone Medical Center, New York, New York 10016, USA
| | | | | | | |
Collapse
|
17
|
Doorn J, Siddappa R, van Blitterswijk CA, de Boer J. Forskolin enhances in vivo bone formation by human mesenchymal stromal cells. Tissue Eng Part A 2012; 18:558-67. [PMID: 21942968 DOI: 10.1089/ten.tea.2011.0312] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of the protein kinase A (PKA) pathway with dibutyryl cyclic adenosine monophosphate (db-cAMP) was recently shown to enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs) in vitro and bone formation in vivo. The major drawback of this compound is its inhibitory effect on proliferation of hMSCs. Therefore, we investigated whether fine-tuning of the dose and timing of PKA activation could enhance bone formation even further, with minimum effects on proliferation. To test this, we selected two different PKA activators (8-bromo-cAMP (8-br-cAMP) and forskolin) and compared their effects on proliferation and osteogenic differentiation with those of db-cAMP. We found that all three compounds induced alkaline phosphatase levels, bone-specific target genes, and secretion of insulin-like growth factor-1, although 8-br-cAMP induced adipogenic differentiation in long-term cultures and was thus considered unsuitable for further in vivo testing. All three compounds inhibited proliferation of hMSCs in a dose-dependent manner, with forskolin inhibiting proliferation most. The effect of forskolin on in vivo bone formation was tested by pretreating hMSCs before implantation, and we observed greater amounts of bone using forskolin than db-cAMP. Our data show forskolin to be a novel agent that can be used to increase bone formation and also suggests a role for PKA in the delicate balance between adipogenic and osteogenic differentiation.
Collapse
Affiliation(s)
- Joyce Doorn
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | |
Collapse
|
18
|
Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 2011; 112:2373-433. [PMID: 22204603 DOI: 10.1021/cr100449n] [Citation(s) in RCA: 1612] [Impact Index Per Article: 115.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rajib Ghosh Chaudhuri
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769 008, Orissa, India
| | | |
Collapse
|
19
|
Wilson CE, van Blitterswijk CA, Verbout AJ, Dhert WJA, de Bruijn JD. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:97-105. [PMID: 21069558 PMCID: PMC3019353 DOI: 10.1007/s10856-010-4183-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 10/25/2010] [Indexed: 05/30/2023]
Abstract
Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds.
Collapse
Affiliation(s)
- C. E. Wilson
- Division of Surgical Specialties, Department of Orthopaedics, University Medical Center Utrecht, G05.228, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - C. A. van Blitterswijk
- Department of Tissue Regeneration, Institute for Biomedical Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - A. J. Verbout
- Division of Surgical Specialties, Department of Orthopaedics, University Medical Center Utrecht, G05.228, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - W. J. A. Dhert
- Division of Surgical Specialties, Department of Orthopaedics, University Medical Center Utrecht, G05.228, PO Box 85500, 3508 GA Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - J. D. de Bruijn
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| |
Collapse
|
20
|
Siddappa R, Doorn J, Liu J, Langerwerf E, Arends R, van Blitterswijk C, de Boer J. Timing, rather than the concentration of cyclic AMP, correlates to osteogenic differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med 2010; 4:356-65. [PMID: 20033926 DOI: 10.1002/term.246] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously, we demonstrated that protein kinase A (PKA) activation using dibutyryl-cAMP in human mesenchymal stem cells (hMSCs) induces in vitro osteogenesis and bone formation in vivo. To further investigate the physiological role of PKA in hMSC osteogenesis, we tested a selection of G-protein-coupled receptor ligands which signal via intracellular cAMP production and PKA activation. Treatment of hMSCs with parathyroid hormone, parathyroid hormone-related peptide, melatonin, epinephrine, calcitonin or calcitonin gene-related peptide did not result in accumulation of cAMP or induction of alkaline phosphatase (ALP) expression. The only ligand that did induce cAMP, prostaglandin E2, even inhibited ALP expression and mineralization, suggesting that physiological levels of cAMP may inhibit osteogenesis. Furthermore, intermittent exposure of hMSCs to dibutyryl-cAMP inhibited ALP expression, whereas we did not observe an inhibitive effect at low dibutyryl-cAMP concentrations. Taken together, our results demonstrate that cAMP can either stimulate or inhibit osteogenesis in hMSCs, depending on the duration, rather than the strength, of the signal provided.
Collapse
Affiliation(s)
- Ramakrishnaiah Siddappa
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Teixeira S, Fernandes MH, Ferraz MP, Monteiro FJ. Proliferation and mineralization of bone marrow cells cultured on macroporous hydroxyapatite scaffolds functionalized with collagen type I for bone tissue regeneration. J Biomed Mater Res A 2010; 95:1-8. [DOI: 10.1002/jbm.a.32600] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci U S A 2010; 107:13614-9. [PMID: 20643969 DOI: 10.1073/pnas.1003600107] [Citation(s) in RCA: 489] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Biomaterials can be endowed with biologically instructive properties by changing basic parameters such as elasticity and surface texture. However, translation from in vitro proof of concept to clinical application is largely missing. Porous calcium phosphate ceramics are used to treat small bone defects but in general do not induce stem cell differentiation, which is essential for regenerating large bone defects. Here, we prepared calcium phosphate ceramics with varying physicochemical and structural characteristics. Microporosity correlated to their propensity to stimulate osteogenic differentiation of stem cells in vitro and bone induction in vivo. Implantation in a large bone defect in sheep unequivocally demonstrated that osteoinductive ceramics are equally efficient in bone repair as autologous bone grafts. Our results provide proof of concept for the clinical application of "smart" biomaterials.
