1
|
Liu S, Amiri P, McGregor AH, Bull AMJ. Bilateral Asymmetry in Knee and Hip Musculoskeletal Loading During Stair Ascending/Descending in Individuals with Unilateral Mild-to-Moderate Medial Knee Osteoarthritis. Ann Biomed Eng 2023; 51:2490-2503. [PMID: 37482575 PMCID: PMC10598163 DOI: 10.1007/s10439-023-03289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
Most cases of unilateral knee osteoarthritis (OA) progress to bilateral OA within 10 years. Biomechanical asymmetries have been implicated in contralateral OA development; however, gait analysis alone does not consistently detect asymmetries in OA patient gait. Stair ambulation is a more demanding activity that may be more suited to reveal between-leg asymmetries in OA patients. The objective of this study was to investigate the between-leg biomechanical differences in patients with unilateral mild-to-moderate knee OA. Sixteen unilateral mild-to-moderate medial knee OA patients and 16 healthy individuals underwent kinematic and kinetic analysis of stair ascent and descent. Stair ascent produced higher loading and muscle forces in the unaffected limb compared to the OA limb, and stair descent produced lower loading on the OA limb compared to healthy subjects. These biomechanical differences were apparent in the ankle, knee, and hip joints. The implications of these findings are that OA patients rely more heavily on their unaffected sides than the affected side in stair ascent, a strategy that may be detrimental to the unaffected joint health. The reduction in affected limb loading in stair descent is thought to be related to minimizing pain.
Collapse
Affiliation(s)
- Sirui Liu
- Department of Bioengineering, Imperial College London, Sir Michael Uren Hub, Imperial College London White City Campus, 86 Wood Ln, London, W12 0BZ, UK.
| | - Pouya Amiri
- Department of Bioengineering, Imperial College London, Sir Michael Uren Hub, Imperial College London White City Campus, 86 Wood Ln, London, W12 0BZ, UK
| | - Alison H McGregor
- Department of Surgery and Cancer, Imperial College London, Sir Michael Uren Hub, Imperial College London White City Campus, 86 Wood Ln, London, W12 0BZ, UK
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, Sir Michael Uren Hub, Imperial College London White City Campus, 86 Wood Ln, London, W12 0BZ, UK
| |
Collapse
|
2
|
Xu R, Ming D, Ding Z, Bull AMJ. Extra excitation of biceps femoris during neuromuscular electrical stimulation reduces knee medial loading. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181545. [PMID: 31032011 PMCID: PMC6458370 DOI: 10.1098/rsos.181545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Medial knee joint osteoarthritis (OA) is a debilitating and prevalent condition. Surgical treatment consists of redistributing the forces from the medial to the lateral compartment through osteotomy, or replacing the joint surfaces. As the mediolateral load distribution is related to the action of the musculature around the knee, the aim of this study was to devise a technique to redistribute these forces non-surgically through changes in muscle excitation. Eight healthy subjects participated in the experiment, and neuromuscular electrical stimulation was used to change the muscle forces around the knee. A musculoskeletal model was used to quantify the loading on the medial compartment of the knee, and a novel algorithm devised and implemented to simulate neuromuscular electrical stimulation. The forces and moments at the knee, ground reaction forces, walking velocity and step length were quantified before and after stimulation. Stimulation of the biceps femoris resulted in a significant decrease in the second peak of the medial knee joint loading by up to 0.17 body weight (p = 0.016). Kinematic parameters were not significantly affected. Neuromuscular electrical stimulation can decrease the peak loads on the medial compartment of the knee, and thus offers a promising therapy for medial knee joint OA.
Collapse
Affiliation(s)
- Rui Xu
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Department of Bioengineering, Imperial College, London SW7 2AZ, UK
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ziyun Ding
- Department of Bioengineering, Imperial College, London SW7 2AZ, UK
| | | |
Collapse
|
3
|
An important role of the biarticular hamstrings is to exert internal/external rotation moments on the tibia during vertical jumping. J Theor Biol 2018; 455:101-108. [PMID: 30012516 DOI: 10.1016/j.jtbi.2018.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/21/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022]
Abstract
Most research considering biarticular muscle function has tended to focus on the sagittal plane. Instead, the purpose of this study was to evaluate the internal/external rotation moment arms of the biarticular muscles of the knee, and then to explore their function. The FreeBody musculoskeletal model of the lower limb was used to calculate the moment arms and moments that each of the muscles of the knee exerted on the proximal tibia of 12 athletic males during vertical jumping. Biceps femoris and tensor fascia latae were external rotators of the tibia, whereas semimembranosus, semitendinosus, sartorius, gracilis, popliteus and the patellar tendon were internal rotators. The magnitudes of the internal/external rotation and flexion moments exerted on the tibia by the biarticular hamstrings were similar, suggesting that the creation of internal/external rotation is a key aspect of their role. One potential reason is to stabilise the tibia during femoral extension (and it is argued that it may be helpful to characterise the creation of active joint stability as the stabilisation of one segment during the rotation of an adjacent segment). A second explanation may be to mechanically couple hip abduction when the hip is flexed with internal rotation of the tibia.
