1
|
Verger C, Dratwa M. Traduction des Recommandations de l'ISPD pour l'évaluation du dysfonctionnement de la membrane péritonéale chez l'adulte. BULLETIN DE LA DIALYSE À DOMICILE 2021. [DOI: 10.25796/bdd.v4i3.62673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Informations concernant cette traductionDans le cadre d’un accord de partenariat entre l’ISPD et le RDPLF, le RDPLF est le traducteur français officiel des recommandations de l’ISPD. La traduction ne donne lieu à aucune compensation financière de la part de chaque société et le RDPLF s’est engagé à traduire fidèlement le texte original sous la responsabilité de deux néphrologues connus pour leur expertise dans le domaine. Avant publication le texte a été soumis à l’accord de l’ISPD. La traduction est disponible sur le site de l’ISPD et dans le Bulletin de la Dialyse à Domicile.Le texte est, comme l’original, libremement téléchargeable sous licence copyright CC By 4.0https://creativecommons.org/licenses/by/4.0/Cette traduction est destinée à aider les professionnels de la communauté francophone à prendre connaissance des recommandations de l’ISPD dans leur langue maternelle.
Toute référence dans un article doit se faire au texte original en accès libre :Peritoneal Dialysis International https://doi.org/10.1177/0896860820982218
Dans les articles rédigés pour des revues françaises, conserver la référence à la version originale anglaise ci dessus, mais ajouter «version française https://doi.org/10.25796/bdd.v4i3.62673"»TraducteursDr Christian Verger, néphrologue, président du RDPLFRDPLF, 30 rue Sere Depoin, 95300 Pontoise – FranceProfesseur Max Dratwa, néphrologueHôpital Universitaire Brugmann – Bruxelles – Belgique
Collapse
|
2
|
Morelle J, Stachowska-Pietka J, Öberg C, Gadola L, La Milia V, Yu Z, Lambie M, Mehrotra R, de Arteaga J, Davies S. ISPD recommendations for the evaluation of peritoneal membrane dysfunction in adults: Classification, measurement, interpretation and rationale for intervention. Perit Dial Int 2021; 41:352-372. [DOI: 10.1177/0896860820982218] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lay summary Peritoneal dialysis (PD) uses the peritoneal membrane for dialysis. The peritoneal membrane is a thin layer of tissue that lines the abdomen. The lining is used as a filter to help remove extra fluid and poisonous waste from the blood. Everybody is unique. What is normal for one person’s membrane may be very different from another person’s. The kidney care team wants to provide each person with the best dialysis prescription for them and to do this they must evaluate the person’s peritoneal lining. Sometimes dialysis treatment itself can cause the membrane to change after some years. This means more assessments (evaluations) will be needed to determine whether the person’s peritoneal membrane has changed. Changes in the membrane may require changes to the dialysis prescription. This is needed to achieve the best dialysis outcomes. A key tool for these assessments is the peritoneal equilibration test (PET). It is a simple, standardized and reproducible tool. This tool is used to measure the peritoneal function soon after the start of dialysis. The goal is to understand how well the peritoneal membrane works at the start of dialysis. Later on in treatment, the PET helps to monitor changes in peritoneal function. If there are changes between assessments causing problems, the PET data may explain the cause of the dysfunction. This may be used to change the dialysis prescription to achieve the best outcomes. The most common problem with the peritoneal membrane occurs when fluid is not removed as well as it should be. This happens when toxins (poisons) in the blood cross the membrane more quickly than they should. This is referred to as a fast peritoneal solute transfer rate (PSTR). Since more efficient fluid removal is associated with better outcomes, developing a personal PD prescription based on the person’s PSTR is critically important. A less common problem happens when the membrane fails to work properly (also called membrane dysfunction) because the peritoneal membrane is less efficient, either at the start of treatment or developing after some years. If membrane dysfunction gets worse over time, then this is associated with progressive damage, scarring and thickening of the membrane. This problem can be identified through another change of the PET. It is called reduced ‘sodium dip’. Membrane dysfunction of this type is more difficult to treat and has many implications for the individual. If the damage is major, the person may need to stop PD. They would need to begin haemodialysis treatment (also spelled hemodialysis). This is a very important and emotional decision for individuals with kidney failure. Any decision that involves stopping PD therapy or transitioning to haemodialysis therapy should be made jointly between the clinical team, the person on dialysis and a caregiver, if requested. Although evidence is lacking about how often tests should be performed to determine peritoneal function, it seems reasonable to repeat them whenever there is difficulty in removing the amount of fluid necessary for maintaining the health and well-being of the individual. Whether routine evaluation of membrane function is associated with better outcomes has not been studied. Further research is needed to answer this important question as national policies in many parts of the world and the COVID-19 has placed a greater emphasis and new incentives encouraging the greater adoption of home dialysis therapies, especially PD. For Chinese and Spanish Translation of the Lay Summary, see Online Supplement Appendix 1. Key recommendations Guideline 1: A pathophysiological taxonomy: A pathophysiological classification of membrane dysfunction, which provides mechanistic links to functional characteristics, should be used when prescribing individualized dialysis or when planning modality transfer (e.g. to automated peritoneal dialysis (PD) or haemodialysis) in the context of shared and informed decision-making with the person on PD, taking individual circumstances and treatment goals into account. (practice point) Guideline 2a: Identification of fast peritoneal solute transfer rate (PSTR): It is recommended that the PSTR is