1
|
Yamakawa Y, Mihara T, Hori M. Intestinal Dysmotility and Associated Disorders in Intestinal Muscle of Methylglyoxal-Treated Mice. Neurogastroenterol Motil 2025:e70068. [PMID: 40317859 DOI: 10.1111/nmo.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 03/31/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Peritoneal dialysis (PD) is a renal replacement therapy approach to treat end-stage renal failure. However, complications such as gastrointestinal dysmotility occur in patients undergoing PD, and the mechanisms underlying these complications have not been elucidated. We hypothesized that inflammation and dysfunction of the interstitial cells of Cajal (ICC) contribute to the PD-induced gastrointestinal dysmotility. METHODS Mice were intraperitoneally administered a dialysate containing methylglyoxal (40 mM) every other day for 2 weeks to mimic the gastrointestinal complications in patients undergoing long-term PD. The gastrointestinal transit capacity was evaluated using fluorescent dyes that were forcibly administered orally. To evaluate the inflammation and function of the ICC in the intestinal muscles, we performed real-time polymerase chain reaction and immunohistochemical staining and measured spontaneous contractions ex vivo. KEY RESULTS The intestinal transit capacity was significantly reduced in the methylglyoxal-treated group compared to that in the control group. In the inflammatory evaluation, the number of neutrophils and macrophages in the intestinal muscles significantly increased in the methylglyoxal-treated group compared to the control group. Moreover, the mRNA expression levels of Tnf, Il1b, and Il6 were upregulated in the intestinal muscle from the methylglyoxal-treated group. The mRNA expression of Kit, an interstitial cell of Cajal marker, was significantly decreased in the methylglyoxal-treated group. In addition, the frequency of spontaneous contractions, an index of ICC function, was decreased in the methylglyoxal-treated group. CONCLUSIONS AND INFERENCE Our data suggest that the PD-induced gastrointestinal dysmotility might be due to inflammation and dysfunction of the ICC in intestinal muscles.
Collapse
Affiliation(s)
- Yuki Yamakawa
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taiki Mihara
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Shinkai Y, Sasaki K, Tamura R, Ike T, Takahashi A, Osaki Y, Ishiuchi N, Maeoka Y, Nakashima A, Masaki T. Selective activation of PPARα by pemafibrate mitigates peritoneal inflammation and fibrosis through suppression of NLRP3 inflammasome and modulation of inflammation. Sci Rep 2024; 14:23816. [PMID: 39394435 PMCID: PMC11470028 DOI: 10.1038/s41598-024-74340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Peritoneal inflammation and fibrosis remain major challenges to the long-term maintenance of peritoneal dialysis. Pemafibrate, a selective peroxisome proliferator-activated receptor α (PPARα) modulator, has been implicated in the management of fibrosis-related disorders. We investigated whether pemafibrate ameliorates peritoneal inflammation and fibrosis and explored the underlying mechanisms in mice with methylglyoxal (MGO)-induced peritoneal fibrosis (MGO mice). MGO mice exhibited peritoneal fibrosis with increased expression of mesenchymal markers, transforming growth factor-β1 (TGF-β1), and substantial deposition of extracellular matrix (ECM) proteins. Additionally, MGO mice exhibited peritoneal inflammation as indicated by elevated tumor necrosis factor-α expression and macrophage infiltration in peritoneal tissue. These effects were mitigated by pemafibrate treatment, which also restored peritoneal membrane function. Furthermore, pemafibrate promoted anti-inflammatory macrophage polarization in both mice and THP-1 cells. In human peritoneal mesothelial cells (HPMCs), pemafibrate effectively inhibited interferon-γ-induced production of TGF-β1 and ECM while suppressing the proinflammatory cytokines nuclear factor-κB (NF-κB) and activator protein 1. The NF-κB inhibitory effect of pemafibrate involved stabilization of the NF-κB inhibitory protein IkBα. Notably, pemafibrate hindered activation of the NLR family pyrin domain containing 3/caspase-1 axis in interferon-γ-stimulated THP-1 cells. These findings suggest that pemafibrate ameliorates peritoneal inflammation and fibrosis, making it a promising candidate for peritoneal fibrosis therapy.
Collapse
Affiliation(s)
- Yutaka Shinkai
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Ryo Tamura
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Akira Takahashi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yosuke Osaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
3
|
Yang CY, Chang PY, Chen JY, Wu BS, Yang AH, Lee OKS. Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6. Stem Cell Res Ther 2021; 12:193. [PMID: 33741073 PMCID: PMC7977319 DOI: 10.1186/s13287-021-02270-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Life-long peritoneal dialysis (PD) as a renal replacement therapy is limited by peritoneal fibrosis. Previous studies showed immunomodulatory and antifibrotic effects of adipose-derived mesenchymal stem cells (ADSCs) on peritoneal fibrosis. However, the role of the peritoneal macrophage in this process remains uninvestigated. Methods We examined the therapeutic effects of ADSC and bone marrow-derived mesenchymal stem cells (BM-MSC) in the rat model of dialysis-induced peritoneal fibrosis using methylglyoxal. In addition, treatment of macrophages with the conditioned medium of ADSC and BM-MSC was performed individually to identify the beneficial component of the stem cell secretome. Results In the in vivo experiments, we found dialysis-induced rat peritoneal fibrosis was attenuated by both ADSC and BM-MSC. Interestingly, ADSC possessed a more prominent therapeutic effect than BM-MSC in ameliorating peritoneal membrane thickening while also upregulating epithelial cell markers in rat peritoneal tissues. The therapeutic effects of ADSC were positively associated with M2 macrophage polarization. In the in vitro experiments, we confirmed that interleukin-6 (IL-6) secreted by MSCs upon transforming growth factor-β1 stimulation promotes M2 macrophage polarization. Conclusions In dialysis-induced peritoneal fibrosis, MSCs are situated in an inflammatory environment of TGF-β1 and secrete IL-6 to polarize macrophages into the M2 phenotype. Our findings reveal a previously unidentified role of tissue macrophage in this antifibrotic process. ADSC has the advantage of abundance and accessibility, making the application values extremely promising. Graphical abstract In dialysis-induced peritoneal fibrosis, peritoneal mesothelial cells secrete transforming growth factor-β1 (TGF-β1) when exposed to methylglyoxal (MGO)-containing peritoneal dialysate. When situated in TGF-β1, the inflammatory environment induces mesenchymal stem cells to secrete interleukin-6 (IL-6), IL-6 polarizes macrophages into the M2 phenotype. The dominant peritoneal tissue M2 macrophages, marked by upregulated Arg-1 expression, account for the attenuation of MGO-induced dedifferentiation of peritoneal mesothelial cells to maintain epithelial integrity.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02270-4.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu, 30010, Taiwan.
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Jun-Yi Chen
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Bo-Sheng Wu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - An-Hang Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Pathology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Orthopedics, China Medical University Hospital, Taichung, 40447, Taiwan
| |
Collapse
|
4
|
Hirahara I, Kusano E, Jin D, Takai S. Hypermetabolism of glutathione, glutamate and ornithine via redox imbalance in methylglyoxal-induced peritoneal injury rats. J Biochem 2020; 167:185-194. [PMID: 31593282 DOI: 10.1093/jb/mvz077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Peritoneal dialysis (PD) is a blood purification treatment for patients with reduced renal function. However, the peritoneum is exposed to oxidative stress during PD and long-term PD results in peritoneal damage, leading to the termination of PD. Methylglyoxal (MGO) contained in commercial PD fluids is a source of strong oxidative stress. The aim of this study was to clarify the mechanism of MGO-induced peritoneal injury using metabolome analysis in rats. We prepared peritoneal fibrosis rats by intraperitoneal administration of PD fluids containing MGO for 21 days. As a result, MGO-induced excessive proliferation of mesenchymal cells with an accumulation of advanced glycation end-products (AGEs) at the surface of the thickened peritoneum in rats. The effluent levels of methionine sulfoxide, an oxidative stress marker and glutathione peroxidase activity were increased in the MGO-treated rats. The levels of glutathione, glutamate, aspartate, ornithine and AGEs were also increased in these rats. MGO upregulated the gene expression of transporters and enzymes related to the metabolism of glutathione, glutamate and ornithine in the peritoneum. These results suggest that MGO may induce peritoneal injury with mesenchymal cell proliferation via increased redox metabolism, directly or through the formation of AGEs during PD.
Collapse
Affiliation(s)
- Ichiro Hirahara
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 568-8686
| | - Eiji Kusano
- JCHO Utsunomiya Hospital, 11-17 Minamitakasago-chou, Utsunomiya, Tochigi 321-0143, Japan
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 568-8686
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 568-8686
| |
Collapse
|
5
|
Crucial Role of NLRP3 Inflammasome in the Development of Peritoneal Dialysis-related Peritoneal Fibrosis. Sci Rep 2019; 9:10363. [PMID: 31316105 PMCID: PMC6637185 DOI: 10.1038/s41598-019-46504-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Long-term peritoneal dialysis (PD) therapy leads to peritoneal inflammation and fibrosis. However, the mechanism underlying PD-related peritoneal inflammation and fibrosis remains unclear. NLRP3 inflammasome regulates the caspase-1-dependent release of interleukin-1β and mediates inflammation in various diseases. Here, we investigated the role of NLRP3 inflammasome in a murine model of PD-related peritoneal fibrosis induced by methylglyoxal (MGO). Inflammasome-related proteins were upregulated in the peritoneum of MGO-treated mice. MGO induced parietal and visceral peritoneal fibrosis in wild-type mice, which was significantly reduced in mice deficient in NLRP3, ASC, and interleukin-1β (IL-1β). ASC deficiency reduced the expression of inflammatory cytokines and fibrotic factors, and the infiltration of macrophages. However, myeloid cell-specific ASC deficiency failed to inhibit MGO-induced peritoneal fibrosis. MGO caused hemorrhagic ascites, fibrin deposition, and plasminogen activator inhibitor-1 upregulation, but all of these manifestations were inhibited by ASC deficiency. Furthermore, in vitro experiments showed that MGO induced cell death via the generation of reactive oxygen species in vascular endothelial cells, which was inhibited by ASC deficiency. Our results showed that endothelial NLRP3 inflammasome contributes to PD-related peritoneal inflammation and fibrosis, and provide new insights into the mechanisms underlying the pathogenesis of this disorder.