Collapse
|
23
|
Fernandes H, Mentink A, Bank R, Stoop R, van Blitterswijk C, de Boer J. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells. Tissue Eng Part A 2010; 16:1693-702. [PMID: 20038205 DOI: 10.1089/ten.tea.2009.0341] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix mainly composed of collagen type I. Here we assessed the potential role of endogenous collagen synthesis in hMSC differentiation and stem cell maintenance. We observed a sharp reduction in proliferation rate of hMSCs in the absence of ascorbic acid, concomitant with a reduction in osteogenesis in vitro and bone formation in vivo. In line with a positive role for collagen type I in osteogenesis, gene expression profiling of hMSCs cultured in the absence of ascorbic acid demonstrated increased expression of genes involved in adipogenesis and chondrogenesis and a reduction in expression of osteogenic genes. We also observed that matrix remodeling and anti-osteoclastogenic signals were high in the presence of ascorbic acid. The presence of collagen type I during the expansion phase of hMSCs did not affect their osteogenic and adipogenic differentiation potential. In conclusion, the collagenous matrix supports both proliferation and differentiation of osteogenic hMSCs but, on the other hand, presents signals stimulating matrix remodeling and inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Hugo Fernandes
- Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Cordonnier T, Layrolle P, Gaillard J, Langonné A, Sensebé L, Rosset P, Sohier J. 3D environment on human mesenchymal stem cells differentiation for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:981-987. [PMID: 19856200 DOI: 10.1007/s10856-009-3916-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/13/2009] [Indexed: 05/28/2023]
Abstract
In this work a novel method was developed to create a three dimensional environment at a cellular level for bone tissue engineering. Biphasic calcium phosphate (BCP) particles of 140-200 microm were used in association with human mesenchymal stem cells (hMSCs). The cells seeded on these particles adhered and proliferated more rapidly in the first day of culture compared to culture on plastic. Analyses of hMSCs cultured without osteogenic factors on BCP particles revealed an abundant extracellular matrix production forming 3-dimensional (3D) hMSCs/BCP particles constructs after few days. Bone morphogenetic 2 (BMP-2), bone sialoprotein (BSP) and ALP gene expression using real time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) confirmed that expression profiles were modified by the culture substrate while the addition of osteogenic medium enhanced bone markers expression. These results indicate that BCP particles alone are able to induce an osteoblastic differentiation of hMSCs that might be of interest for bone tissue engineering.
Collapse
Affiliation(s)
- T Cordonnier
- INSERM U791, Center on Osteoarticular and Dental Tissue Engineering, School of Dental Surgery, Nantes, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Fernandes H, Dechering K, Van Someren E, Steeghs I, Apotheker M, Leusink A, Bank R, Janeczek K, Van Blitterswijk C, de Boer J. The role of collagen crosslinking in differentiation of human mesenchymal stem cells and MC3T3-E1 cells. Tissue Eng Part A 2010; 15:3857-67. [PMID: 19694522 DOI: 10.1089/ten.tea.2009.0011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Collagen is the main protein component of the extracellular matrix of bone, and it has structural and instructive properties. Collagen undergoes many post-translational modifications, including extensive crosslinking. Although defective crosslinking has been implicated in human syndromes (e.g., osteogenesis imperfecta or Ehlers-Danlos syndrome), it is not clear to what extent crosslinking is necessary for collagen's instructive properties during bone formation. Here we report that inhibition of collagen crosslinking in the mouse pre-osteoblast cell line MC3T3-E1 impairs the osteogenic program. Genome-wide expression profiling of beta-aminopropionitrile-treated and control cells revealed that matrix deposition by MC3T3-E1 cells provides a feed back signal, driving cells through the differentiation process, that is strongly impaired when crosslinking is inhibited. Inhibition of crosslinking did not affect osteogenic differentiation of human mesenchymal stem cells (hMSCs), shown by the expression of alkaline phosphatase and genome-wide gene expression analysis, although it enhances matrix mineralization. In conclusion, collagen crosslinking harbors instructive properties in MC3T3-E1 differentiation but plays a more-passive role in differentiation of bone marrow-derived hMSCs.
Collapse
Affiliation(s)
- Hugo Fernandes
- Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu J, Someren E, Mentink A, Licht R, Dechering K, van Blitterswijk C, de Boer J. The effect of PKC activation and inhibition on osteogenic differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med 2009; 4:329-39. [DOI: 10.1002/term.242] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Jung JY, Hong YJ, Choi YS, Jeong S, Lee WK. A new method for the preparation of bioactive calcium phosphate films hybridized with 1alpha,25-dihydroxyvitamin D3. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:2441-2453. [PMID: 19593649 DOI: 10.1007/s10856-009-3817-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 07/01/2009] [Indexed: 05/28/2023]
Abstract
The primary goal of this investigation was to develop a calcium phosphate film hybridized with 1alpha,25-dihydroxyvitamin D(3) for the improvement of osteoconductivity of bone substitutes. The hybrid films (hCaP) were prepared at the different concentrations of 1 x 10(-10), 1 x 10(-8), and 1 x 10(-6) M designated as hCaPL, hCaPM, and hCaPH, respectively. The change of the hormone concentration during the preparation of the hybrid films did not cause significant variations on the physical properties of hCaPs, i.e. surface morphology and roughness. On the other hand, X-ray photon spectroscope (XPS) measurements revealed that the concentration change affected the chemical composition of the hybrid films. Recruitment of osteoblast-like MG-63 cells was considerably improved on hCaPs compared to tissue culture plate (TCP). However, cell proliferation on hCaPs was substantially suppressed and inversely proportional to the hormone concentration used. It was observed that bone-like nodules which consisted of bead-like components and well-developed matrix were rapidly formed on hCaPs. Masson's trichrome and safranin-O stainings elucidated that the bead-like components were MG-63 cells. Safranin-O staining showed that proteoglycan was produced actively. These results indicate that the cells cultured on hCaPs were strongly stimulated by the hormone to produce proteoglycan which can be considered as an induction of premature bone formation. The number of the nodules was increased with hormone concentration and most pronounced at the hCaPH. Gene expression patterns of alkaline phosphatase (ALP), transforming growth factor-beta (TGF-beta), and osteopontin (OPN) were strongly modulated by hybridized the hormone. For ALP and OPN, gene expressions were activated earlier on hCaPs than untreated calcium phosphate (CaP) confirming the effect of the hybridization was substantial. The TGF-beta gene expression was immediately activated after seeding but difference between samples was not significant suggesting that the gene expression was modulated not by the hormone hybridization but by CaP itself. As a result, hybridization of 1,25(OH)(2)D(3) with CaP can be a potentially strong candidate to promote osteoconductivity of implant materials.