determined from a 4-h peritoneal equilibration test (PET), using either 2.5%/2.27% or 4.25%/3.86% dextrose/glucose concentration and creatinine as the index solute. (practice point) This should be done early in the course dialysis treatment (between 6 weeks and 12 weeks) (GRADE 1A) and subsequently when clinically indicated. (practice point) Guideline 2b: Clinical implications and mitigation of fast solute transfer: A faster PSTR is associated with lower survival on PD. (GRADE 1A) This risk is in part due to the lower ultrafiltration (UF) and increased net fluid reabsorption that occurs when the PSTR is above the average value. The resulting lower net UF can be avoided by shortening glucose-based exchanges, using a polyglucose solution (icodextrin), and/or prescribing higher glucose concentrations. (GRADE 1A) Compared to glucose, use of icodextrin can translate into improved fluid status and fewer episodes of fluid overload. (GRADE 1A) Use of automated PD and icodextrin may mitigate the mortality risk associated with fast PSTR. (practice point) Guideline 3: Recognizing low UF capacity: This is easy to measure and a valuable screening test. Insufficient UF should be suspected when either (a) the net UF from a 4-h PET is <400 ml (3.86% glucose/4.25% dextrose) or <100 ml (2.27% glucose /2.5% dextrose), (GRADE 1B) and/or (b) the daily UF is insufficient to maintain adequate fluid status. (practice point) Besides membrane dysfunction, low UF capacity can also result from mechanical problems, leaks or increased fluid absorption across the peritoneal membrane not explained by fast PSTR. Guideline 4a: Diagnosing intrinsic membrane dysfunction (manifesting as low osmotic conductance to glucose) as a cause of UF insufficiency: When insufficient UF is suspected, the 4-h PET should be supplemented by measurement of the sodium dip at 1 h using a 3.86% glucose/4.25% dextrose exchange for diagnostic purposes. A sodium dip ≤5 mmol/L and/or a sodium sieving ratio ≤0.03 at 1 h indicates UF insufficiency. (GRADE 2B) Guideline 4b: Clinical implications of intrinsic membrane dysfunction (de novo or acquired): in the absence of residual kidney function, this is likely to necessitate the use of hypertonic glucose exchanges and possible transfer to haemodialysis. Acquired membrane injury, especially in the context of prolonged time on treatment, should prompt discussions about the risk of encapsulating peritoneal sclerosis. (practice point) Guideline 5: Additional membrane function tests: measures of peritoneal protein loss, intraperitoneal pressure and more complex tests that estimate osmotic conductance and ‘lymphatic’ reabsorption are not recommended for routine clinical practice but remain valuable research methods. (practice point) Guideline 6: Socioeconomic considerations: When resource constraints prevent the use of routine tests, consideration of membrane function should still be part of the clinical management and may be inferred from the daily UF in response to the prescription. (practice point)
Collapse
Affiliation(s)
- Johann Morelle
- Division of Nephrology, Cliniques universitaires Saint-Luc, and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Joanna Stachowska-Pietka
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Carl Öberg
- Division of Nephrology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Liliana Gadola
- Centro de Nefrología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Zanzhe Yu
- Department of Nephrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mark Lambie
- Faculty of Medicine and Health Sciences, Keele University, Keele, UK
| | - Rajnish Mehrotra
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington DC, USA
| | - Javier de Arteaga
- Servicio de Nefrología, Hospital Privado Universitario de Córdoba, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Simon Davies
- Faculty of Medicine and Health Sciences, Keele University, Keele, UK
| |
Collapse
|
3
|
Abstract
In patients undergoing peritoneal dialysis (PD) for end-stage renal failure, the optimum electrolyte composition of a dialysis solution is that which best serves the homeostatic needs of the body. Comparing the trans-peritoneal removal of electrolytes by conventional PD solutions (CPDSs) with that by normal kidneys, it is evident that peritoneal removal is in the lower range of what can be considered “normal.” Given the electrolyte composition of CPDSs and a total dwell volume of 4 exchanges of 2 L each, approximately 90 mmol NaCl, 40 mmol K+, 10 – 15 mmol HPO4- and 1 – 2 mmol Ca2+ can be removed daily [plus 1 L ultrafiltration (UF)]. Na+, Ca2+, and Mg2+ are supplied in CPDSs in concentrations close to their plasma concentrations, which makes their removal almost entirely dependent on UF. In UF failure (UFF), plasma levels of the foregoing ions will tend to rise, producing a higher diffusion gradient to compensate for their defective UF removal. Peritoneal removal of HCO3-, HPO4-, and K+ are usually quite efficient because of the zero CPDS concentrations of these ions. Approximately 150 mmol HCO3- is lost daily with CPDSs, compensated for by the addition of 30 – 40 mmol/L lactate, or, with the use of multi-compartment bags, bicarbonate instead. However, a mixture of bicarbonate and lactate should be preferred as a buffer, to avoid intracellular acidosis from high levels of pCO2 in the dialysis fluid. For patients on continuous ambulatory peritoneal dialysis (CAPD) without UFF and with some residual renal function, PD fluid concentrations of Na+ 130 – 133 mmol/L, Ca2+ 1.25 – 1.35 mmol/L, and Mg2+ 0.25 – 0.3 mmol/L seem appropriate. With reduced UF after a few years of PD, the removal of fluid and electrolytes often becomes deficient. Dietary salt restriction can be prescribed, but it is hard to implement. The use of low-Na+ solution (LNa) is a potential alternative. The reduction in osmolality resulting from Na+ removal in LNa should preferably be compensated by the addition of glucose (G). In a recent study, a regimen including 1 LNa exchange daily (Na+ 115 mmol/L) in a G-compensated solution showed very promising effects on blood pressure and fluid status. However, large-scale randomized controlled studies have to be performed to definitively settle the role of LNa in volume-overloaded patients.