Collapse
|
6
|
Zhuang Q, Ma R, Yin Y, Lan T, Yu M, Ming Y. Mesenchymal Stem Cells in Renal Fibrosis: The Flame of Cytotherapy. Stem Cells Int 2019; 2019:8387350. [PMID: 30766607 PMCID: PMC6350586 DOI: 10.1155/2019/8387350] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022] Open
Abstract
Renal fibrosis, as the fundamental pathological process of chronic kidney disease (CKD), is a pathologic extension of the normal wound healing process characterized by endothelium injury, myofibroblast activation, macrophage migration, inflammatory signaling stimulation, matrix deposition, and remodelling. Yet, the current method of treating renal fibrosis is fairly limited, including angiotensin-converting enzyme inhibition, angiotensin receptor blockade, optimal blood pressure control, and sodium bicarbonate for metabolic acidosis. MSCs are pluripotent adult stem cells that can differentiate into various types of tissue lineages, such as the cartilage (chondrocytes), bone (osteoblasts), fat (adipocytes), and muscle (myocytes). Because of their many advantages like ubiquitous sources, convenient procurement and collection, low immunogenicity, and low adverse effects, with their special identification markers, mesenchymal stem MSC-based therapy is getting more and more attention. Based on the mechanism of renal fibrosis, MSCs mostly participate throughout the renal fibrotic process. According to the latest and overall literature reviews, we aim to elucidate the antifibrotic mechanisms and effects of diverse sources of MSCs on renal fibrosis, assess their efficacy and safety in preliminarily clinical application, answer the controversial questions, and provide novel ideas into the MSC cellular therapy of renal fibrosis.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Ruoyu Ma
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yanshuang Yin
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Tianhao Lan
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Meng Yu
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Yingzi Ming
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| |
Collapse
|
7
|
Iguchi D, Mizuno M, Suzuki Y, Sakata F, Maruyama S, Okada A, Okada H, Ito Y. Anti-C5a complementary peptide mitigates zymosan-induced severe peritonitis with fibrotic encapsulation in rats pretreated with methylglyoxal. Am J Physiol Renal Physiol 2018; 315:F1732-F1746. [DOI: 10.1152/ajprenal.00172.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In a previous study of fungal peritoneal injury in peritoneal dialysis patients, complement (C)-dependent pathological changes were developed in zymosan (Zy)-induced peritonitis by peritoneal scraping. However, the injuries were limited to the parietal peritoneum and did not show any fibrous encapsulation of the visceral peritoneum, which differs from human encapsular peritoneal sclerosis (EPS). We investigated peritoneal injury in a rat model of Zy-induced peritonitis pretreated with methylglyoxal (MGO) instead of scraping (Zy/MGO peritonitis) to clarify the role of C in the process of fibrous encapsulation of the visceral peritoneum. Therapeutic effects of an anti-C5a complementary peptide, AcPepA, on peritonitis were also studied. In Zy/MGO peritonitis, peritoneal thickness, fibrin exudation, accumulation of inflammatory cells, and deposition of C3b and C5b-9 with loss of membrane C regulators were increased along the peritoneum until day 5. On day 14, fibrous encapsulation of the visceral peritoneum was observed, resembling human EPS. Peritoneal injuries and fibrous changes were significantly improved with AcPepA treatment, even when AcPepA was administered following injection of Zy in Zy/MGO peritonitis. The data show that C5a might play a role in the development of encapsulation-like changes in the visceral peritoneum in Zy/MGO peritonitis. AcPepA might have therapeutic effects in fungal infection-induced peritoneal injury by preventing subsequent development of peritoneal encapsulation.
Collapse
Affiliation(s)
- Daiki Iguchi
- Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Mizuno
- Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Suzuki
- Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiko Sakata
- Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichi Maruyama
- Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Alan Okada
- Research Institute for Protein Science, Nagoya, Japan
- Department of Neuroscience, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Hidechika Okada
- Research Institute for Protein Science, Nagoya, Japan
- Department of Neuroscience, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Yasuhiko Ito
- Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
8
|
Witowski J, Kamhieh-Milz J, Kawka E, Catar R, Jörres A. IL-17 in Peritoneal Dialysis-Associated Inflammation and Angiogenesis: Conclusions and Perspectives. Front Physiol 2018; 9:1694. [PMID: 30534087 PMCID: PMC6275317 DOI: 10.3389/fphys.2018.01694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Long-term peritoneal dialysis (PD) is associated with peritoneal membrane remodeling. This includes changes in peritoneal vasculature, which may ultimately lead to inadequate solute and water removal and treatment failure. The potential cause of such alterations is chronic inflammation induced by repeated episodes of infectious peritonitis and/or exposure to bioincompatible PD fluids. While these factors may jeopardize the peritoneal membrane integrity, it is not clear why adverse peritoneal remodeling develops only in some PD patients. Increasing evidence points to the differences that occur between patients in response to the same invading microorganism and/or the differences in the course of inflammatory reaction triggered by different species. Such differences may be related to the involvement of different inflammatory mediators. Here, we discuss the potential role of IL-17 in these processes with emphasis on its impact on peritoneal mesothelial cells and peritoneal vascularity.
Collapse
Affiliation(s)
- Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznań, Poland.,Department of Nephrology, Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Rusan Catar
- Department of Nephrology, Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Achim Jörres
- Department of Medicine I, Nephrology, Transplantation, Medical Intensive Care, University of Witten/Herdecke, Cologne-Merheim Medical Center, Cologne, Germany
| |
Collapse
|
9
|
Tamura R, Doi S, Nakashima A, Sasaki K, Maeda K, Ueno T, Masaki T. Inhibition of the H3K4 methyltransferase SET7/9 ameliorates peritoneal fibrosis. PLoS One 2018; 13:e0196844. [PMID: 29723250 PMCID: PMC5933785 DOI: 10.1371/journal.pone.0196844] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/20/2018] [Indexed: 11/18/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a major mediator of peritoneal fibrosis and reportedly affects expression of the H3K4 methyltransferase, SET7/9. SET7/9-induced H3K4 mono-methylation (H3K4me1) critically activates transcription of fibrosis-related genes. In this study, we examined the effect of SET7/9 inhibition on peritoneal fibrosis in mice and in human peritoneal mesothelial cells (HPMCs). We also examined SET7/9 expression in nonadherent cells isolated from the effluent of peritoneal dialysis (PD) patients. Murine peritoneal fibrosis was induced by intraperitoneal injection of methylglyoxal (MGO) into male C57/BL6 mice over 21 days. Sinefungin, a SET7/9 inhibitor, was administered subcutaneously just before MGO injection (10 mg/kg). SET7/9 expression was elevated in both MGO-injected mice and nonadherent cells isolated from the effluent of PD patients. SET7/9 expression was positively correlated with dialysate/plasma ratio of creatinine in PD patients. Sinefungin was shown immunohistochemically to suppress expression of mesenchymal cells and collagen deposition, accompanied by decreased H3K4me1 levels. Peritoneal equilibration tests showed that sinefungin attenuated the urea nitrogen transport rate from plasma and the glucose absorption rate from the dialysate. In vitro, sinefungin suppressed TGF-β1-induced expression of fibrotic markers and inhibited H3K4me1. These findings suggest that inhibiting the H3K4 methyltransferase SET7/9 ameliorates peritoneal fibrosis.
Collapse
Affiliation(s)
- Ryo Tamura
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail:
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuya Maeda
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
10
|
Masola V, Granata S, Bellin G, Gambaro G, Onisto M, Rugiu C, Lupo A, Zaza G. Specific heparanase inhibition reverses glucose-induced mesothelial-to-mesenchymal transition. Nephrol Dial Transplant 2018; 32:1145-1154. [PMID: 28064160 DOI: 10.1093/ndt/gfw403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/10/2016] [Indexed: 01/19/2023] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) of peritoneal mesothelial cells induced by high glucose (HG) levels is a major biological mechanism leading to myofibroblast accumulation in the omentum of patients on peritoneal dialysis (PD). Heparanase (HPSE), an endoglycosidase that cleaves heparan sulfate chains, is involved in the EMT of several cell lines, and may have a major role in this pro-fibrotic process potentially responsible for the failure of dialysis. Its specific inhibition may therefore plausibly minimize this pathological condition. Methods An in vitro study employing several biomolecular strategies was conducted to assess the role of HPSE in the HG-induced mesothelial EMT process, and to measure the effects of its specific inhibition by SST0001, a N-acetylated glycol-split heparin with a strong anti-HPSE activity. Rat mesothelial cells were grown for 6 days in HG (200 mM) culture medium with or without SST0001. Then EMT markers (VIM, α-SMA, TGF-β) and vascular endothelial growth factor (VEGF) (a factor involved in neoangiogenesis) were measured by real-time PCR and immunofluorescence/western blotting. As a functional analysis, trans-epithelial resistance (TER) and permeability to albumin were also measured in our in vitro model using a Millicell-ERS ohmmeter and a spectrophotometer, respectively. Results Our results showed that 200 mM of glucose induced a significant gene and protein up-regulation of VEGF and all EMT markers after 6 days of culture. Intriguingly, adding SST0001 on day 3 reversed these biological and cellular effects. HPSE inhibition also restored the normal TER and permeability lost during the HG treatment. Conclusion Taken together, our data confirm that HG can induce EMT of mesothelial cells, and that HPSE plays a central part in this process. Our findings also suggest that pharmacological HPSE inhibition could prove a valuable therapeutic tool for minimizing fibrosis and avoiding a rapid decline in the efficacy of dialysis in patients on PD, though clinical studies and/or trials would be needed to confirm the clinical utility of this treatment.