Collapse
Affiliation(s)
- Jae-Young Jung
- Department of Chemical Engineering, Institute of Tissue Regeneration Engineering, College of Engineering, Dankook University, Yongin-si, Gyeonggi-do, Korea
| | | | | | | | | |
Collapse
|
28
|
Fennema EM, Renard AJS, Leusink A, van Blitterswijk CA, de Boer J. The effect of bone marrow aspiration strategy on the yield and quality of human mesenchymal stem cells. Acta Orthop 2009; 80:618-21. [PMID: 19916699 PMCID: PMC2823327 DOI: 10.3109/17453670903278241] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Large inter-donor differences exist in human mesenchymal stem cell (hMSC) yield and the response of these cells to osteogenic stimuli. The source of these differences may be clinical differences in stem cell characteristics between individuals or the aspiration procedure itself. METHODS From a total of 23 donors, we aimed to take 2 consecutive 10-mL aspirates from the same site in 17 donors and in 6 donors we aimed to take a 5-mL and a 20-mL aspirate. The aspiration was stopped either when the syringe was full or when no more bone marrow came through. Mononuclear cell yield (MNC), MSC yield, and differentiation capacity were analyzed for intra-donor and inter-donor variation. We analyzed the effect of the dilution with peripheral blood by drawing 20 mL at once. RESULTS There was a high correlation between the first and second aspiration volumes, and aspirates with a volume of less than 8 mL showed a large variation in cellular yield. The second 10-mL aspirate, and also 20-mL aspirates, contained a lower concentration of nucleated cells and yielded lower numbers of mesenchymal stem cells. No effect of the aspiration procedure on the biological characteristics of the mesenchymal stem cells was seen. CONCLUSION We recommend collection volumes of bone marrow aspirates of at least 8 mL to reduce the risk of obtaining aspirates with low cell numbers. From the same site, a second aspiration or an aspirate of > 10 mL can be drawn without any loss of biological quality due to dilution with peripheral blood.
Collapse
Affiliation(s)
- Eelco M Fennema
- Institute of Biomedical Technology, University of Twentethe Netherlands
| | - Auke J S Renard
- Department of Orthopaedic Surgery, Medisch Spectrum Twente HospitalEnschedethe Netherlands
| | - Anouk Leusink
- Institute of Biomedical Technology, University of Twentethe Netherlands
| | | | - Jan de Boer
- Institute of Biomedical Technology, University of Twentethe Netherlands
| |
Collapse
|
29
|
|
30
|
Beloti MM, Tambasco De Oliveira P, Perri De Carvalho PS, Rosa AL. Seeding Osteoblastic Cells into a Macroporous Biodegradable CaP/PLGA Scaffold by a Centrifugal Force. J Biomater Appl 2008; 23:481-95. [DOI: 10.1177/0885328208094082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to construct a hybrid biomaterial by seeding osteoblastic cells into a CaP/PLGA scaffold by a centrifugal force. Constructs are evaluated with respect to potential application in bone tissue engineering. Cells adher, spread, and form a layer of tissue lining the scaffold and are capable of migrating, proliferating, and producing mineralized matrix. We have demonstrated that the centrifugal force is highly efficient for constructing a hybrid biomaterial, which acts similarly to bone explants in a cell culture environment. In this way, these constructs could mimic an autogenous bone graft in clinical circumstances. Such a strategy may be useful for bone tissue engineering.
Collapse
|
31
|
Meijer GJ, de Bruijn JD, Koole R, van Blitterswijk CA. Cell based bone tissue engineering in jaw defects. Biomaterials 2008; 29:3053-61. [DOI: 10.1016/j.biomaterials.2008.03.012] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/15/2008] [Indexed: 12/18/2022]
|
32
|
Abstract
Embryonic stem cells can provide an unlimited supply of pluripotent cells for tissue engineering applications. Bone tissue engineering by directly differentiating ES cells (ESCs) into osteoblasts has been unsuccessful so far. Therefore, we investigated an alternative approach, based on the process of endochondral ossification. A cartilage matrix was formed in vitro by mouse ESCs seeded on a scaffold. When these cartilage tissue-engineered constructs (CTECs) were implanted s.c., the cartilage matured, became hypertrophic, calcified, and was ultimately replaced by bone tissue in the course of 21 days. Bone aligning hypertrophic cartilage was observed frequently. Using various chondrogenic differentiation periods in vitro, we demonstrated that a cartilage matrix is required for bone formation by ESCs. Chondrogenic differentiation of mesenchymal stem cells and articular chondrocytes showed that a cartilage matrix alone was not sufficient to drive endochondral bone formation. Moreover, when CTECs were implanted orthotopically into critical-size cranial defects in rats, efficient bone formation was observed. We report previously undescribed ESC-based bone tissue engineering under controlled reproducible conditions. Furthermore, our data indicate that ESCs can also be used as a model system to study endochondral bone formation.