Collapse
Affiliation(s)
- Bengt Rippe
- Department of Nephrology, Lund University, University Hospital of Lund, Lund, Sweden
| | - Daniele Venturoli
- Department of Nephrology, Lund University, University Hospital of Lund, Lund, Sweden
| |
Collapse
|
4
|
Fang W, Mullan R, Shah H, Mujais S, Bargman JM, Oreopoulos DG. Comparison between Bicarbonate/Lactate and Standard Lactate Dialysis Solution in Peritoneal Transport and Ultrafiltration: A Prospective, Crossover Single-Dwell Study. Perit Dial Int 2020. [DOI: 10.1177/089686080802800108] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ObjectiveIt has been proposed that biocompatible bicarbonate/lactate based (Bic/Lac), physiologic-pH peritoneal dialysis (PD) solutions will be beneficial in long-term PD. However, we do not yet have detailed knowledge concerning the comparative physiology of buffer transport for these new solutions and their impact on underlying peritoneal transport of solutes and ultrafiltration (UF). The purpose of this study was to investigate the profile of buffer handling and peritoneal membrane transport characteristics during a single dwell of the new Bic/Lac-based versus standard lactate-based (Lac) PD solution.MethodsIn this prospective crossover study, we compared a 25 mmol/L bicarbonate/15 mmol/L lactate buffered, physiologic pH, low glucose degradation product (GDP) solution (Physioneal; Baxter Healthcare, McGaw Park, Illinois, USA) with a standard lactate buffered, acidic pH, conventional solution (Dianeal; Baxter). 18 patients underwent two peritoneal equilibration tests (PETs) with 2.5% Dianeal and 2.5% Physioneal separated by 1 week. Buffer transport, mass transfer area coefficients (MTACs), solute transport, and UF were determined for the two PETs. All bags were weighed by a nurse before instillation and after drainage to assess the net UF in each dwell.Results18 patients that met the inclusion criteria were enrolled in this study. Whereas intraperitoneal pH remained constant at 7.52 ± 0.11 throughout the dwell with the Bic/Lac solution, pH was still in the acidic range with the Lac solution after 1 hour (7.29 ± 0.13, p < 0.001); this difference disappeared after the second hour of dwell. The MTACs for creatinine (10.68 ± 3.66 vs 10.73 ± 2.96 mL/minute/ 1.73 m2, p > 0.05) and urea (27.94 ± 10.50 vs 27.62 ± 6.95 mL/min/1.73 m2, p > 0.05), for Bic/Lac versus Lac respectively, did not differ between these two solutions; transport of glucose and other solutes was also similar. However, after a 4-hour dwell with Bic/Lac solution, net UF was significantly lower than that observed with Lac solution (274.2 ± 223.3 mL vs 366.1 ± 217.3 mL, p = 0.026).ConclusionsCompared to standard Lac-based solution, Bic/Lac based, pH neutral, low-GDP solution avoids intra-peritoneal acidity. Peritoneal mass transport kinetics are similar for small solutes. Net UF is significantly lower with Bic/Lac solution; the mechanism for this is unclear.
Collapse
Affiliation(s)
- Wei Fang
- Peritoneal Dialysis Program, University Health Network, and University of Toronto, Toronto, Ontario, Canada
- Renal Division, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robert Mullan
- Peritoneal Dialysis Program, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Hemal Shah
- Peritoneal Dialysis Program, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Salim Mujais
- Renal Division, Baxter Healthcare Corporation, McGaw Park, Illinois, USA
| | - Joanne M. Bargman
- Peritoneal Dialysis Program, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Dimitrios G. Oreopoulos
- Peritoneal Dialysis Program, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Waniewski J, Debowska M, Lindholm B. How Accurate is the Description of Transport Kinetics in Peritoneal Dialysis According to Different Versions of the Three-Pore Model? Perit Dial Int 2020. [DOI: 10.1177/089686080802800110] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ObjectiveThe three-pore model of peritoneal transport is used extensively for modeling peritoneal fluid and solute transport, but the currently used versions include certain modifications of the transport parameters that have not been validated quantitatively versus detailed data on fluid and solute kinetics. The aim of this study was to evaluate different versions of the three-pore model.MethodDetailed clinical peritoneal fluid and solute transport data were obtained from 40 peritoneal dwell studies in clinically stable continuous ambulatory peritoneal dialysis patients in whom the dialysate volume was measured using a macromolecular volume marker (RISA).ResultsUsing a new version of the three-pore model with several adjusted transport parameters, good agreement between the measured and the simulated values of dialysate volume and concentrations of small solutes and RISA (but not of endogenous protein) versus dwell time was obtained; however, the predicted peritoneal absorption for longer than the investigated dwell time would be too high.ConclusionThe three-pore model, with some adjustments proposed in this study, may be used for detailed description of peritoneal transport kinetics, but it should be pointed out that, even after these adjustments, it still does not provide the correct description of peritoneal fluid absorption and transport of macromolecules.
Collapse
Affiliation(s)
- Jacek Waniewski
- Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
- Divisions of Baxter Novum and Renal Medicine, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Bengt Lindholm
- Divisions of Baxter Novum and Renal Medicine, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Zakaria ER, Patel AA, Li N, Matheson PJ, Garrison RN. Vasoactive Components of Dialysis Solution. Perit Dial Int 2020. [DOI: 10.1177/089686080802800316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BackgroundConventional peritoneal dialysis (PD) solutions elicit vasodilation, which is implicated in the variable rate of solute transport during the dwell. The components causing such vasoactivity are still controversial. This study was conducted to define the vasoactive components of conventional and new PD solutions.MethodsThree visceral peritoneal microvascular levels were visualized by intravital video microscopy of the terminal ileum of anesthetized rats. Anesthesia-free decerebrate conscious rats served as control. Microvascular diameter and blood flow by Doppler measurements were conducted after topical peritoneal exposure to 4 clinical PD solutions and 6 prepared solutions designed to isolate potential vasoactive components of the PD solution.ResultsAll clinically available PD solutions produced a rapid and generalized vasodilation at all intestinal microvascular levels, regardless of the osmotic solute. The pattern and magnitude of this dilation was not affected by anesthesia but was determined by arteriolar size, the osmotic solute, and the solution's buffer anion system. The greatest dilation occurred in the small precapillary arterioles and was elicited by conventional PD solution and heat re-sterilized solution containing low glucose degradation products (GDPs). Hypertonic mannitol solutions produced a dilation that was approximately 50% less than the dilation obtained with glucose solutions with identical osmolarity and buffer. Increasing a solution's osmolarity did not produce a parallel increase in the magnitude of dilation, suggesting a nonlinear relationship between the two variables. Lactate dissolved in an isotonic solution was completely non-vasoactive unless the solution's H+concentration was increased. At low pH, isotonic lactate produced a rapid but transient vasodilation. This vascular reactivity was similar in magnitude and pattern to that obtained with the isotonic 7.5% icodextrin solution (Extraneal; Baxter Healthcare, Deerfield, Illinois, USA).Conclusions( 1 ) Hyperosmolarity is the major vasoactive component of PD solution. ( 2 ) Hyperosmolarity and active intracellular glucose uptake account together for approximately 75% of PD solution-induced dilation, whereas GDPs contribute to approximately 25%. ( 3 ) Lactate is vasoactive only at low pH (high [H+]). ( 4 ) The magnitude of PD solution-mediated vasodilation is partially dependent on the nature of the osmotic solute, the GDP contents, and the [H+], which determine the vasoactivity of the lactate-buffer anion system. Studies are required to define the molecular mechanisms of PD-induced vasodilation and to determine the vasoactive properties of these solutions after chronic infusion.