Collapse
Affiliation(s)
- Valentina Masola
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Gloria Bellin
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Giovanni Gambaro
- Nephrology and Dialysis Division, Columbus-Gemelli Hospital, Catholic University School of Medicine, Rome, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Carlo Rugiu
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| |
Collapse
|
11
|
Acidic organelles mediate TGF-β1-induced cellular fibrosis via (pro)renin receptor and vacuolar ATPase trafficking in human peritoneal mesothelial cells. Sci Rep 2018; 8:2648. [PMID: 29422602 PMCID: PMC5805675 DOI: 10.1038/s41598-018-20940-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/26/2018] [Indexed: 01/30/2023] Open
Abstract
TGF-β1, which can cause renal tubular injury through a vacuolar-type H+-ATPase (V-ATPase)-mediated pathway, is induced by the glucose degradation product methylglyoxal to yield peritoneal injury and fibrosis. The present study investigated the roles of V-ATPase and its accessory protein, the (pro)renin receptor, in peritoneal fibrosis during peritoneal dialysis. Rats daily administered 20 mM methylglyoxal intraperitoneally developed significant peritoneal fibrosis after 7 days with increased expression of TGF-β and V-ATPase, which was reduced by the inhibition of V-ATPase with co-administration of 100 mM bafilomycin A1. The (pro)renin receptor and V-ATPase were expressed in acidic organelles and cell membranes of human peritoneal mesothelial cells. TGF-β1 upregulated the expression of collagens, α-SMA, and EDA-fibronectin, together with ERK1/2 phosphorylation, which was reduced by inhibition of V-ATPase, (pro)renin receptor, or the MAPK pathway. Fibronectin and the soluble (pro)renin receptor were excreted from cells by acidic organelle trafficking in response to TGF-β1; this excretion was also suppressed by inhibition of V-ATPase. Soluble (pro)renin receptor concentrations in effluents of patients undergoing peritoneal dialysis were associated with the dialysate-to-plasma ratio of creatinine. Together, these results demonstrate a novel fibrosis mechanism through the (pro)renin receptor and V-ATPase in the acidic organelles of peritoneal mesothelial cells.
Collapse
|
12
|
Ito Y, Kinashi H, Katsuno T, Suzuki Y, Mizuno M. Peritonitis-induced peritoneal injury models for research in peritoneal dialysis review of infectious and non-infectious models. RENAL REPLACEMENT THERAPY 2017. [DOI: 10.1186/s41100-017-0100-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
13
|
Igarashi Y, Morishita Y, Yoshizawa H, Imai R, Imai T, Hirahara I, Akimoto T, Ookawara S, Ishibashi K, Muto S, Nagata D. The association between soluble intercellular adhesion molecule-1 levels in drained dialysate and peritoneal injury in peritoneal dialysis. Ren Fail 2017; 39:392-399. [PMID: 28201944 PMCID: PMC6014485 DOI: 10.1080/0886022x.2017.1287735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Chronic inflammation of the peritoneum causes peritoneal injury in patients on peritoneal dialysis. Intercellular adhesion molecule-1 and its circulating form, soluble intercellular adhesion molecule-1, play pivotal roles in inflammation. However, their role in peritoneal injury is unclear. Methods: We measured changes in intercellular adhesion molecule-1 expression in the peritoneum of a peritoneal injury model in rats. The associations between soluble intercellular adhesion molecule-1 levels in drained dialysate and the solute transport rate (D/P-Cr and D/D0-glucose) determined by the peritoneal equilibration test, and matrix metalloproteinase-2 levels in drained dialysate were investigated in 94 peritoneal drained dialysate samples. Results: Intercellular adhesion molecule-1 expression was increased in the peritoneum of rats with peritoneal injury. Soluble intercellular adhesion molecule-1 levels in drained dialysate were significantly positively correlated with D/P-Cr (r = .51, p < .01) and inversely correlated with D/D0-glucose (r = −.44, p < .01). They were also significantly positively correlated with matrix metalloproteinase-2 levels in drained dialysate (r = .86, p < .01). Conclusions: Intercellular adhesion molecule-1expression is increased in the peritoneum of a peritoneal injury model in the rat, and soluble intercellular adhesion molecule-1 levels in drained dialysate are associated with peritoneal injury in patients on peritoneal dialysis. These results suggest that soluble intercellular adhesion molecule-1 could be a novel biomarker of peritoneal injury in patients on peritoneal dialysis.
Collapse
Affiliation(s)
- Yusuke Igarashi
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Yoshiyuki Morishita
- b Division of Nephrology, Department of Integrated Medicine , Saitama Medical Center, Jichi Medical University , Omiya, Saitama City, Saitama , Japan
| | - Hiromichi Yoshizawa
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Reika Imai
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Toshimi Imai
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Ichiro Hirahara
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Tetsu Akimoto
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Susumu Ookawara
- b Division of Nephrology, Department of Integrated Medicine , Saitama Medical Center, Jichi Medical University , Omiya, Saitama City, Saitama , Japan
| | - Kenichi Ishibashi
- c Department of Medical Physiology , Meiji Pharmaceutical University , Kiyose , Tokyo , Japan
| | - Shigeaki Muto
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Daisuke Nagata
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| |
Collapse
|
14
|
Inhibition of H3K9 methyltransferase G9a ameliorates methylglyoxal-induced peritoneal fibrosis. PLoS One 2017; 12:e0173706. [PMID: 28278257 PMCID: PMC5344517 DOI: 10.1371/journal.pone.0173706] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/24/2017] [Indexed: 01/28/2023] Open
Abstract
Activity of H3K9 histone methyltransferase G9a is reportedly induced by transforming growth factor-β1 (TGF-β1) and plays an important role in the progression of cancer and fibrosis. In this study, we investigated whether inhibition of G9a-mediated H3K9 methylation attenuates peritoneal fibrosis in mice and human peritoneal mesothelial cells (HPMCs). Nonadherent cells of peritoneal dialysis (PD) patients were isolated from PD effluent to examine expression of G9a. Peritoneal fibrosis was induced by peritoneal injection of methylglyoxal (MGO) in male C57/B6 mice for 3 weeks. BIX01294, a G9a inhibitor, was administered by subcutaneous injection. Effects of BIX01294 on MGO-induced pathological and functional changes in mice were evaluated by immunohistochemistry and a peritoneal equilibration test. HPMCs were isolated from human omentum, and the inhibitory effect of BIX01294 on TGF-β1-induced fibrotic changes was investigated in the HPMCs by western blotting. G9a was upregulated in nonadherent cells of human PD effluent, the peritoneum of MGO-injected mice, and TGF-β1-stimulated HPMCs. BIX01294 significantly reduced the submesothelial zone thickness and cell density in MGO-injected mice. Immunohistochemical staining revealed that BIX01294 treatment decreased not only mono-methylation of H3K9 (H3K9me1), but also the number of mesenchymal cells, accumulation of collagen, and infiltration of monocytes. In addition to the pathological changes, BIX01294 reduced the level of TGF-β1 in peritoneal fluid and improved peritoneal functions. Furthermore, BIX01294 inhibited TGF-β1-induced fibrotic changes along with suppression of H3K9me1 in HPMCs. Therefore, inhibition of H3K9 methyltransferase G9a suppresses peritoneal fibrosis through a reduction of H3K9me1.
Collapse
|
15
|
Hirata H, Fumoto S, Miyamoto H, Nakashima M, Nakayama M, Nishida K. Evaluation for Peritoneal Injury at an Early Stage Using Dual Macromolecular Markers. Biol Pharm Bull 2017; 39:1581-1587. [PMID: 27725434 DOI: 10.1248/bpb.b15-01042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term peritoneal dialysis (PD) frequently produces morphological and functional changes of the peritoneum, making continuation of PD difficult. Therefore, it is necessary to evaluate peritoneal injury at an early stage and develop appropriate therapies. The aims of the present study were to evaluate peritoneal injury at an early stage and assess a drug for prevention of peritoneal injury using our previously developed novel evaluation method. Peritoneal injury was induced in model animals by intraperitoneal injection of methylglyoxal (MGO) for 1 to 5 consecutive days or chlorhexidine digluconate (CG) for 1 to 14 consecutive days. Tetramethylrhodamine-dextran (RD)-10 and fluorescein isothiocyanate-dextran (FD)-2000 were then injected into the peritoneal cavity and recovered after 120 min to evaluate peritoneal injury. The ratio of the concentration of RD-10 to FD-2000 (RD-10/FD-2000 ratio) significantly decreased in animals that had been treated with MGO or CG for 1 d. Moreover, the RD-10/FD-2000 ratio significantly increased in CG- and thalidomide-treated animals. The RD-10/FD-2000 ratio can be used to evaluate peritoneal injury at an early stage and assess the drug efficacy of thalidomide for prevention of peritoneal injury. This study will contribute to the development of therapeutic treatments for peritoneal injury.