Collapse
|
33
|
Maegawa N, Kawamura K, Hirose M, Yajima H, Takakura Y, Ohgushi H. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med 2008; 1:306-13. [PMID: 18038421 DOI: 10.1002/term.41] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It is well known that bone marrow contains mesenchymal stromal cells (MSCs), which can show osteoblastic differentiation when cultured in osteogenic medium containing ascorbic acid, beta-glycerophosphate and dexamethasone. The differentiation results in the appearance of osteoblasts, together with the formation of bone matrix; thus, in vitro cultured bone (osteoblasts/bone matrix) could be fabricated by MSC culture. This type of cultured bone has already been used in clinical cases involving orthopaedic problems. To improve the therapeutic effect of the cultured bone, we investigated the culture conditions that contributed to extensive osteoblastic differentiation. Rat bone marrow was primarily cultured to expand the number of MSCs and further cultured in osteogenic medium for 12 days. The culture was also conducted in a medium supplemented with either bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor (FGF-2), or with sequential combinations of both supplements. Among them, the sequential supplementation of FGF-2 followed by BMP-2 showed high alkaline phosphatase activity, sufficient bone-specific osteocalcein expression and abundant bone matrix formation of the MSC culture. These data implied that the number of responding cells or immature osteoblasts was increased by the supplementation of FGF-2 in the early phase of the culture and that these cells can show osteoblastic differentiation, of which capability was augmented by BMP-2 in the late phase. The sequential supplementation of these cytokines into MSC culture might be suitable for the fabrication of ideal cultured bone for use in bone tissue engineering.
Collapse
Affiliation(s)
- Naoki Maegawa
- Department of Orthopaedic Surgery, Nara Medical University, 840 Shijocho, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Both SK, van der Muijsenberg AJC, van Blitterswijk CA, de Boer J, de Bruijn JD. A rapid and efficient method for expansion of human mesenchymal stem cells. ACTA ACUST UNITED AC 2007; 13:3-9. [PMID: 17518576 DOI: 10.1089/ten.2005.0513] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During the past decade, there has been much interest in the use of human mesenchymal stem cells (hMSCs) in bone tissue engineering. HMSCs can be obtained relatively easily and expanded rapidly in culture, but for clinical purposes large numbers are often needed and the cost should be kept to a minimum. A rapid and efficient culturing protocol would therefore be beneficial. In this study, we examined the effect of different medium compositions on the expansion and osteogenic differentiation of bone marrow-derived hMSCs from 19 donors. We also investigated the effect of low seeding density and dexamethasone on both hMSCs expansion and their in vitro and in vivo osteogenic differentiation capacity. HMSCs seeded at a density of 100 cells/cm2 had a significantly higher growth rate than at 5000 cell/cm2, which was further improved by the addition of dexamethasone. Expanded hMSCs were characterized in vitro on the basis of positive staining for CD29, CD44, CD105, and CD166. The in vitro osteogenic potential of expanded hMSCs was assessed by flow cytometric staining for alkaline phosphatase. In vivo bone-forming potential of the hMSCs was assessed by seeding the cells in ceramic scaffolds, followed by subcutaneous implantation in nude mice and histopathologic assessment of de novo bone formation after 6-week implantation. Expanded hMSCs from all donors displayed similar osteogenic potential independent of the culture conditions. On the basis of these results we have developed an efficient method to culture hMSCs by seeding the cells at 100 cells/cm2 in an alpha-minimal essential medium-based medium containing dexamethasone.
Collapse
Affiliation(s)
- Sanne K Both
- Institute for Biomedical Technology, University of Twente, Bilthoven, the Netherlands
| | | | | | | | | |
Collapse
|
35
|
Maeda M, Hirose M, Ohgushi H, Kirita T. In vitro Mineralization by Mesenchymal Stem Cells Cultured on Titanium Scaffolds. ACTA ACUST UNITED AC 2007; 141:729-36. [PMID: 17383975 DOI: 10.1093/jb/mvm077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Titanium has been utilized in the field of orthopaedic and dental reconstructive surgery, but mineralization through osteogenic differentiation of osteogenic cells on titanium surfaces has not been fully investigated. Here we cultured rat mesenchymal stem cells (MSCs) on the surfaces of titanium dishes in osteogenic media containing calcein which is a calcium-binding fluorescence dye. On titanium dishes, MSCs showed high viability to adhere to the surfaces and excellent proliferation. At day 14 of culture, MSCs differentiated into osteoblasts to form mineralized matrices on titanium dishes as well as tissue culture polystyrene (TCPS) dishes which are widely recognized as optimal culture substrates. Calcein was incorporated into the bone minerals fabricated by MSCs cultured on both substrates to show green emission under fluorescence microscopy. The fluorescence intensity was quantified with an image analyser during culture periods. These results indicate that the surfaces of titanium showed a high adhesion/proliferation potential to MSCs and that the titanium effectively supported the osteogenic differentiation of MSCs comparable to TCPS dishes. Therefore, the titanium is an effective scaffold that is applicable in bone reconstruction surgery.
Collapse
Affiliation(s)
- Masahiko Maeda
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | | | | | | |
Collapse
|
36
|
de Boer J, Licht R, Bongers M, van der Klundert T, Arends R, van Blitterswijk C. Inhibition of Histone Acetylation as a Tool in Bone Tissue Engineering. ACTA ACUST UNITED AC 2006; 12:2927-37. [PMID: 17518660 DOI: 10.1089/ten.2006.12.2927] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Our approach to bone tissue engineering is the in vitro expansion and osteogenic differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs) and their subsequent implantation on porous ceramic materials. Current osteogenic differentiation protocols use dexamethasone to initiate the osteogenic process, thus ignoring the multiple signaling pathways that control osteogenesis in vivo. Supporting osteogenesis at multiple stages might further enhance the bone-forming capacity of hMSCs. As reported previously, inhibition of so-called histone deacetylases (HDACs) stimulates osteoblast maturation, and in this report, we investigated whether trichostatin A (TSA), a widely used HDAC inhibitor, can be implemented in bone tissue engineering. We confirmed that TSA treatment of hMSCs results in increased expression of alkaline phosphatase (ALP) with concomitant increase in mineralization. Flow cytometry demonstrated that TSA increases the percentage of ALP-positive hMSCs as well as their average ALP expression level, but the robustness of the response differs between donors. Unfortunately, TSA has a profound negative effect on cell proliferation, so we investigated whether hMSCs respond to TSA after reaching confluence. Confluent hMSCs on tissue culture plastic displayed enhanced ALP expression. Therefore, we seeded TSA-treated hMSCs onto ceramic particles and analyzed ectopic bone formation upon implantation in immune-deficient mice. Unfortunately, TSA-treated hMSCs did not display better bone formation in vivo than control cells. Finally, we observed that TSA treatment strongly enhanced bone formation of ex vivo cultured mouse calvaria, which warrants further exploration of TSA in bone tissue engineering.