Collapse
Affiliation(s)
| | - Anuj A. Patel
- Department of Physiology and Biophysics Louisville, Kentucky, USA
| | - Na Li
- Department of Physiology and Biophysics Louisville, Kentucky, USA
| | - Paul J. Matheson
- Department of Surgery, University of Louisville Louisville, Kentucky, USA
| | - Richard N. Garrison
- Department of Physiology and Biophysics Louisville, Kentucky, USA
- Department of Surgery, University of Louisville Louisville, Kentucky, USA
- Veterans Affairs Medical Center, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Changes of peritoneal transport parameters with time on dialysis: assessment with sequential peritoneal equilibration test. Int J Artif Organs 2017; 40:595-601. [PMID: 28708209 DOI: 10.5301/ijao.5000622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Sequential peritoneal equilibration test (sPET) is based on the consecutive performance of the peritoneal equilibration test (PET, 4-hour, glucose 2.27%) and the mini-PET (1-hour, glucose 3.86%), and the estimation of peritoneal transport parameters with the 2-pore model. It enables the assessment of the functional transport barrier for fluid and small solutes. The objective of this study was to check whether the estimated model parameters can serve as better and earlier indicators of the changes in the peritoneal transport characteristics than directly measured transport indices that depend on several transport processes. METHODS 17 patients were examined using sPET twice with the interval of about 8 months (230 ± 60 days). RESULTS There was no difference between the observational parameters measured in the 2 examinations. The indices for solute transport, but not net UF, were well correlated between the examinations. Among the estimated parameters, a significant decrease between the 2 examinations was found only for hydraulic permeability LpS, and osmotic conductance for glucose, whereas the other parameters remained unchanged. These fluid transport parameters did not correlate with D/P for creatinine, although the decrease in LpS values between the examinations was observed mostly for patients with low D/P for creatinine. CONCLUSIONS We conclude that changes in fluid transport parameters, hydraulic permeability and osmotic conductance for glucose, as assessed by the pore model, may precede the changes in small solute transport. The systematic assessment of fluid transport status needs specific clinical and mathematical tools beside the standard PET tests.
Collapse
|
8
|
Farhat K, Douma CE, Ferrantelli E, Ter Wee PM, Beelen RHJ, van Ittersum FJ. Effects of Conversion to a Bicarbonate/Lactate-Buffered, Neutral-pH, Low-GDP PD Regimen in Prevalent PD: A 2-Year Randomized Clinical Trial. Perit Dial Int 2017; 37:273-282. [PMID: 28348100 DOI: 10.3747/pdi.2015.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/04/2016] [Indexed: 11/15/2022] Open
Abstract
♦ BACKGROUND: The use of pH-neutral peritoneal dialysis (PD) fluids low in glucose degradation products (GDP) may better preserve the peritoneal membrane and have fewer systemic effects. The effects of conversion from conventional to neutral-pH, low-GDP PD fluids in prevalent patients are unclear. Few studies on the role of neutral-pH, low-GDP PD have studied residual renal function, ultrafiltration, peritonitis incidence and technique failure, transport characteristics, and local and systemic markers of inflammation in prevalent PD patients. ♦ METHODS: In a multi-center open-label randomized clinical trial (RCT), we randomly assigned 40 of 78 stable continuous ambulatory PD (CAPD) and automated PD (APD) patients to treatment with bicarbonate/lactate, neutral-pH, low-GDP PD fluid (Physioneal; Baxter Healthcare Corporation, Deerfield, IL, USA) and compared them with 38 patients continuing their current standard lactate-buffered PD fluid (PDF) (Dianeal; Baxter Healthcare Corporation, Deerfield, IL, USA) during 2 years. Primary outcome was residual renal function (RRF) and ultrafiltration (UF) during peritoneal equilibration test (PET); peritonitis incidence was a secondary outcome. Furthermore, clinical parameters as well as several biomarkers in effluents and serum were measured. ♦ RESULTS: During follow-up, RRF did not differ between the groups. In the Physioneal group ultrafiltration (UF) during PET remained more or less stable (-20 mL [confidence interval (CI): -163.5 - 123.5 mL]; p = 0.7 over 24 months), whereas it declined in the Dianeal group (-243 mL [CI: -376.6 to -109.4 mL]; p < 0.0001 over 24 months), resulting in a difference of 233.7 mL [95% CI 41.0 - 425.5 mL]; p = 0.017 between the groups at 24 months. The peritonitis rate was lower in the Physioneal group: adjusted odds ratio (OR) 0.38 (0.15 - 0.97) p = 0.043. No differences were observed between the 2 groups in peritoneal adequacy or transport characteristics nor effluent markers of local inflammation (cancer antigen [CA]125, hyaluronan [HA], vascular endothelial growth factor [VEGF], macrophage chemo-attractant protein [MCP]-1, HA and transforming growth factor [TGF]β-1). ♦ CONCLUSION: In prevalent PD patients, our study did not find a difference in RRF after conversion from conventional to neutral-pH, low-GDP PD fluids, although there is a possibility that the study was underpowered to detect a difference. Decline in UF during standardized PET was lower after 2 years in the Physioneal group.