Collapse
Affiliation(s)
- Haruna Hirata
- Graduate School of Biomedical Sciences, Nagasaki University
| | | | | | | | | | | |
Collapse
|
16
|
Mori Y, Kakuta T, Miyakogawa T, Takekoshi S, Yuzawa H, Kobayashi H, Kawakami A, Miyata T, Fukagawa M. Effect of Scavenging Circulating Reactive Carbonyls by Oral Pyridoxamine in Uremic Rats on Peritoneal Dialysis. Ther Apher Dial 2016; 20:645-654. [PMID: 27620210 DOI: 10.1111/1744-9987.12446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022]
Abstract
Pyridoxamine, a reactive carbonyl (RCO) scavenger, can ameliorate peritoneal deterioration in uremic peritoneal dialysis (PD) rats when given via dialysate. We examined the effects of scavenging circulating RCOs by oral pyridoxamine. Rats underwent nephrectomy and 3 weeks of twice daily PD either alone or with once daily oral pyridoxamine. PD solution was supplemented with methylglyoxal, a major glucose-derived RCO, to quench intraperitoneal pyridoxamine. Oral pyridoxamine achieved comparable blood and dialysate pyridoxamine concentrations, suppressed pentosidine accumulation in the blood but not in the mesenterium or dialysate, and reduced the increases in small solute transport and mesenteric vessel densities, with no effects on submesothelial matrix layer thickening or serum creatinine. Thus, reducing circulating RCOs by giving oral pyridoxamine with PD provides limited peritoneal protection. However, orally given pyridoxamine efficiently reaches the peritoneal cavity and would eliminate intraperitoneal RCOs. Oral pyridoxamine is more clinically favorable and may be as protective as intraperitoneal administration.
Collapse
Affiliation(s)
- Yoshitaka Mori
- Department of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan.,Unit of Translational Medicine, Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takatoshi Kakuta
- Department of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan.,Department of Nephrology, Endocrinology and Metabolism, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan
| | - Takayo Miyakogawa
- Department of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Susumu Takekoshi
- Division of Basic Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Hiroko Yuzawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Kobayashi
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Japan
| | - Atsushi Kawakami
- Unit of Translational Medicine, Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masafumi Fukagawa
- Department of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
17
|
Morishita Y, Yoshizawa H, Watanabe M, Imai R, Imai T, Hirahara I, Akimoto T, Ookawara S, Muto S, Nagata D. MicroRNA expression profiling in peritoneal fibrosis. Transl Res 2016; 169:47-66. [PMID: 26616819 DOI: 10.1016/j.trsl.2015.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
Peritoneal fibrosis (PF) is an intractable complication leading to peritoneal membrane failure in peritoneal dialysis (PD). The aim of this study was to identify microRNAs (miRNAs) involved in PF. Peritoneal tissue from a PF rat model was screened for miRNA expression using microarray analysis. The expression levels of differentially expressed miRNAs were evaluated in serum and drained dialysate and associated with peritoneal membrane functions, as measured by the peritoneal equilibrium test in 33 PD patients. Furthermore, an miRNA inhibitor (anti-miRNA-21-5p locked nucleic acid (LNA): anti-miRNA-21-LNA) was intraperitoneally injected to PF model mice to investigate its effects on PF. The initial profiling study of PF rat peritoneal tissue identified 6 miRNAs (miRNA-142-3p, miRNA-21-5p, miRNA-221-3p, miRNA-223-3p, miRNA-34a-5p, and miRNA-327) whose expression was increased more than 2-fold and no miRNAs whose expression was decreased more than half. Among them, serum levels of miRNA-21-5p, miRNA-221-3p, and miRNA-327 and drained dialysate levels of miRNA-221-3p and miRNA-34a-5p were significantly correlated with peritoneal membrane functions in PD patients. Anti-miRNA-21-LNA significantly inhibited miRNA-21-5p expression in the PF mouse peritoneum, inhibited peritoneal fibrous thickening, and maintained peritoneal membrane functions. These results suggest that several miRNAs are involved in PF and that they may be useful as novel diagnostic biomarkers and therapeutic targets for PF.
Collapse
Affiliation(s)
- Yoshiyuki Morishita
- Division of Nephrology, Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Omiya, Saitama, Japan.
| | - Hiromichi Yoshizawa
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Minami Watanabe
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Reika Imai
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Toshimi Imai
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Ichiro Hirahara
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Tetsu Akimoto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Susumu Ookawara
- Division of Nephrology, Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Omiya, Saitama, Japan
| | - Shigeaki Muto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| |
Collapse
|
18
|
Fan YP, Hsia CC, Tseng KW, Liao CK, Fu TW, Ko TL, Chiu MM, Shih YH, Huang PY, Chiang YC, Yang CC, Fu YS. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis. Stem Cells Transl Med 2015; 5:235-47. [PMID: 26718649 DOI: 10.5966/sctm.2015-0001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/08/2015] [Indexed: 11/16/2022] Open
Abstract
A major complication in continuous, ambulatory peritoneal dialysis in patients with end-stage renal disease who are undergoing long-term peritoneal dialysis (PD) is peritoneal fibrosis, which can result in peritoneal structural changes and functional ultrafiltration failure. Human umbilical mesenchymal stem cells (HUMSCs) in Wharton's jelly possess stem cell properties and are easily obtained and processed. This study focuses on the effects of HUMSCs on peritoneal fibrosis in in vitro and in vivo experiments. After 24-hour treatment with mixture of Dulbecco's modified Eagle's medium and PD solution at a 1:3 ratio, primary human peritoneal mesothelial cells became susceptible to PD-induced cell death. Such cytotoxic effects were prevented by coculturing with primary HUMSCs. In a rat model, intraperitoneal injections of 20 mM methylglyoxal (MGO) in PD solution for 3 weeks (the PD/MGO 3W group) markedly induced abdominal cocoon formation, peritoneal thickening, and collagen accumulation. Immunohistochemical analyses indicated neoangiogenesis and significant increase in the numbers of ED-1- and α-smooth muscle actin (α-SMA)-positive cells in the thickened peritoneum in the PD/MGO 3W group, suggesting that PD/MGO induced an inflammatory response. Furthermore, PD/MGO treatment for 3 weeks caused functional impairments in the peritoneal membrane. However, in comparison with the PD/MGO group, intraperitoneal administration of HUMSCs into the rats significantly ameliorated the PD/MGO-induced abdominal cocoon formation, peritoneal fibrosis, inflammation, neoangiogenesis, and ultrafiltration failure. After 3 weeks of transplantation, surviving HUMSCs were found in the peritoneum in the HUMSC-grafted rats. Thus, xenografts of HUMSCs might provide a potential therapeutic strategy in the prevention of peritoneal fibrosis. Significance: This study demonstrated that direct intraperitoneal transplantation of human umbilical mesenchymal stem cells into the rat effectively prevented peritoneal dialysis/methylglyoxal-induced abdominal cocoon formation, ultrafiltration failure, and peritoneal membrane alterations such as peritoneal thickening, fibrosis, and inflammation. These findings provide a basis for a novel approach for therapeutic benefits in the treatment of encapsulating peritoneal sclerosis.
Collapse
Affiliation(s)
- Yu-Pei Fan
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ching-Chih Hsia
- Division of Nephrology, Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan, Republic of China
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Chih-Kai Liao
- School of Medicine, I-Shou University, Kaohsiung City, Taiwan, Republic of China
| | - Tz-Win Fu
- Laboratory Medicine Department, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Tsui-Ling Ko
- Department of Optometry, Shu-Zen College of Medicine and Management, Kaohsiung City, Taiwan, Republic of China
| | - Mei-Miao Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Yang-Hsin Shih
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China School of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Pei-Yu Huang
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yi-Chia Chiang
- Taipei Municipal Zhong Shan Girls High School, Taipei, Taiwan, Republic of China
| | - Chih-Ching Yang
- Department of Planning, Ministry of Health and Welfare, Executive Yuan, Taipei, Taiwan, Republic of China Department of Internal Medicine
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
19
|
Effluent Tenascin-C Levels Reflect Peritoneal Deterioration in Peritoneal Dialysis: MAJOR IN PD Study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:241098. [PMID: 26770971 PMCID: PMC4684852 DOI: 10.1155/2015/241098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/04/2015] [Accepted: 10/29/2015] [Indexed: 01/03/2023]
Abstract
Peritoneal deterioration causing structural changes and functional decline is a major complication of peritoneal dialysis (PD). The aim of this study was to explore effluent biomarkers reflecting peritoneal deterioration. In an animal study, rats were intraperitoneally administered with PD fluids adding 20 mM methylglyoxal (MGO) or 20 mM formaldehyde (FA) every day for 21 days. In the MGO-treated rats, tenascin-C (TN-C) levels in the peritoneal effluents were remarkably high and a cluster of TN-C-positive mesothelial cells with epithelial-to-mesenchymal transition- (EMT-) like change excessively proliferated at the peritoneal surface, but not in the FA-treated rats. Effluent matrix metalloproteinase-2 (MMP-2) levels increased in both the MGO- and FA-treated rats. In a clinical study at 18 centers between 2006 and 2013, effluent TN-C and MMP-2 levels were quantified in 182 PD patients with end-stage renal disease. Peritoneal function was estimated using the peritoneal equilibration test (PET). From the PET results, the D/P Cr ratio was correlated with effluent levels of TN-C (ρ = 0.57, p < 0.001) and MMP-2 (ρ = 0.73, p < 0.001). We suggest that TN-C in the effluents may be a diagnostic marker for peritoneal deterioration with EMT-like change in mesothelial cells in PD.