Collapse
Affiliation(s)
- Jan de Boer
- Institute of Biomedical Technology, University of Twente, Enschede, the Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Yuan H, van Blitterswijk CA, de Groot K, de Bruijn JD. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. ACTA ACUST UNITED AC 2006; 12:1607-15. [PMID: 16846356 DOI: 10.1089/ten.2006.12.1607] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Material-induced bone formation reported in canine, bovid, suid, and primate species does not often occur in lagomorph or rodent models. In this study, we test biphasic calcium phosphate and hydroxyapatite- induced bone formation in subcutaneous pockets of mice and intramuscular pockets in rats, rabbits, and dogs. All scaffolds are of similar size, and all animals were sacrificed at 90 days post-implantation. In dogs (N = 8), all implants showed bone formation with significantly more bone formed in biphasic calcium phosphates (30 +/- 6%, N = 8) as compared to hydroxyapatite (14 +/- 5%, N = 8) (p = 0.003). Hydroxyapatite implants did not induce bone formation in mice, rats, or rabbits. Biphasic calcium phosphate induced bone in 6 of 8 scaffolds implanted in 4 rabbits and 3 of 16 scaffolds implanted in 16 mice, whereas it did not induce bone formation in any of the 8 rats. The results presented herein suggest that the incidence of material-induced bone formation varies with animal species and is related to the implant material used.
Collapse
Affiliation(s)
- Huipin Yuan
- BMTI, Twente University, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Weissenboeck M, Stein E, Undt G, Ewers R, Lauer G, Turhani D. Particle Size of Hydroxyapatite Granules Calcified from Red Algae Affects the Osteogenic Potential of Human Mesenchymal Stem Cells in vitro. Cells Tissues Organs 2006; 182:79-88. [PMID: 16804298 DOI: 10.1159/000093062] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2006] [Indexed: 11/19/2022] Open
Abstract
Hydroxyapatite (HA) microparticles as a carrier in an injectable tissue-engineered bone filler are considered promising candidates for the treatment of small bone defects in the craniomaxillofacial region. HA granules calcified from red algae, varying in size, were evaluated in vitro for their suitability to be used as a carrier for human mesenchymal stem cells (hMSCs). Three groups of granules were produced in grain sizes of 10-100, 200-500 and 600-1,000 mum. After seeding and culturing hMSCs under osteogenic differentiation conditions onto HA particles for 3, 6 and 9 days, cellular proliferation (tetrazolium salt, XTT), alkaline phosphatase (ALP)-specific activity and total protein synthesis were investigated. The osteoblastic phenotype of the cells was evaluated by assaying the bone-specific genes osteocalcin, osteopontin and collagen type I. XTT assay revealed significantly higher (p < 0.01) proliferation of cells grown on the smallest grain size after 9 days of culture. Regarding ALP-specific activity, significantly higher levels of activity were detected in cells grown on the smallest grain size. Different grain sizes had no significant effects on the secretion of osteocalcin and osteopontin. Collagen type I production was significantly higher (p < 0.05) in cells grown on the biggest grain size in comparison with the two other grain sizes. These results show that the particle size of HA microparticles affects the osteogenic potential of cultured hMSCs and lead to the conclusion that particle size has differential effects on ALP-specific activity and collagen type I production.
Collapse
Affiliation(s)
- Martina Weissenboeck
- Hospital of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
39
|
Ellingsen JE, Thomsen P, Lyngstadaas SP. Advances in dental implant materials and tissue regeneration. Periodontol 2000 2006; 41:136-56. [PMID: 16686931 DOI: 10.1111/j.1600-0757.2006.00175.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jan Eirik Ellingsen
- Oral Research Laboratory and Department of Prosthetic Dentistry, Institute of Clinical Dentistry, Dental Faculty, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
40
|
Verhaagh S, de Jong E, Goudsmit J, Lecollinet S, Gillissen G, de Vries M, van Leuven K, Que I, Ouwehand K, Mintardjo R, Weverling GJ, Radošević K, Richardson J, Eloit M, Lowik C, Quax P, Havenga M. Human CD46-transgenic mice in studies involving replication-incompetent adenoviral type 35 vectors. J Gen Virol 2006; 87:255-265. [PMID: 16432010 DOI: 10.1099/vir.0.81293-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wild-type strains of mice do not express CD46, a high-affinity receptor for human group B adenoviruses including type 35. Therefore, studies performed to date in mice using replication-incompetent Ad35 (rAd35) vaccine carriers may underestimate potency or result in altered vector distribution. Here, it is reported that CD46 transgenic mice (MYII-strain) express CD46 in all major organs and that it functions as a receptor for rAd35 vectors. Similar to monkeys and humans, MYII mice highly express CD46 in their lungs and kidneys and demonstrate low expression in muscle. Upon intravenous administration, rAd35 vector genomes as well as expression are detected in lungs of MYII mice, in contrast to wild-type littermates. Expression was predominantly detected in lung epithelial cells. Upon intramuscular administration, the initial level of luciferase expression is higher in MYII mice as compared with wild-type littermates, in spite of the fact that CD46 expression is low in muscle of MYII mice. The higher level of expression in muscle of MYII mice results in prolonged gene expression as assessed by CCD camera imaging for luciferase activity. Finally, a significant dose-sparing effect in MYII mice as compared with wild-type littermates on anti-SIVgag CD8+ T-cell induction following intramuscular vaccination with an rA35.SIVgag vaccine was observed. This dose-sparing effect was also observed when reinfusing dendritic cells derived from MYII mice after exposure to rAd35.SIVgag vaccine as compared with rAd35.SIVgag exposed dendritic cells from wild-type littermates. It was concluded that MYII mice represent an interesting preclinical model to evaluate potency and safety of rAd35 vectors.