Collapse
Affiliation(s)
- Karima Farhat
- VU University Medical Center, Department of Nephrology, Amsterdam, The Netherlands .,Spaarnegasthuis, Department of Internal Medicine, Hoofddorp, The Netherlands
| | - Caroline E Douma
- VU University Medical Center, Department of Nephrology, Amsterdam, The Netherlands.,Spaarnegasthuis, Department of Internal Medicine, Hoofddorp, The Netherlands
| | - E Ferrantelli
- VU University Medical Center, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands
| | - Pieter M Ter Wee
- VU University Medical Center, Department of Nephrology, Amsterdam, The Netherlands
| | - Robert H J Beelen
- VU University Medical Center, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands
| | - Frans J van Ittersum
- VU University Medical Center, Department of Nephrology, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Öberg CM, Rippe B. Is Adapted APD Theoretically More Efficient than Conventional APD? Perit Dial Int 2017; 37:212-217. [DOI: 10.3747/pdi.2015.00144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/13/2015] [Indexed: 11/15/2022] Open
Abstract
Background A modified version of automated peritoneal dialysis (APD) using not only variable dwell times but also variable fill volumes has been tested against conventional APD (cAPD) with fixed dwell volumes in a randomized controlled clinical study. The results have indicated that the modified schedule for APD, denoted adapted APD (aAPD), can lead to improved small solute clearances, and, above all, a markedly increased sodium removal (NaR). To theoretically test these results, we have modeled aAPD vs cAPD in computer simulations using the 3-pore model (TPM). Methods The TPM, modified by including a transient, initial inflation of small solute mass transfer area coefficients (PS values), was employed. For simulations of osmotic ultrafiltration (UF), the TPM uses a constantly inflated value for PS for glucose and also a reduced value for PS for Na+, setting the peritoneal lymphatic reabsorption term at 0.3 mL/min. The simulations were performed by assuming that increases in intraperitoneal hydrostatic pressure (IPP) are transmitted to the capillary level ( via vein compression) and therefore do not significantly affect the Starling balance. Furthermore, the effective peritoneal surface area (A) was set to be variable as a function of intraperitoneal volume (IPV). Results The simulations demonstrated a minor improvement of small solute clearances (∼0.7 – 1.6%) and a very small improvement of UF and NaR in aAPD compared to cAPD. Conclusions Due mainly to the increased fill volumes in 3 out of 5 dwells in aAPD, this modality caused minor increases in small solute clearances and marginal effects on UF and NaR. The computer simulations point to a need for accurate sodium determinations in aAPD, considering all the methodological problems and pitfalls relevant to determining dialysate Na+ concentrations and peritoneal sodium mass balance.
Collapse
Affiliation(s)
- Carl M. Öberg
- Department of Nephrology, Lund University, Lund, Sweden
| | | |
Collapse
|
10
|
Yoo TH, Lee MJ, Oh HJ, Park JT, Han SH, Kang SW, Han DS. Is It Beneficial to Convert to a Neutral-pH Bicarbonate/Lactate-Buffered PD Solution in Long-Term CAPD Patients? A Single-Center Prospective Study. Perit Dial Int 2016; 35:366-9. [PMID: 26015423 DOI: 10.3747/pdi.2013.00284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tae-Hyun Yoo
- Department of Internal Medicine Yonsei University College of Medicine, Seoul, Korea
| | - Mi Jung Lee
- Department of Internal Medicine Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Jung Oh
- Department of Internal Medicine Yonsei University College of Medicine, Seoul, Korea
| | - Jung Tak Park
- Department of Internal Medicine Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hyeok Han
- Department of Internal Medicine Yonsei University College of Medicine, Seoul, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine Yonsei University College of Medicine, Seoul, Korea
| | - Dae Suk Han
- Department of Internal Medicine Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Kocyigit I, Unal A, Gungor O, Orscelik O, Eroglu E, Dogan E, Sen A, Yasan M, Hayri Sipahioglu M, Tokgoz B, Dogan A, Oymak O. Effects of dialysis solution on the cardiovascular function in peritoneal dialysis patients. Intern Med 2015; 54:3-10. [PMID: 25742886 DOI: 10.2169/internalmedicine.54.2763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective Peritoneal dialysis (PD) patients have an increased cardiovascular burden. In this study, we aimed to compare certain PD solutions (Physioneal(®) and Dianeal(®)) in terms of the ambulatory blood pressure, echocardiographic parameters (ECHO), carotid atherosclerosis, endothelial function and serum asymmetric dimethylarginine (ADMA) level. Methods A total of 45 PD patients were enrolled in this prospective randomized controlled study: 23 patients in the Dianeal(®) group and 22 patients in the Physioneal(®) group. Ambulatory blood pressure measurements, echocardiography, carotid artery intima-media thickness measurements and flow mediated dilatation (FMD) and ADMA values were obtained at baseline and 12 months. Results The baseline parameters were similar between the groups with respect to the echocardiographic parameters, 24-hour ambulatory blood monitoring measurements and ADMA and FMD levels. All 24-hour blood pressure monitoring measurements, except for the average daytime systolic blood pressure, were significantly decreased in both groups at the first year. In the Physioneal(®) group, a significant decrease was observed with regard to the ADMA levels. Considering the FMD values, significant augmentation was seen at the end of the first year in both groups. Improvements in the FMD measurements were prominent in the Physioneal(®) group; however, this finding was not statistically significant. Conclusion The use of solutions with a neutral pH in PD patients results in decreased ADMA levels, which may be an important contributor to reductions in the incidence of cardiovascular events and deaths in this population.
Collapse
Affiliation(s)
- Ismail Kocyigit
- Department of Nephrology, Erciyes University Medical Faculty, Turkey
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Waniewski J. Peritoneal fluid transport: mechanisms, pathways, methods of assessment. Arch Med Res 2013; 44:576-83. [PMID: 24215786 DOI: 10.1016/j.arcmed.2013.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/15/2013] [Indexed: 11/26/2022]
Abstract
Fluid removal during peritoneal dialysis is controlled by many mutually dependent factors and therefore its analysis is more complex than that of the removal of small solutes used as markers of dialysis adequacy. Many new tests have been proposed to assess quantitatively different components of fluid transport (transcapillary ultrafiltration, peritoneal absorption, free water, etc.) and to estimate the factors that influence the rate of fluid transport (osmotic conductance). These tests provide detailed information about indices and parameters that describe fluid transport, especially those concerning the problem of the permanent loss of ultrafiltration capacity (ultrafiltration failure). Different theories and respective mathematical models of mechanisms and pathways of fluid transport are presently discussed and applied, and some fluid transport issues are still debated.