Collapse
|
20
|
Onishi A, Akimoto T, Urabe M, Hirahara I, Muto S, Ozawa K, Nagata D, Kusano E. Attenuation of methylglyoxal-induced peritoneal fibrosis: immunomodulation by interleukin-10. J Transl Med 2015; 95:1353-62. [PMID: 26367488 DOI: 10.1038/labinvest.2015.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/28/2015] [Accepted: 05/19/2015] [Indexed: 01/07/2023] Open
Abstract
Peritoneal fibrosis (PF), a serious pathophysiology of peritoneal dialysis (PD), is implicated in various types of chronic inflammation. In the present study, we examined the benefits of interleukin (IL)-10, which exerts anti-inflammatory effects, in an experimental rat model of methylglyoxal (MGO)-induced PF. We injected an adeno-associated virus (AAV) vector encoding rat IL-10 or enhanced green fluorescent protein (GFP) into male Sprague-Dawley rats at 6 weeks of age. Four weeks later, the rats received continuous peritoneal injections of conventional PD fluid (PDF) with MGO for 3 weeks. Then, the peritoneal histology and the expression levels of fibrogenic mediators and proinflammatory cytokines were analyzed. The rats demonstrating persistent IL-10 expression showed significantly reduced fibrous peritoneal thickening compared with those with GFP expression. The infiltration of macrophages, the expression of tumor necrosis factor-α, IL-1β, IL-6, transforming growth factor-β1, Snail, and matrix metalloproteinase 2 genes as well as the proliferation of mesenchymal-like mesothelial cells augmented by MGO were all significantly suppressed by IL-10 expression. IL-10 also abrogated the extent of MGO-induced bowel adhesions mimicking a cocoon-like mass. Our findings provide valuable insight into the potential benefit of immunomodulation with IL-10 as one potentially effective therapeutic strategy for preventing the onset of peritoneal injury resulting in PF.
Collapse
Affiliation(s)
- Akira Onishi
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Tetsu Akimoto
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Masashi Urabe
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Ichiro Hirahara
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shigeaki Muto
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Eiji Kusano
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
21
|
Vascular endothelial growth factor receptor-3 is a novel target to improve net ultrafiltration in methylglyoxal-induced peritoneal injury. J Transl Med 2015; 95:1029-43. [PMID: 26121315 DOI: 10.1038/labinvest.2015.87] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 01/31/2023] Open
Abstract
Appropriate fluid balance is important for good clinical outcomes and survival in patients on peritoneal dialysis. We recently reported that lymphangiogenesis associated with fibrosis developed in the peritoneal cavity via the transforming growth factor-β1-vascular endothelial growth factor-C (VEGF-C) pathway. We investigated whether VEGF receptor-3 (VEGFR-3), the receptor for VEGF-C and -D, might be a new target to improve net ultrafiltration by using adenovirus-expressing soluble VEGFR-3 (Adeno-sVEGFR-3) in rodent models of peritoneal injury induced by methylglyoxal (MGO). We demonstrated that lymphangiogenesis developed in these MGO models, especially in the diaphragm, indicating that lymphangiogenesis is a common feature in the peritoneal cavity with inflammation and fibrosis. In MGO models, VEGF-D was significantly increased in the diaphragm; however, VEGF-C was not significantly upregulated. Adeno-sVEGFR-3, which was detected on day 50 after administration via tail vein injections, successfully suppressed lymphangiogenesis in the diaphragm and parietal peritoneum in mouse MGO models without significant effects on fibrosis, inflammation, or neoangiogenesis. Drained volume in the peritoneal equilibration test using a 7.5% icodextrin peritoneal dialysis solution (the 7.5% icodextrin peritoneal equilibration test) was improved by Adeno-sVEGFR-3 on day 22 (P<0.05) and day 50 after reduction of inflammation (P<0.01), indicating that the 7.5% icodextrin peritoneal equilibration test identifies changes in lymphangiogenesis. The solute transport rate was not affected by suppression of lymphangiogenesis. In human peritoneal dialysis patients, the dialysate to plasma ratio of creatinine positively correlated with the dialysate VEGF-D concentration (P<0.001). VEGF-D mRNA was significantly higher in the peritoneal membranes of patients with ultrafiltration failure, indicating that VEGF-D is involved in the development of lymphangiogenesis in peritoneal dialysis patients. These results indicate that VEGFR-3 is a new target to improve net ultrafiltration by suppressing lymphatic absorption and that the 7.5% icodextrin peritoneal equilibration test is useful for estimation of lymphatic absorption.
Collapse
|
22
|
Yoh K, Ojima M, Takahashi S. Th2-biased GATA-3 transgenic mice developed severe experimental peritoneal fibrosis compared with Th1-biased T-bet and Th17-biased RORγt transgenic mice. Exp Anim 2015; 64:353-62. [PMID: 26156402 PMCID: PMC4637371 DOI: 10.1538/expanim.15-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Encapsulating peritoneal sclerosis is one of the most serious complications of long-term peritoneal dialysis. The pathogenesis of encapsulating peritoneal sclerosis has not been elucidated, but several putative factors necessary for the development of peritoneum fibrosis (PF) have been reported. However, the roles of T helper (Th) cells in the progression of PF are unknown. The purpose of this study was to clarify the roles of Th1, Th2, and Th17 cells in the progression of PF. T-bet, GATA-3, and RORγt are Th1, Th2, and Th17 lineage commitment transcription factors, respectively. We previously generated Th1-biased (T-bet transgenic (Tg)) mice, Th2-biased (GATA-3 Tg) mice, and Th17-biased (RORγt Tg) mice. In this study, Th1, Th2, Th17-biased, and wild-type mice were administered chlorhexidine gluconate (CG) intraperitoneally and analyzed on day 21. CG-injected GATA-3 Tg mice showed a distended intestinal tract and developed marked thickening of the submesothelial space compared with the other groups. CG-injected GATA-3 Tg mice also showed significant expression of α-SMA positive cells, macrophages, and collagen III in the submesothelium. In contrast, CG-injected T-bet Tg mice only developed mild peritoneal fibrosis. Cytokines analysis in peritoneal fluid showed that IFN-γ was significantly increased in CG-injected T-bet Tg mice and that IL-13 was significantly increased in CG-injected GATA-3 Tg mice. Moreover, intraperitoneal administration of IFN-γ improved PF in GC-injected wild-type mice. Our results suggest that Th2 cells may play roles in the development of experimental PF and that Th1 cells may alleviate the severity of experimental PF.
Collapse
Affiliation(s)
- Keigyou Yoh
- Anatomy and Embryology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Japan
| | | | | |
Collapse
|
23
|
Burke-Gaffney A, Creagh-Brown BC. Clinical solutions: not always what they seem? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:213. [PMID: 25947007 PMCID: PMC4423094 DOI: 10.1186/s13054-015-0870-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anne Burke-Gaffney
- Vascular Biology, Cardiovascular Sciences, National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.
| | - Benedict C Creagh-Brown
- Intensive Care and Respiratory Medicine, The Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, GU2 7XX, UK. .,Surrey Perioperative Anaesthesia and Critical care collaborative Research group (SPACeR), Faculty of Health and Medical Science, Duke of Kent Building, University of Surrey, Guildford, Surrey, GU2 7TE, UK.
| |
Collapse
|
24
|
Methylglyoxal Induced Basophilic Spindle Cells with Podoplanin at the Surface of Peritoneum in Rat Peritoneal Dialysis Model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:289751. [PMID: 26064894 PMCID: PMC4433629 DOI: 10.1155/2015/289751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/16/2014] [Indexed: 11/18/2022]
Abstract
Peritoneal dialysis (PD) is a common treatment for patients with reduced or absent renal function. Long-term PD leads to peritoneal injury with structural changes and functional decline. At worst, peritoneal injury leads to encapsulating peritoneal sclerosis (EPS), which is a serious complication of PD. In order to carry out PD safely, it is important to define the mechanism of progression of peritoneal injury and EPS. We prepared rat models of peritoneal injury by intraperitoneal administration of glucose degradation products, such as methylglyoxal (MGO) or formaldehyde (FA), chlorhexidine gluconate (CG), and talc. In rats treated with MGO, peritoneal fibrous thickening with the appearance of basophilic spindle cells with podoplanin, cytokeratin, and α-smooth muscle actin at the surface of the peritoneum was observed. These cells may have been derived from mesothelial cells by epithelial-to-mesenchymal transition. In FA- or CG-treated rats, the peritoneum was thickened, and mesothelial cells were absent at the surface of the peritoneum. The CG- or MGO-treated rats presented with a so-called abdominal cocoon. In the talc-treated rats, extensive peritoneal adhesion and peritoneal thickening were observed. MGO-induced peritoneal injury model may reflect human histopathology and be suitable to analyze the mechanism of progression of peritoneal injury and EPS.