Collapse
Affiliation(s)
- Sandra Verhaagh
- Crucell Holland BV, Archimedesweg 4, 2333 CN Leiden, The Netherlands
| | - Esmeralda de Jong
- Crucell Holland BV, Archimedesweg 4, 2333 CN Leiden, The Netherlands
| | - Jaap Goudsmit
- Crucell Holland BV, Archimedesweg 4, 2333 CN Leiden, The Netherlands
| | | | - Gert Gillissen
- Crucell Holland BV, Archimedesweg 4, 2333 CN Leiden, The Netherlands
| | | | | | - Ivo Que
- Department of Endocrinology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Krista Ouwehand
- Crucell Holland BV, Archimedesweg 4, 2333 CN Leiden, The Netherlands
| | - Ratna Mintardjo
- Crucell Holland BV, Archimedesweg 4, 2333 CN Leiden, The Netherlands
| | | | | | | | - Marc Eloit
- Ecole National Veterinaire d'Alfort, Alfort, France
| | - Clemens Lowik
- Department of Endocrinology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Paul Quax
- Gaubius Laboratory, TNO Leiden, The Netherlands
| | - Menzo Havenga
- Crucell Holland BV, Archimedesweg 4, 2333 CN Leiden, The Netherlands
| |
Collapse
|
41
|
Zhu SJ, Choi BH, Huh JY, Jung JH, Kim BY, Lee SH. A comparative qualitative histological analysis of tissue-engineered bone using bone marrow mesenchymal stem cells, alveolar bone cells, and periosteal cells. ACTA ACUST UNITED AC 2006; 101:164-9. [PMID: 16448916 DOI: 10.1016/j.tripleo.2005.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 03/24/2005] [Accepted: 04/12/2005] [Indexed: 01/09/2023]
Abstract
For tissue-engineered bone formation, autogenous osteogenic cells are of paramount importance for successful bone formation. In order to investigate the donor cell-related differences in tissue-engineered bone, cultured bone marrow mesenchymal stem cells, cultured alveolar bone cells, and cultured periosteal cells were examined for their in vivo potential to form bone. These cells were isolated from dogs, expanded in vitro, mixed with autologous fibrin glue and BMP-2, and then injected into the subcutaneous space on the dorsum of nude mice. Bone formation was evaluated at 12 weeks. Histomorphometric analysis demonstrated that the subcutaneous nodules formed in nude mice contained 26.9% newly formed bone when using the bone marrow mesenchymal stem cells, 41.1% newly formed bone when using the alveolar bone cells, and 58.2% newly formed bone when using the periosteal cells. The results suggest that periosteal cells are the best choice for enhancing bone formation in tissue engineering of bone regeneration.
Collapse
Affiliation(s)
- Shi-Jiang Zhu
- Department of Oral & Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
42
|
Kawagoe D, Koga Y, Ishida EH, Kotobuki N, Ohgushi H, Ioku K. PREPARATION OF TRANSPARENT HYDROXYAPATITE CERAMICS BY SPARK PLASMA SINTERING AND CELL CULTURE TEST. ACTA ACUST UNITED AC 2006. [DOI: 10.3363/prb.20.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Dekker RJ, de Bruijn JD, Stigter M, Barrere F, Layrolle P, van Blitterswijk CA. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs. Biomaterials 2005; 26:5231-9. [PMID: 15792550 DOI: 10.1016/j.biomaterials.2005.01.057] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 01/19/2005] [Indexed: 11/26/2022]
Abstract
Poor fixation of bone replacement implants, e.g. the artificial hip, in implantation sites with inferior bone quality and quantity may be overcome by the use of implants coated with a cultured living bone equivalent. In this study, we tested, respectively, amorphous carbonated apatite (CA)- and crystalline octacalcium phosphate (OCP)-coated discs for their use in bone tissue engineering. Subcultured rat bone marrow cells were seeded on the substrates and after 7 days of culture, the implants were subcutaneously implanted in nude mice for 4 weeks. After 7 days of culture, the cells had formed a continuous multi-layer that covered the entire surface of the substrates. The amount of cells was visually higher on the crystalline OCP-coated discs compared to the amorphous CA-coated discs. Furthermore, the amorphous CA-coated discs exhibited a visually higher amount of mineralized extracellular matrix compared to the crystalline OCP-coated discs. After 4 weeks of implantation, clear de novo bone formation was observed on all discs with cultured cells. The newly formed bone on the crystalline OCP-coated discs was more organized and revealed a significantly higher volume compared to the amorphous CA-coated discs. The percentage of bone contact with the discs was also significantly higher on the OCP-coated discs. Overall, the results suggest that a crystalline OCP coating is more suitable for bone tissue engineering than an amorphous CA coating.