Collapse
Affiliation(s)
- Jacek Waniewski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
13
|
Galach M, Antosiewicz S, Baczynski D, Wankowicz Z, Waniewski J. Sequential peritoneal equilibration test: a new method for assessment and modelling of peritoneal transport. Nephrol Dial Transplant 2013; 28:447-54. [PMID: 23413278 DOI: 10.1093/ndt/gfs592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In spite of many peritoneal tests proposed, there is still a need for a simple and reliable new approach for deriving detailed information about peritoneal membrane characteristics, especially those related to fluid transport. METHODS The sequential peritoneal equilibration test (sPET) that includes PET (glucose 2.27%, 4 h) followed by miniPET (glucose 3.86%, 1 h) was performed in 27 stable continuous ambulatory peritoneal dialysis patients. Ultrafiltration volumes, glucose absorption, ratio of concentration in dialysis fluid to concentration in plasma (D/P), sodium dip (Dip D/P Sodium), free water fraction (FWF60) and the ultrafiltration passing through small pores at 60 min (UFSP60), were calculated using clinical data. Peritoneal transport parameters were estimated using the three-pore model (3p model) and clinical data. Osmotic conductance for glucose was calculated from the parameters of the model. RESULTS D/P creatinine correlated with diffusive mass transport parameters for all considered solutes, but not with fluid transport characteristics. Hydraulic permeability (L(p)S) correlated with net ultrafiltration from miniPET, UFSP60, FWF60 and sodium dip. The fraction of ultrasmall pores correlated with FWF60 and sodium dip. CONCLUSIONS The sequential PET described and interpreted mechanisms of ultrafiltration and solute transport. Fluid transport parameters from the 3p model were independent of the PET D/P creatinine, but correlated with fluid transport characteristics from PET and miniPET.
Collapse
Affiliation(s)
- Magda Galach
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|
14
|
Waniewski J, Paniagua R, Stachowska-Pietka J, Ventura MDJ, Ávila-Díaz M, Prado-Uribe C, Mora C, García-López E, Lindholm B. Threefold peritoneal test of osmotic conductance, ultrafiltration efficiency, and fluid absorption. Perit Dial Int 2013; 33:419-25. [PMID: 23378471 DOI: 10.3747/pdi.2011.00329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Fluid removal during peritoneal dialysis depends on modifiable factors such as tonicity of dialysis fluids and intrinsic characteristics of the peritoneal transport barrier and the osmotic agent-for example, osmotic conductance, ultrafiltration efficiency, and peritoneal fluid absorption. The latter parameters cannot be derived from tests of the small-solute transport rate. We here propose a simple test that may provide information about those parameters. METHODS Volumes and glucose concentrations of drained dialysate obtained with 3 different combinations of glucose-based dialysis fluid (3 exchanges of 1.36% glucose during the day and 1 overnight exchange of either 1.36%, 2.27%, or 3.86% glucose) were measured in 83 continuous ambulatory peritoneal dialysis (CAPD) patients. Linear regression analyses of daily net ultrafiltration in relation to the average dialysate-to-plasma concentration gradient of glucose allowed for an estimation of the osmotic conductance of glucose and the peritoneal fluid absorption rate, and net ultrafiltration in relation to glucose absorption allowed for an estimation of the ultrafiltration effectiveness of glucose. RESULTS The osmotic conductance of glucose was 0.067 ± 0.042 (milliliters per minute divided by millimoles per milliliter), the ultrafiltration effectiveness of glucose was 16.77 ± 7.97 mL/g of absorbed glucose, and the peritoneal fluid absorption rate was 0.94 ± 0.97 mL/min (if estimated concomitantly with osmotic conductance) or 0.93 ± 0.75 mL/min (if estimated concomitantly with ultrafiltration effectiveness). These fluid transport parameters were independent of small-solute transport characteristics, but proportional to total body water estimated by bioimpedance. CONCLUSIONS By varying the glucose concentration in 1 of 4 daily exchanges, osmotic conductance, ultrafiltration efficiency, and peritoneal fluid absorption could be estimated in CAPD patients, yielding transport parameter values that were similar to those obtained by other, more sophisticated, methods.
Collapse
Affiliation(s)
- Jacek Waniewski
- Institute of Biocybernetics and Biomedical Engineering PAS,1 Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schmitt CP, Nau B, Gemulla G, Bonzel KE, Hölttä T, Testa S, Fischbach M, John U, Kemper MJ, Sander A, Arbeiter K, Schaefer F. Effect of the dialysis fluid buffer on peritoneal membrane function in children. Clin J Am Soc Nephrol 2012; 8:108-15. [PMID: 23124784 DOI: 10.2215/cjn.00690112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Double-chamber peritoneal dialysis fluids exert less toxicity by their neutral pH and reduced glucose degradation product content. The role of the buffer compound (lactate and bicarbonate) has not been defined in humans. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A multicenter randomized controlled trial in 37 children on automated peritoneal dialysis was performed. After a 2-month run-in period with conventional peritoneal dialysis fluids, patients were randomized to neutral-pH, low-glucose degradation product peritoneal dialysis fluids with 35 mM lactate or 34 mM bicarbonate content. Clinical and biochemical monitoring was performed monthly, and peritoneal equilibration tests and 24-hour clearance studies were performed at 0, 3, 6, and 10 months. RESULTS No statistically significant difference in capillary blood pH, serum bicarbonate, or oral buffer supplementation emerged during the study. At baseline, peritoneal solute equilibration and clearance rates were similar. During the study, 4-hour dialysis to plasma ratio of creatinine tended to increase, and 24-hour dialytic creatinine and phosphate clearance increased with lactate peritoneal dialysis fluid but not with bicarbonate peritoneal dialysis fluid. Daily net ultrafiltration, which was similar at baseline (lactate fluid=5.4±2.6 ml/g glucose exposure, bicarbonate fluid=4.9±1.9 ml/g glucose exposure), decreased to 4.6±1.0 ml/g glucose exposure in the lactate peritoneal dialysis fluid group, whereas it increased to 5.1±1.7 ml/g glucose exposure in the bicarbonate content peritoneal dialysis fluid group (P=0.006 for interaction). CONCLUSIONS When using biocompatible peritoneal dialysis fluids, equally good acidosis control is achieved with lactate and bicarbonate buffers. Improved long-term preservation of peritoneal membrane function may, however, be achieved with bicarbonate-based peritoneal dialysis fluids.