Collapse
|
25
|
Yoshizawa H, Morishita Y, Watanabe M, Ishibashi K, Muto S, Kusano E, Nagata D. TGF-β₁-siRNA delivery with nanoparticles inhibits peritoneal fibrosis. Gene Ther 2015; 22:333-40. [PMID: 25567535 DOI: 10.1038/gt.2014.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 12/19/2022]
Abstract
Gene therapies may be promising for the treatment of peritoneal fibrosis (PF) in subjects undergoing peritoneal dialysis (PD). However, a method of delivery of treatment genes to the peritoneum is lacking. We attempted to develop an in vivo small interfering RNA (siRNA) delivery system with liposome-based nanoparticles (NPs) to the peritoneum to inhibit PF. Transforming growth factor (TGF)-β1-siRNAs encapsulated in NPs (TGF-β1-siRNAs-NPs) dissolved in PD fluid were injected into the peritoneum of mice with PF three times a week for 2 weeks. TGF-β1-siRNAs-NPs knocked down TGF-β1 expression significantly in the peritoneum and inhibited peritoneal thickening with fibrous changes. TGF-β1-siRNAs-NPs also inhibited the increase of expression of α-smooth muscle actin-positive myofibroblasts. These results suggest that the TGF-β1-siRNA delivery system with NPs described here could be an effective therapeutic option for PF in subjects undergoing PD.
Collapse
Affiliation(s)
- H Yoshizawa
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Y Morishita
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - M Watanabe
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - K Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - S Muto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - E Kusano
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - D Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
26
|
Kihm LP, Müller-Krebs S, Holoch S, Schmuck S, Becker LE, Brownlee M, Zeier M, Fleming TH, Nawroth PP, Schwenger V. Increased peritoneal damage in glyoxalase 1 knock-down mice treated with peritoneal dialysis. Nephrol Dial Transplant 2014; 30:401-9. [PMID: 25387474 DOI: 10.1093/ndt/gfu346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Peritoneal dialysis (PD) is limited by peritoneal fibrosis and ultrafiltration failure. This is in part caused by the high concentration of glucose degradation products (GDPs) present in PD fluids (PDF) as a consequence of heat sterilization. Existing research in long-term PD has mainly dealt with the toxicity induced by GDPs and the development of therapeutic strategies to reduce the cellular burden of GDPs. Currently, there are few data regarding the potential role of detoxification systems of GDP in PD. In this study, the role of glyoxalase 1 (Glo1), the major detoxification pathway for dicarbonyl-derived GD such as methylglyoxal (MG) and glyoxal (Gx), was investigated in vivo using heterozygous knock-down mice for Glo1 (Glo1(-/+)). METHODS Wild-type (WT) and Glo1(-/+) mice were repeatedly treated with PDF containing low and high amounts of GDP, particularly with respect to the content of dicarbonyls. After 12 weeks of treatment with PDF, peritoneal damage and function were evaluated. RESULTS Glo1(-/+) mice treated with PDF showed increased formation of advanced glycation endproduct (AGE) when compared with WT mice, particularly the Gx-derived AGE, carboxymethyl-lysine. This was associated with increased inflammation, neovascularization, increased peritoneal fibrosis and impaired peritoneal function. CONCLUSIONS This study suggests a pivotal and underestimated role for Glo1 as a detoxifying enzyme in GDP-associated peritoneal toxicity in PD. The indirect and direct modulation of Glo1 may therefore offer a new therapeutic option in prevention of GDP-induced peritoneal damage in PD.
Collapse
Affiliation(s)
- Lars P Kihm
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | | | - Sandra Holoch
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Svenja Schmuck
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Luis E Becker
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Michael Brownlee
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Thomas H Fleming
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Guo J, Xiao J, Gao H, Jin Y, Zhao Z, Jiao W, Liu Z, Zhao Z. Cyclooxygenase-2 and vascular endothelial growth factor expressions are involved in ultrafiltration failure. J Surg Res 2014; 188:527-536.e2. [PMID: 24559584 DOI: 10.1016/j.jss.2014.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/10/2014] [Accepted: 01/16/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Long-term peritoneal dialysis (PD) is associated with ultrafiltration failure (UFF). The aim of the study was to investigate changes in cyclooxygenase-2 (COX-2), vascular endothelial growth factor A (VEGF-A), and vascular endothelial growth factor C (VEGF-C) expressions in a rat model of UFF induced by PD solution. METHODS Sprague-Dawley rats were divided into six groups (n = 8/group): normal untreated control group, sham operation group, uremic group (nephrectomy without PD), uremic 2-wk PD group (PD solution for 2 wk), uremic 4-wk PD group (PD solution for 4 wk), and uremic 4-wk PD + celecoxib group (PD solution plus COX-2 inhibitor celecoxib 20 mg/kg for 4 wk). Peritoneal function was determined by peritoneal equilibration test. Peritoneal morphology was determined by hematoxylin and eosin and Masson staining. Microvessel and lymphatic microvessel formation was determined by immunohistochemistry. COX-2, VEGF-A, and VEGF-C expressions were determined by real-time polymerase chain reaction and immunohistochemistry. RESULTS Uremic rat model was successfully established. PD-induced peritoneal morphologic changes associated with UFF, characterized by inflammation, edema, and collagen accumulation. PD solution increased the density of microvessels marked by CD31 (microvessel density) and lymphatic microvessels marked by LYVE-1 (lymphatic vessel density) in peritoneum. COX-2, VEGF-A, and VEGF-C expression levels in the uremic 4-wk PD group were higher than those in the uremic group (all P < 0.05). All these changes were partially reversed by celecoxib. VEGF-A and VEGF-C protein expressions were positively correlated with microvessel density and lymphatic vessel density formation. CONCLUSIONS COX-2 could increase VEGF-A and VEGF-C expressions in peritoneal tissue, resulting in increased formation of peritoneal microvessels and lymphatic microvessels, playing pivotal roles in the development of UFF.
Collapse
Affiliation(s)
- Jia Guo
- Department of Nephrology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China; Nephropathy Research Institutes of Zhengzhou University, Zhengzhou, Henan, China; Key-Disciplines Laboratory Clinical-Medicine Henan, Zhengzhou, Henan, China
| | - Jing Xiao
- Department of Nephrology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China; Nephropathy Research Institutes of Zhengzhou University, Zhengzhou, Henan, China; Key-Disciplines Laboratory Clinical-Medicine Henan, Zhengzhou, Henan, China
| | - Huanhuan Gao
- Department of Nephrology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China; Nephropathy Research Institutes of Zhengzhou University, Zhengzhou, Henan, China; Key-Disciplines Laboratory Clinical-Medicine Henan, Zhengzhou, Henan, China
| | - Yunfeng Jin
- Department of Nephrology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China; Nephropathy Research Institutes of Zhengzhou University, Zhengzhou, Henan, China; Key-Disciplines Laboratory Clinical-Medicine Henan, Zhengzhou, Henan, China
| | - Zhihong Zhao
- Department of Nephrology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China; Nephropathy Research Institutes of Zhengzhou University, Zhengzhou, Henan, China; Key-Disciplines Laboratory Clinical-Medicine Henan, Zhengzhou, Henan, China
| | - Wenju Jiao
- Department of Nephrology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China; Nephropathy Research Institutes of Zhengzhou University, Zhengzhou, Henan, China; Key-Disciplines Laboratory Clinical-Medicine Henan, Zhengzhou, Henan, China
| | - Zhangsuo Liu
- Department of Nephrology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China; Nephropathy Research Institutes of Zhengzhou University, Zhengzhou, Henan, China; Key-Disciplines Laboratory Clinical-Medicine Henan, Zhengzhou, Henan, China
| | - Zhanzheng Zhao
- Department of Nephrology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China; Nephropathy Research Institutes of Zhengzhou University, Zhengzhou, Henan, China; Key-Disciplines Laboratory Clinical-Medicine Henan, Zhengzhou, Henan, China.
| |
Collapse
|
28
|
Paramasivan S, Drilling AJ, Jardeleza C, Jervis-Bardy J, Vreugde S, Wormald PJ. Methylglyoxal-augmented manuka honey as a topical anti-Staphylococcus aureus biofilm agent: safety and efficacy in an in vivo model. Int Forum Allergy Rhinol 2014; 4:187-95. [PMID: 24415444 DOI: 10.1002/alr.21264] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/20/2013] [Accepted: 11/12/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Bacterial biofilms are thought to contribute to recalcitrance in chronic rhinosinusitis (CRS) patients. Manuka honey (MH) and its active component methylglyoxal (MGO) have demonstrated antibiofilm activity in vitro. This study evaluated the safety and efficacy of these agents in an in vivo model. METHODS To assess safety, ovine frontal sinuses were flushed twice daily for 14 days. In each sheep, 1 sinus was flushed with a panel of MGO concentrations ranging from 0.5 to 7.2 mg/mL alone and flushed with a panel of with 16.5% wt/vol MH enriched with MGO at the same range of concentrations (0.5-7.2 mg/mL; designated MH/MGO). Contralateral sinuses were flushed with saline control. Tissue morphology was assessed histologically and with scanning electron microscopy. Efficacy was tested by developing Staphylococcus aureus biofilms in sheep sinuses. Twice-daily irrigation for 5 days was commenced with either saline, MGO (0.5-3.6 mg/mL) alone, or MH/MGO (with 0.5-3.6 mg/mL MGO). Biofilm biomass was compared between the groups (n = 4) using LIVE/DEAD BacLight staining and confocal scanning laser microscopy. RESULTS The results of the safety assessment, for normal sinuses treated with MGO alone or with MH/MGO (≤1.8 mg/mL) showed normal pseudostratified epithelium and cilia structure; however, higher concentrations caused cilia denudation and squamous metaplasia. As for efficacy, when compared to saline flush, treatment with MH/MGO at 0.9 mg/mL (0.608 ± 0.110 vs 0.316 ± 0.197 μm(3) /μm(2) , respectively; p = 0.015) and 1.8 mg/mL (0.676 ± 0.079 vs 0.114 ± 0.033 μm(3) /μm(2) , respectively; p = 0.001) significantly reduced biofilm biomass. CONCLUSION Sinus irrigation with MH/MGO at MGO concentrations between 0.9 and 1.8 mg/mL is both safe to mucosa and efficacious against S. aureus biofilm. MH/MGO irrigation could represent a viable treatment option for recalcitrant CRS.