Collapse
MESH Headings
- Animals
- Apatites/chemistry
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone and Bones/anatomy & histology
- Calcification, Physiologic/drug effects
- Calcium Phosphates/chemistry
- Cell Culture Techniques
- Cell Proliferation/drug effects
- Coated Materials, Biocompatible/chemistry
- Coated Materials, Biocompatible/pharmacology
- Implants, Experimental
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Electron, Scanning
- Osteogenesis/drug effects
- Rats
- Rats, Wistar
- Spectroscopy, Fourier Transform Infrared
- Tissue Engineering/methods
- Titanium/chemistry
- X-Ray Diffraction
Collapse
Affiliation(s)
- Robert J Dekker
- iBME, University of Twente, J. van Gulikstraat 29, 4205 GD Gorinchem, The Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Kotobuki N, Ioku K, Kawagoe D, Fujimori H, Goto S, Ohgushi H. Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics. Biomaterials 2005; 26:779-85. [PMID: 15350783 DOI: 10.1016/j.biomaterials.2004.03.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 03/17/2004] [Indexed: 11/22/2022]
Abstract
The use of bioceramics and cultured cells for tissue engineering is a novel approach, which is available in a wide variety of clinical situations. The approach requires apparent verification of the cellular functions occurring on the ceramic surface, and these functions could be monitored by microscopic observation of the cultured living cells on the ceramic material. However, such observation is difficult due to the opaque nature of ordinary ceramics. To overcome this drawback, we used transparent hydroxyapatite (tHA) ceramics as a culture substrate and a transgenic rat having an enhanced green fluorescent protein (EGFP)-expressing gene as the cell source. Marrow mesenchymal stem cells (MSC) were obtained from the rat and cultured on both tHA ceramics and a tissue culture polystyrene (TCPS) dish. One hour after the cell seeding, many MSC had attached and showed initial cell spreading. The attachment and spreading were more obvious 5h after the seeding. Following the culture in the osteogenic condition, the cells differentiated into osteoblasts, which fabricated bone matrix on the culture substrate. The phenomena were similarly observed on both the tHA ceramics and TCPS substrata. These results confirm the excellent properties of tHA ceramics, which support cell attachment, proliferation, and differentiation. Transparent materials make us know the biological usefulness of ceramics in tissue-engineering field.
Collapse
Affiliation(s)
- Noriko Kotobuki
- Tissue Engineering Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-46 Nakouji, Amagasaki, Hyogo 661-0974, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
De Boer J, Wang HJ, Van Blitterswijk C. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. ACTA ACUST UNITED AC 2005; 10:393-401. [PMID: 15165456 DOI: 10.1089/107632704323061753] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mesenchymal stem cells are pluripotent cells from bone marrow, which can be differentiated into the osteogenic, chondrogenic, and adipogenic lineages in vitro and are a source of cells in bone and cartilage tissue engineering. An improvement in current tissue-engineering protocols requires more detailed insight into the molecular cues that regulate the distinct steps of osteochondral differentiation. Because Wnt signaling has been widely implicated in mesenchymal differentiation, we analyzed the role of Wnt signaling in human mesenchymal stem cell (hMSC) biology by stimulation of the pathway with lithium chloride and Wnt3A-conditioned medium. We demonstrate a role for low levels of Wnt signaling in proliferation of uncommitted hMSCs and confirm that Wnt signaling controls osteoprogenitor proliferation. On the other hand, at high Wnt levels we observed a block in adipogenic differentiation and an increase in the expression of alkaline phosphatase, suggesting a role in the initiation of osteogenesis. The results of this study suggest that bone tissue engineering could benefit from the activation of critical levels of Wnt signaling at defined stages of differentiation. Moreover, our data suggest that hMSCs provide a valid in vitro model to study the role of Wnt signaling in mesenchymal biology.
Collapse
Affiliation(s)
- Jan De Boer
- Institute for Biomedical Technology, University of Twente, Twente, The Netherlands.
| | | | | |
Collapse
|
46
|
de Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 2004; 34:818-26. [PMID: 15121013 DOI: 10.1016/j.bone.2004.01.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 12/24/2003] [Accepted: 01/22/2004] [Indexed: 11/29/2022]
Abstract
Human mesenchymal stem cells (hMSCs) from the bone marrow represent a potential source of pluripotent cells for autologous bone tissue engineering. We previously discovered that over activation of the Wnt signal transduction pathway by either lithium or Wnt3A stimulates hMSC proliferation while retaining pluripotency. Release of Wnt3A or lithium from porous calcium phosphate scaffolds, which we use for bone tissue engineering, could provide a mitogenic stimulus to implanted hMSCs. To define the proper release profile, we first assessed the effect of Wnt over activation on osteogenic differentiation of hMSCs. Here, we report that both lithium and Wnt3A strongly inhibit dexamethasone-induced expression of the osteogenic marker alkaline phosphatase (ALP). Moreover, lithium partly inhibited mineralization of hMSCs whereas Wnt3A completely blocked it. Time course analysis during osteogenic differentiation revealed that 4 days of Wnt3A exposure before the onset of mineralization is sufficient to block mineralization completely. Gene expression profiling in Wnt3A and lithium-exposed hMSCs showed that many osteogenic and chondrogenic markers, normally expressed in proliferating hMSCs, are downregulated upon Wnt stimulation. We conclude that Wnt signaling inhibits dexamethasone-induced osteogenesis in hMSCs. In future studies, we will try to limit release of lithium or Wnt3A from calcium phosphate scaffolds to the proliferative phase of osteogenesis.
Collapse
Affiliation(s)
- Jan de Boer
- Institute for Biomedical Technology, University of Twente, Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
Mendes SC, Bezemer J, Claase MB, Grijpma DW, Bellia G, Degli-Innocenti F, Reis RL, de Groot K, van Blitterswijk CA, de Bruijn JD. Evaluation of two biodegradable polymeric systems as substrates for bone tissue engineering. ACTA ACUST UNITED AC 2004; 9 Suppl 1:S91-101. [PMID: 14511473 DOI: 10.1089/10763270360697003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to evaluate two biodegradable polymeric systems as scaffolds for bone tissue engineering. Rat bone marrow cells were seeded and cultured for 1 week on two biodegradable porous polymeric systems, one composed of poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) and the other composed of cornstarch blended with poly(epsilon-caprolactone) (SPCL). Porous hydroxyapatite granules were used as controls. The ability of cells to proliferate and form extracellular matrix on these scaffolds was assessed by a DNA quantification assay and by scanning electron microscopy examination; their osteogenic differentiation was screened by the expression of alkaline phosphatase. In addition, the in vivo osteogenic potential of the engineered constructs was evaluated through ectopic implantation in a nude mouse model. Results revealed that cells were able to proliferate, differentiate, and form extracellular matrix on all materials tested. Moreover, all constructs induced abundant formation of bone and bone marrow after 4 weeks of implantation. The extent of osteogenesis (approximately 30% of void volume) was similar in all types of implants. However, the amount of bone marrow and the degree of bone contact were higher on HA scaffolds, indicating that the polymers still need to be modulated for higher osteoconductive capacity. Nevertheless, the findings suggest that both PEGT/PBT and SPCL systems are excellent candidates to be used as scaffolds for a cell therapy approach in the treatment of bone defects.