Collapse
|
16
|
Kawanishi K, Honda K, Tsukada M, Oda H, Nitta K. Neutral solution low in glucose degradation products is associated with less peritoneal fibrosis and vascular sclerosis in patients receiving peritoneal dialysis. Perit Dial Int 2012; 33:242-51. [PMID: 23123670 DOI: 10.3747/pdi.2011.00270] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The effects of novel biocompatible peritoneal dialysis (PD) solutions on human peritoneal membrane pathology have yet to be determined. Quantitative evaluation of human peritoneal biopsy specimens may reveal the effects of the new solutions on peritoneal membrane pathology. ♢ METHODS Peritoneal specimens from 24 PD patients being treated with either acidic solution containing high-glucose degradation products [GDPs (n = 12)] or neutral solution with low GDPs (n = 12) were investigated at the end of PD. As controls, pre-PD peritoneal specimens, obtained from 13 patients at PD catheter insertion, were also investigated. The extent of peritoneal fibrosis, vascular sclerosis, and advanced glycation end-product (AGE) accumulation were evaluated by quantitative or semi-quantitative methods. The average densities of CD31-positive vessels and podoplanin-positive lymphatic vessels were also determined. ♢ RESULTS Peritoneal membrane fibrosis, vascular sclerosis, and AGE accumulation were significantly suppressed in the neutral group compared with the acidic group. The neutral group also showed lower peritoneal equilibration test scores and preserved ultrafiltration volume. The density of blood capillaries, but not of lymphatic capillaries, was significantly increased in the neutral group compared with the acidic and pre-PD groups. ♢ CONCLUSIONS Neutral solutions with low GDPs are associated with less peritoneal membrane fibrosis and vascular sclerosis through suppression of AGE accumulation. However, contrary to expectation, blood capillary density was increased in the neutral group. The altered contents of the new PD solutions modified peritoneal membrane morphology and function in patients undergoing PD.
Collapse
Affiliation(s)
- Kunio Kawanishi
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
17
|
Rodriguez-Carmona A, Perez-Fontan M, Guitian A, Peteiro J, Garcia-Falcon T, Lopez-Muniz A, Garcia-Buela J, Cordido F. Effect of low-GDP bicarbonate-lactate-buffered peritoneal dialysis solutions on plasma levels of adipokines and gut appetite-regulatory peptides. A randomized crossover study. Nephrol Dial Transplant 2011; 27:369-74. [DOI: 10.1093/ndt/gfr244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Stachowska-Pietka J, Waniewski J, Vonesh E, Lindholm B. Changes in free water fraction and aquaporin function with dwell time during continuous ambulatory peritoneal dialysis. Artif Organs 2011; 34:1138-43. [PMID: 21192338 DOI: 10.1111/j.1525-1594.2010.01036.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diffusive (K(BD), A₀/Δx(t)) transport parameters and sieving coefficients (S) for small solutes and free water fraction (FWF), that is, the fraction of total water flow that is transported through aquaporins, were assessed as functions of dwell time t for 35 continuous ambulatory peritoneal dialysis patients using glucose 3.86% dialysis fluid.The individual values of the unrestricted pore area over diffusion distance, A₀/Δx(t), were estimated using the mixed effects nonlinear regression and applied for evaluation of S(t) for sodium and FWF(t). FWF decreased on average from the initial 51% of the total transcapillary water flow to 36% at 120 min, whereas the small pore water fraction and sodium sieving coefficient increased. Our results were consistent with the three-pore model if the contribution of the transcellular pores (α(TP)) at the beginning of dwell study was doubled and later decreased to the standard value of 0.02.We conclude that transport characteristics of fluid and small solutes should be considered as time-dependent variables during the peritoneal dialysis.
Collapse
Affiliation(s)
- Joanna Stachowska-Pietka
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences,Warsaw, Poland.
| | | | | | | |
Collapse
|
19
|
Cavallini N, Braide M. Catheter Patency and Peritoneal Morphology and Function in a Rat Model of Citrate-Buffered Peritoneal Dialysis. Perit Dial Int 2010; 30:602-10. [DOI: 10.3747/pdi.2009.00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Single-dwell studies in rats and humans have shown that supplementing citrate for lactate in peritoneal dialysis (PD) fluids improves ultrafiltration (UF). Methods The long-term effects of citrate-substituted PD fluids on PD catheter patency, UF, and peritoneal morphology were evaluated in a rat model over 5 weeks of daily PD fluid exposure. A standard 2.5% glucose 40 mmol/L lactate PD fluid and a corresponding 10/30 mmol/L citrate/lactate PD fluid were compared. In a control group, rats with catheters received no PD fluid. Results The average patency time (% of 36 days) of silicone rubber PD catheters was significantly longer in the citrate PD group (98.8% ± 1.2%) and the control group (100% ± 0%) compared to the lactate PD group (54.7% ± 9.5%). In a separate experiment, heparin-coated polyurethane catheters were used to study peritoneal morphology and fluid transport. The citrate group had a higher net UF than the lactate group at the beginning and at the end of the 5 weeks. During the experiment, both fluid-treated groups suffered from UF loss; the control group showed the highest net UF at the end of the 5 weeks. Peritoneal vascular density and submesothelial thickness, indicators of angiogenesis and fibrosis, were not significantly different among the groups. Fibrosis was significantly negatively correlated to osmotic UF. Conclusion A positive acute effect of citrate on UF was confirmed and conserved over time. Citrate PD strongly improved PD catheter patency time compared with lactate. Both citrate PD and lactate PD induced negative long-term effects on UF compared with control animals.