Collapse
Affiliation(s)
- Sathish Paramasivan
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Yang CY, Chau YP, Lee HT, Kuo HY, Lee OK, Yang AH. Cannabinoid receptors as therapeutic targets for dialysis-induced peritoneal fibrosis. Am J Nephrol 2013; 37:50-8. [PMID: 23296044 DOI: 10.1159/000345726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/07/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Long-term exposure to bioincompatible peritoneal dialysis solutions is frequently complicated with peritoneal fibrosis and ultrafiltration failure. As cannabinoid receptor (CBR) ligands have been reported to be beneficial to ameliorate the process of liver fibrosis, we strove to investigate their therapeutic potential to prevent peritoneal fibrosis. METHODS We used the rat model of peritoneal fibrosis induced by intraperitoneal injection of methylglyoxal and in vitro mesothelial cell culture to test the effects of CBR ligands, including the type 1 CBR (CB(1)R) antagonist and the type 2 CBR (CB(2)R) agonist. RESULTS In the methylglyoxal model, both intraperitoneal CB(1)R antagonist (AM281) and CB(2)R agonist (AM1241) treatment significantly ameliorated peritoneal fibrosis. In addition, CB(1)R antagonist was able to alleviate TGF-β(1)-induced dedifferentiation of mesothelial cells and to maintain epithelial integrity in vitro. CONCLUSIONS Intraperitoneal administration of CBR ligands (CB(1)R antagonist and CB(2)R agonist) offers a potential therapeutic strategy to reduce dialysis-induced peritoneal fibrosis and to prolong the peritoneal survival in peritoneal dialysis patients.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Division of Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
A larger diffusion of peritoneal dialysis (PD) is limited by the progressive deterioration of the dialysis membrane structure and function, characterized in vitro and in vivo by mesothelial cell loss and closely related to the use of bioincompatible dialysis solutions. The apoptosis rate of rat and human mesothelial cells incubated in commercial PD fluid (PDF, 4.25 g/dL dextrose) became significant as early as 1 h after PDF addition and reached a plateau at 4-5 h. This pattern was unchanged after exposure to 1.5 g/dL dextrose PDF or freshly prepared PDF, indicating that effects were independent on the dextrose strength and manufacturing procedures but strictly dependent on PDF composition. Molecular studies revealed that PDF exposure inactivated the physiological volume recovery from hypertonic shrinkage, accompanied by an abnormal Ca(2+) signaling: a progressive intracellular Ca(2+) ([Ca(2+)](i)) rise resulting from an increased Ca(2+) entry. PDF also affected cytoskeleton integrity: early dissolution of actin filaments occurred well before the appearance of typical apoptosis features. Lastly, the PDF dependent apoptosis was almost completely prevented by the contemporary Ca(2+) concentration decrease and K(+) addition. This study suggests that the PDF dependent apoptosis arises from the extreme volume perturbations in mesothelial cells, turned out unable to regulate their volume back once exposed to a hyperosmolal medium containing high Ca(2+) levels in the absence of K(+), such PDF.
Collapse
|
31
|
Ryu HM, Oh EJ, Park SH, Kim CD, Choi JY, Cho JH, Kim IS, Kwon TH, Chung HY, Yoo M, Kim YL. Aquaporin 3 expression is up-regulated by TGF-β1 in rat peritoneal mesothelial cells and plays a role in wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2047-57. [PMID: 23041062 DOI: 10.1016/j.ajpath.2012.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Aquaporin 3 (AQP3) is expressed in many tissues including the peritoneum and kidney. In cultured mesothelial cells, glucose up-regulates AQP3, which may be important for water transport through the peritoneal membrane. However, there has been no research into the role of AQP3 in human peritoneal mesothelial cell (HPMC) migration or peritoneal fibrosis. We investigated the effects of transforming growth factor-β1 (TGF-β1) on AQP3 expression in HPMCs. We also investigated the role of AQP3 in the peritoneal wound healing process in rats. Chronic exposure to glucose-containing solution increased peritoneal myofibroblasts, with TGF-β1 and AQP3 expression in a model of long-term peritoneal dialysis. In vitro, TGF-β1 induced AQP3 expression in HPMCs. AQP3 knockdown by small-interfering RNA inhibited TGF-β1-induced AQP3 and α-smooth muscle actin expression and also slowed HPMC migration. AQP3 overexpression induced faster migration of HPMCs. Treatment with an extracellular signal-regulated kinase inhibitor and p38 kinase inhibitor attenuated TGF-β1-induced AQP3 expression in HPMCs. These data suggest that TGF-β1 induces AQP3 and that AQP3 has a critical role in TGF-β-induced HPMC migration. These findings provide evidence of a novel role for AQP3 in peritoneal fibrosis and wound healing. The effect of TGF-β1 on AQP3 expression in HPMCs is mediated, at least in part, by ERK and p38 signaling.
Collapse
Affiliation(s)
- Hye-Myung Ryu
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yamamoto D, Takai S, Akimoto T, Hirahara I, Ito C, Muto S, Kusano E. Matrix metalloproteinase-2 inhibition by temocapril and its important role in peritoneal transport. Clin Exp Pharmacol Physiol 2012; 39:864-8. [PMID: 23013132 DOI: 10.1111/j.1440-1681.2012.12003.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Matrix metalloproteinase (MMP)-2 plays an important role in tissue remodelling during peritoneal injury caused by peritoneal dialysis (PD), but MMP-2 inhibitors have not yet been used clinically. Recently, it was reported that captopril, an angiotensin-converting enzyme inhibitor (ACEI), can inhibit MMP-2. 2. To investigate the potential usefulness of ACEI during PD, the molecular interaction between the MMP-2 active site and the active form of temocapril (temocaprilat) was investigated using molecular modelling. Furthermore, the effects of temocapril on MMP-2 activity in peritoneal effluents and the peritoneal solute transport rate of PD patients were determined. 3. Temocaprilat bound to the MMP-2 active centre and recognized two hydrophobic substrate-binding sites in the MMP-2 molecular model. Matrix metalloproteinase-2 activity in peritoneal effluents was directly inhibited by temocaprilat (IC(50) 0.47 μmol/L). In one patient given temocapril, the peritoneal solute transport rate decreased gradually during PD. 4. Temocapril may prove to be an important candidate for development as a novel therapeutic agent for MMP-2 inhibition to prevent peritoneal injury caused by PD.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Biomedical Computation Center, Osaka Medical College, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Matrix metalloproteinase 2 induces epithelial-mesenchymal transition in proximal tubules from the luminal side and progresses fibrosis in mineralocorticoid/salt-induced hypertensive rats. J Hypertens 2012; 29:2440-53. [PMID: 22045122 DOI: 10.1097/hjh.0b013e32834c31f5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Excess mineralocorticoids such as deoxycorticosterone acetate (DOCA) together with salt are known to cause tubulointerstitial fibrosis, but the mechanisms underlying fibrosis progression are unclear. Therefore, we investigated the role of matrix metalloproteinase 2 (MMP2) in the epithelial-mesenchymal transition and fibrosis progression. METHODS Uninephrectomized rats drank 0.9% NaCl and 0.3% KCl solution and were treated with DOCA alone, DOCA + spironolactone, or vehicle for 1, 4, or 8 weeks. SBP, kidney function and morphology, and kidney and urine MMP2 activity were compared among the groups. RESULTS At week 4, the DOCA-treated group exhibited hypertension, tubulointerstitial fibrosis, increased MMP2 activity in the kidney and urine, and overexpression of MMP2 in proximal tubule cells and MMP14 in apical membranes; these results were more pronounced at week 8. At week 8, the proximal tubule cell apicolateral surface proteins villin, claudin 2, and E-cadherin were downregulated, and the mesenchymal marker α-smooth muscle actin was upregulated in the tubulointerstitium of DOCA-treated rats. These DOCA/salt-induced changes (except for hypertension) and fibrosis progression observed at week 8 were reversed by TISAM (a selective MMP2 inhibitor), which was administered from week 4 to week 8. All of the effects of DOCA/salt at week 8 were attenuated by spironolactone. CONCLUSION Eight weeks of treatment with DOCA/salt activated MMP2, primarily on the apical surface of proximal tubule cells, which induced epithelial-mesenchymal transition from the luminal side and promoted tubulointerstitial fibrosis progression. These MMP2-induced changes occurred via downstream processes regulated by mineralocorticoid receptors.