Collapse
|
48
|
van Gaalen SM, Dhert WJA, van den Muysenberg A, Oner FC, van Blitterswijk C, verbout AJ, de Bruijn JD. Bone Tissue Engineering for Spine Fusion: An Experimental Study on Ectopic and Orthotopic Implants in Rats. ACTA ACUST UNITED AC 2004; 10:231-9. [PMID: 15009948 DOI: 10.1089/107632704322791871] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alternatives to the use of autologous bone as a bone graft in spine surgery are needed. The purpose of this study was to examine tissue-engineered bone constructs in comparison with control scaffolds without cells in a posterior spinal implantation model in rats. Syngeneic bone marrow cells were cultured in the presence of bone differentiation factors and seeded on porous hydroxyapatite particles. Seven rats underwent a posterior surgical approach, in which scaffolds with (five rats) or without cells (two rats) were placed on both sides of the lumbar spine. In addition, separate scaffolds were inserted intramuscularly and subcutaneously during the surgical procedure. After 4 weeks, all rats were killed and examined radiographically, by manual palpation of the excised spine and histologically for signs of bone formation or spine fusion. All rats that received cell-seeded scaffolds showed newly formed bone in all three locations, whereas none of the locations in the control rats showed bone formation. The results of this study support the concept of developing tissue-engineering techniques in posterior spine fusion as an alternative to autologous bone.
Collapse
Affiliation(s)
- S M van Gaalen
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Frosch KH, Barvencik F, Viereck V, Lohmann CH, Dresing K, Breme J, Brunner E, Stürmer KM. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J Biomed Mater Res A 2003; 68:325-34. [PMID: 14704974 DOI: 10.1002/jbm.a.20010] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purpose of the current study was to investigate the effect of different diameters of cylindrical titanium channels on human osteoblasts. Titanium samples having continuous drill channels with diameters of 300, 400, 500, 600, and 1000 microm were put into osteoblast cell cultures that were isolated from 12 adult human trauma patients. Cell migration into the drill channels was investigated by transmitted-light microscopy. The DNA content in the drill channels was measured photometrically, collagen type I production was analyzed by enzyme-linked immunosorbent assay (ELISA) and osteocalcin gene expression by reverse transcriptase-polymerase chain reaction (RT-PCR). Formation of mineralized tissue was assessed by microradiographs of histological sections. Within 20 days, cells grew an average of 838 microm (+/-128 microm) into the drill channels with a diameter of 600 microm and were significantly faster (p < 0.05) than in all other channels. Cells produced significantly more osteocalcin messenger RNA (mRNA) in 600-microm channels (p < 0.05) than they did in 1000-microm channels and demonstrated the highest osteogenic differentiation. The channel diameter did not influence collagen type I production. The highest cell density was found in 300-microm channels (p < 0.05). The DNA content of the channels linearly decreased with increasing channel diameters. After 40 days of culture, the proportion of mineralized tissue at the mouth section amounted to 6% in 300-microm channels and to 9-11% in 400-600-microm channels. In 1000-microm channels, only traces of mineralization were detected. Our data suggest that the diameter of cylindrical titanium channels has a significant effect on migration, gene expression, and mineralization of human osteoblasts.
Collapse
Affiliation(s)
- Karl-Heinz Frosch
- Department of Trauma Surgery, Plastic and Reconstructive Surgery, Georg-August-University Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Xiao Y, Qian H, Young WG, Bartold PM. Tissue Engineering for Bone Regeneration Using Differentiated Alveolar Bone Cells in Collagen Scaffolds. ACTA ACUST UNITED AC 2003; 9:1167-77. [PMID: 14670104 DOI: 10.1089/10763270360728071] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Regeneration of osseous defects by a tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. In this study the concept of tissue engineering was tested with collagen type I matrices seeded with cells with osteogenic potential and implanted into sites where osseous damage had occurred. Explant cultures of cells from human alveolar bone and gingiva were established. When seeded into a three-dimensional type I collagen-based scaffold, the bone-derived cells maintained their osteoblastic phenotype as monitored by mRNA and protein levels of the bone-related proteins including bone sialoprotein, osteocalcin, osteopontin, bone morphogenetic proteins 2 and 4, and alkaline phosphatase. These in vitro-developed matrices were implanted into critical-size bone defects in skulls of immunodeficient (SCID) mice. Wound healing was monitored for up to 4 weeks. When measured by microdensitometry the bone density within defects filled with osteoblast-derived matrix was significantly higher compared with defects filled with either collagen scaffold alone or collagen scaffold impregnated with gingival fibroblasts. New bone formation was found at all the sites treated with the osteoblast-derived matrix at 28 days, whereas no obvious new bone formation was identified at the same time point in the control groups. In situ hybridization for the human-specific Alu gene sequence indicated that the newly formed bone tissue resulted from both transplanted human osteoblasts and endogenous mesenchymal stem cells. The results indicate that cells derived from human alveolar bone can be incorporated into bioengineered scaffolds and synthesize a matrix, which on implantation can induce new bone formation.
Collapse
Affiliation(s)
- Y Xiao
- School of Dentistry, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|