Collapse
Affiliation(s)
- Nicola Cavallini
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Braide
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Schilte MN, Fabbrini P, Wee PMT, Keuning ED, Zareie M, Tangelder GJ, Van Lambalgen AA, Beelen RHJ, Van Den Born J. Peritoneal dialysis fluid bioincompatibility and new vessel formation promote leukocyte-endothelium interactions in a chronic rat model for peritoneal dialysis. Microcirculation 2010; 17:271-80. [PMID: 20536740 DOI: 10.1111/j.1549-8719.2010.00024.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peritoneal dialysis (PD)-induced peritonitis leads to dysfunction of the peritoneal membrane. During peritonitis, neutrophils are recruited to the inflammation site by rolling along the endothelium, adhesion, and transmigration through vessel walls. In a rat PD-model, long-term effects of PD-fluids (PDF) on leukocyte-endothelium interactions and neutrophil migration were studied under baseline and inflammatory conditions. Rats received daily conventional-lactate-buffered PDF (Dianeal), bicarbonate/lactate-buffered PDF (Physioneal) or bicarbonate/lactate buffer (Buffer) during five weeks. Untreated rats served as control. Baseline leukocyte rolling and N-formylmethionyl-leucyl-phenylalanine (fMLP) induced levels of transmigration in the mesentery were evaluated and quantified by intra-vital videomicroscopy and immunohistochemistry. Baseline leukocyte rolling was unaffected by buffer treatment, approximately 2-fold increased after Physioneal and 4-7-fold after Dianeal treatment. After starting fMLP superfusion, transmigrated leukocytes appeared outside the venules firstly after Dianeal treatment (15 minutes), thereafter in Physioneal and Buffer groups (20-22 minutes), and finally in control rats (>25 minutes). Newly formed vessels and total number of transmigrated neutrophils were highest in Dianeal-treated animals, followed by Physioneal and Buffer, and lowest in control rats and correlated for all groups to baseline leukocyte rolling (r = 0.78, P < 0.003). This study indicates that the start of inflammatory neutrophil transmigration is related to PDF bio(in)compatibility, whereas over time neutrophil transmigration is determined by the degree of neo-angiogenesis.
Collapse
Affiliation(s)
- Margot N Schilte
- Departments of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pajek J, Kveder R, Bren A, Gucek A, Bucar M, Skoberne A, Waniewski J, Lindholm B. Short-term effects of bicarbonate/lactate-buffered and conventional lactate-buffered dialysis solutions on peritoneal ultrafiltration: a comparative crossover study. Nephrol Dial Transplant 2008; 24:1617-25. [DOI: 10.1093/ndt/gfn673] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
La Milia V, Limardo M, Crepaldi M, Locatelli F. Effects of Ionized Sodium Concentrations on Ultrafiltration Rate in Peritoneal Dialysis Using Lactate and Lactate/Bicarbonate Solutions. ARCH ESP UROL 2008. [DOI: 10.1177/089686080902900209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective To investigate the possible effects of different concentrations of ionized sodium (NaI) on peritoneal ultrafiltration (UF) rate using lactate (Lac) and lactate/bicarbonate (Lac/Bic) dialysis solutions. Design Two random consecutive (after an interval of 48 hours) peritoneal equilibration tests (PETs) were performed in 13 patients (4 males and 9 females) on regular continuous ambulatory peritoneal dialysis (PD) treatment for at least 3 months. Two different PD solutions containing anhydrous glucose 3.86% were used: a 40 mmol/L Lac solution and a 15/25 mmol/L mixed Lac/Bic solution. Concentrations of total sodium (NaT) and NaI were measured by flame photometer and direct ion-selective electrode respectively. Results Dialysate concentrations of NaT were not different during PETs using Lac and Lac/Bic. Dialysate concentrations of NaI in fresh PD solutions were different (133.3 ± 1.7 vs 128.2 ± 3.9 mmol, p < 0.0001); however, these differences disappeared just after the end of the infusion of the fresh solutions. Peritoneal UF rate was not significantly different during PETs using Lac versus Lac/Bic (609 ± 301 mL vs 542 ± 362 mL). The dialysate-to-plasma ratios of sodium concentrations at 60 minutes of the PETs (which are expressions of free water transport) were not different using Lac versus Lac/Bic (0.89 ± 0.04 vs 0.89 ± 0.04 respectively, p = 0.96). All the other classical parameters of the PET were not different between Lac and Lac/Bic. Conclusions The higher dialysate concentrations of NaI due to lower dialysate pH and consequently the higher effective osmolality of the fresh Lac PD solutions did not influence peritoneal UF rate, probably because of the fast reduction of NaI concentrations due to rapid correction of dialysate pH at the end of the infusion of Lac solutions into the peritoneal cavity.
Collapse
Affiliation(s)
- Vincenzo La Milia
- Department of Nephrology, Dialysis and Kidney Transplantation, A. Manzoni Hospital, Lecco, Italy
| | - Monica Limardo
- Department of Nephrology, Dialysis and Kidney Transplantation, A. Manzoni Hospital, Lecco, Italy
| | - Monica Crepaldi
- Department of Nephrology, Dialysis and Kidney Transplantation, A. Manzoni Hospital, Lecco, Italy
| | - Francesco Locatelli
- Department of Nephrology, Dialysis and Kidney Transplantation, A. Manzoni Hospital, Lecco, Italy
| |
Collapse
|
23
|
The new peritoneal dialysis solutions: friends only, or foes in part? ACTA ACUST UNITED AC 2007; 3:604-12. [DOI: 10.1038/ncpneph0620] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 06/29/2007] [Indexed: 11/08/2022]
|