Collapse
|
34
|
Kim J, Kim CS, Lee YM, Jo K, Shin SD, Kim JS. Methylglyoxal induces hyperpermeability of the blood–retinal barrier via the loss of tight junction proteins and the activation of matrix metalloproteinases. Graefes Arch Clin Exp Ophthalmol 2012; 250:691-7. [DOI: 10.1007/s00417-011-1912-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/23/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022] Open
|
35
|
Matrix metalloproteinase levels in peritoneal effluents were increased in a patient with appendicitis undergoing continuous ambulatory peritoneal dialysis. Clin Exp Nephrol 2011; 16:501-4. [PMID: 22186947 DOI: 10.1007/s10157-011-0576-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/28/2011] [Indexed: 11/30/2022]
|
36
|
Epigallocatechin gallate suppresses peritoneal fibrosis in mice. Chem Biol Interact 2011; 195:95-104. [PMID: 22101032 DOI: 10.1016/j.cbi.2011.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 02/03/2023]
Abstract
Long-term peritoneal dialysis (PD) leads to histological changes in the peritoneal membrane. Angiogenesis and inflammation caused by glucose degradation products (GDPs) play crucial roles in peritoneal fibrosis. One such GDP is methylglyoxal (MGO), which enhances the formation of advanced glycation end products (AGEs). AGEs bind to their receptor (RAGE) and activate nuclear factor-κB (NF-κB), which is a key regulator of angiogenesis and inflammation. Recent studies have indicated that (-)-epigallocatechin gallate (EGCG), a tea polyphenol, inhibits angiogenesis and inflammation. Here, we examined whether EGCG suppresses peritoneal fibrosis in mice. Based on preliminary examination, 2mL of 40mM MGO or PD fluid was injected intraperitoneally and EGCG (50mg/kg) or saline was injected subcutaneously for 3weeks. In comparison to PD fluid+saline-treated mice, the peritoneal tissues of MGO+saline-treated mice showed marked thickening of the submesothelial compact zone. In the submesothelial compact zone of the MGO+saline-treated mice, CD31-positive vessels and vascular endothelial growth factor-positive cells were significantly increased, as were inflammation, F4/80-positive macrophages, and monocyte chemotactic protein-1. Moreover, 8-hydroxydeoxyguanosine, a marker of reactive oxygen species, and NF-κB, determined by Southwestern histochemistry, in the submesothelial compact zone were also increased in MGO+saline-treated mice. These changes were attenuated in MGO+EGCG-treated mice. We demonstrated that EGCG treatment suppresses peritoneal fibrosis via inhibition of NF-κB. Furthermore, EGCG inhibits reactive oxygen species production. The results of this study indicate that EGCG is a potentially novel candidate for the treatment of peritoneal fibrosis.
Collapse
|
37
|
Yamamoto D, Takai S, Hirahara I, Kusano E. Captopril directly inhibits matrix metalloproteinase-2 activity in continuous ambulatory peritoneal dialysis therapy. Clin Chim Acta 2010; 411:762-4. [DOI: 10.1016/j.cca.2010.02.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/08/2010] [Accepted: 02/17/2010] [Indexed: 11/16/2022]
|
38
|
Hirahara I, Ishibashi Y, Kaname S, Kusano E, Fujita T. Methylglyoxal induces peritoneal thickening by mesenchymal-like mesothelial cells in rats. Nephrol Dial Transplant 2008; 24:437-47. [PMID: 18790810 DOI: 10.1093/ndt/gfn495] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The epithelial-to-mesenchymal transition (EMT) of mesothelial cells was observed in patients on peritoneal dialysis and may be involved in peritoneal thickening. Conventional peritoneal dialysis fluids (PDFs) that contain glucose degradation products (GDPs), such as methylglyoxal (MGO) and formaldehyde (FA), are bioincompatible. The aim of this study is to analyse the participation of EMT in peritoneal thickening induced by GDPs in rats. METHODS Rat mesothelial cells were cultured with various GDPs, and the gene expression of Snail was analysed by polymerase chain reaction (PCR). Sprague-Dawley rats were administered intraperitoneally 20 mM MGO/PDFs, 20 mM FA/PDFs or 0.1% chlorhexidine gluconate (CHX)/15% ethanol/saline every day for 21 days. On Day 22, the expression of transforming growth factor-beta (TGF-beta), collagen 1, matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor (VEGF), Snail and receptor for advanced glycation end-products (RAGE) was analysed by PCR, enzyme-linked immunoassay or immunohistological staining. RESULTS In cell-culture experiments, the expression of Snail was enhanced by MGO, but not FA. In rats treated with 20 mM MGO, peritoneal fibrous thickening with the proliferation of mesenchymal-like mesothelial cells was observed. The expression of TGF-beta, collagen 1, MMP-2, VEGF, Snail and RAGE increased significantly (P < 0.01). In FA- or CHX-treated rats, the peritoneum was thickened with sparse collagen fibres, but mesenchymal-like mesothelial cells were not observed. CONCLUSIONS MGO induced peritoneal fibrous thickening with the proliferation of mesenchymal-like mesothelial cells in vivo. These cells may be transdifferentiated from mesothelial cells by EMT via Snail and play an important role in peritoneal fibrous thickening.
Collapse
Affiliation(s)
- Ichiro Hirahara
- Division of Total Renal Care Medicine, Department of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
39
|
Summers AM, Hoff CM, Topley N. How Can Genetic Advances Impact on Experimental Models of Encapsulating Peritoneal Sclerosis? Perit Dial Int 2008. [DOI: 10.1177/089686080802805s04] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this review we discuss how animal models have contributed to the understanding of pathological pathways that may be involved in the development of encapsulating peritoneal sclerosis. We review the various interventional procedures that, so far, have ameliorated disease progression in animals. Reviewing advancements in molecular biology and genetic technologies, we discuss how future experimental models may impact our understanding of the pathogenesis and treatment of this rare but complex disease.
Collapse
Affiliation(s)
| | | | - Nicholas Topley
- School of Medicine, Cardiff University, Wales, United Kingdom
| |
Collapse
|
40
|
Park SH, Kim YL, Lindholm B. Experimental Encapsulating Peritoneal Sclerosis Models: Pathogenesis and Treatment. Perit Dial Int 2008. [DOI: 10.1177/089686080802805s05] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Encapsulating peritoneal sclerosis (EPS) is rare but, with its high morbidity and mortality, it represents one of the most serious complications of long-term peritoneal dialysis. The pathogenesis of EPS has not been elucidated yet; therefore, there has been a growing interest in establishing appropriate animal models for EPS that would explain the pathogenesis of EPS and verify the efficacy of therapeutic agents targeting pathways such as angiogenesis and/ or fibrosis. This brief review provides an update on previously published animal experimental models of EPS. Based on this review, we discuss some aspects of pathogenesis and treatment options in patients with EPS. Experimental models of EPS cannot exactly reproduce human EPS because the latter most likely has a diverse etiology, including the influences of uremia, dialysis, and genetic factors. There is a need for new animal models that would test interventions targeting multiple risk factors while also taking into account putative genetic diversities that most likely are involved in human EPS.
Collapse
Affiliation(s)
- Sun-Hee Park
- Division of Baxter Novum and Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Nephrology and Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Yong-Lim Kim
- Division of Nephrology and Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Bengt Lindholm
- Division of Baxter Novum and Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Diaz-Buxo JA. Case report of encapsulating peritoneal sclerosis: the interpretation of functional and structural peritoneal changes. Blood Purif 2008; 26:12-7. [PMID: 18182789 DOI: 10.1159/000110557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A case report describing the evolution of encapsulating peritoneal sclerosis is presented to illustrate some of the functional and structural peritoneal membrane changes characteristic of this complication of peritoneal dialysis. The appropriate monitoring of peritoneal transport rates and ultrafiltration, together with attention to clinical signs and symptoms, are essential to the early diagnosis of peritoneal membrane deterioration. Recent reports suggest that timely interventions such as a peritoneal membrane rest period may effectively halt the progression of these functional and structural changes. While the optimal surgical and pharmacological treatment of encapsulating peritoneal sclerosis remains uncertain, the latest literature provides a certain degree of optimism.
Collapse
|
42
|
Fusshoeller A. Histomorphological and functional changes of the peritoneal membrane during long-term peritoneal dialysis. Pediatr Nephrol 2008; 23:19-25. [PMID: 17638023 DOI: 10.1007/s00467-007-0541-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/26/2007] [Accepted: 05/21/2007] [Indexed: 11/28/2022]
Abstract
In long-term peritoneal dialysis (PD) morphological and functional changes of the peritoneal membrane are common. Sub-mesothelial fibrosis, angiogenesis and vasculopathy are typical histomorphological alterations of the peritoneal membrane, which, to a certain degree, are induced by uremia and recurrent peritonitis. The most important causative factor, however, represents the chronic exposure to PD solutions. Glucose, glucose degradation products and advanced glycation end-products (AGEs) via different pathways induce inflammation, fibrosis and angiogenesis. As a functional consequence ultrafiltration failure due to peritoneal hyperpermeability and an increased effective peritoneal surface area represents a major clinical problem. An insufficient function of the water-selective aquaporin 1 (AQP-1) channel may also be causative for inadequate ultrafiltration. A rare but life-threatening complication of long-term PD is encapsulating peritoneal sclerosis (EPS). For both impaired AQP-1 function and EPS, the long-term effects of PD fluids are believed to be responsible, even though the mechanisms are not yet understood. The avoidance of glucose and modern PD fluids with fewer glucose degradation products, as well as first pharmacological attempts may help to preserve the peritoneal membrane in the long term.
Collapse
Affiliation(s)
- Andreas Fusshoeller
- Department of Nephrology, Heinrich Heine-University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
43
|
Yung S, Chan TM. Glucose Degradation Products and the Peritoneum — how Sweet Things Can Turn Bitter. Perit Dial Int 2006. [DOI: 10.1177/089686080602600305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Susan Yung
- Department of Medicine University of Hong Kong Queen Mary Hospital Hong Kong
| | - Tak Mao Chan
- Department of Medicine University of Hong Kong Queen Mary Hospital Hong Kong
| |
Collapse
|