Collapse
|
4
|
Chiu LZF. Biomechanical Methods to Quantify Muscle Effort During Resistance Exercise. J Strength Cond Res 2018; 32:502-513. [PMID: 29120981 DOI: 10.1519/jsc.0000000000002330] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chiu, LZF. Biomechanical methods to quantify muscle effort during resistance exercise. J Strength Cond Res 32(2): 502-513, 2018-Muscle hypertrophy and strength adaptations elicited by resistance training are dependent on the force exerted by active muscles. As an exercise may use many muscles, determining force for individual muscles or muscle groupings is important to understand the relation between an exercise and these adaptations. Muscle effort-the amount of force or a surrogate measure related to the amount of force exerted during a task-can be quantified using biomechanical methods. The purpose of this review was to summarize the biomechanical methods used to estimate muscle effort in movements, particularly resistance training exercises. These approaches include the following: (a) inverse dynamics with rigid body models, (b) forward dynamics and EMG-driven models, (c) normalized EMG, and (d) inverse dynamics with point-mass models. Rigid body models quantify muscle effort as net joint moments. Forward dynamics and EMG-driven models estimate muscle force as well as determine the effect of a muscle's action throughout the body. Nonlinear relations between EMG and muscle force and normalization reference action selection affect the usefulness of EMG as a measure of muscle effort. Point-mass models include kinetics calculated from barbell (or other implement) kinematics recorded using electromechanical transducers or measured using force platforms. Point-mass models only allow the net force exerted on the barbell or lifter-barbell system to be determined, so they cannot be used to estimate muscle effort. Data from studies using rigid body models, normalized EMG, and musculoskeletal modeling should be combined to develop hypotheses regarding muscle effort; these hypotheses should be verified by training interventions.
Collapse
Affiliation(s)
- Loren Z F Chiu
- Neuromusculoskeletal Mechanics Research Program, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Cleather DJ. The patella: A mechanical determinant of coordination during vertical jumping. J Theor Biol 2018; 446:205-211. [PMID: 29548734 DOI: 10.1016/j.jtbi.2018.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/01/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022]
Abstract
The patella is traditionally understood to be a "joint spacer" that increases the moment arm of the patellar tendon. This characterisation is unsatisfactory as it fails to explain the more interesting characteristics of the patella: 1) that the changing pivot point of the patella causes the ratio of quadriceps to patellar tendon force to almost double as the knee flexes; 2) that the patellar tendon exerts an anteriorly directed force on the tibia when the knee is extended but this switches to a posterior draw as the knee flexes; and 3) that the presence of the patella allows the quadriceps to exert different moments on the femur and tibia. Here, I use a simple, model of the geometry of the knee to calculate the changes in the effective moment arms of the quadriceps on the femur and tibia as the knee extends during vertical jumping. These effective moment arms are then contrasted with the actual changes in moments seen during a vertical jump. This analysis demonstrates that the changing geometry of the knee alone can explain 93% (p < 0.05) of the variance in the characteristic femoral to tibial pattern of moment production during jumping - suggesting that the mechanics of the patella have a crucial influence on the coordination of jumping. These results lend support to the contention that mechanical considerations play a pivotal role in the control of movement by creating a stronger imperative towards a particular movement solution than might be suggested by the large degree of redundancy in the neuromuscular system. This idea is consistent with dynamic systems theories of motor control, i.e. the mechanical structure of the musculoskeletal system itself is important in the organisation of movement (so called mechanical intelligence).
Collapse
Affiliation(s)
- Daniel John Cleather
- School of Sport, Health and Applied Sciences, St. Mary's University, Waldegrave Road, Twickenham TW1 4SX, UK.
| |
Collapse
|
6
|
Czasche MB, Goodwin JE, Bull AMJ, Cleather DJ. Effects of an 8-week strength training intervention on tibiofemoral joint loading during landing: a cohort study. BMJ Open Sport Exerc Med 2018; 4:e000273. [PMID: 29387442 PMCID: PMC5783107 DOI: 10.1136/bmjsem-2017-000273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 12/03/2022] Open
Abstract
Objectives To use a musculoskeletal model of the lower limb to evaluate the effect of a strength training intervention on the muscle and joint contact forces experienced by untrained women during landing. Methods Sixteen untrained women between 18 and 28 years participated in this cohort study, split equally between intervention and control groups. The intervention group trained for 8 weeks targeting improvements in posterior leg strength. The mechanics of bilateral and unilateral drop landings from a 30 cm platform were recorded preintervention and postintervention, as was the isometric strength of the lower limb during a hip extension test. The internal muscle and joint contact forces were calculated using FreeBody, a musculoskeletal model. Results The strength of the intervention group increased by an average of 35% (P<0.05; pre: 133±36 n, post: 180±39 n), whereas the control group showed no change (pre: 152±36 n, post: 157±46 n). There were only small changes from pre-test to post-test in the kinematics and ground reaction forces during landing that were not statistically significant. Both groups exhibited a post-test increase in gluteal muscle force during landing and a lateral to medial shift in tibiofemoral joint loading in both landings. However, the magnitude of the increase in gluteal force and lateral to medial shift was significantly greater in the intervention group. Conclusion Strength training can promote a lateral to medial shift in tibiofemoral force (mediated by an increase in gluteal force) that is consistent with a reduction in valgus loading. This in turn could help prevent injuries that are due to abnormal knee loading such as anterior cruciate ligament ruptures, patellar dislocation and patellofemoral pain.
Collapse
Affiliation(s)
- Maike B Czasche
- School of Sport, Health and Applied Science, St Mary's University, Twickenham, London, UK
| | - Jon E Goodwin
- School of Sport, Health and Applied Science, St Mary's University, Twickenham, London, UK.,Department of Bioengineering, Imperial College London, London, UK
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, UK
| | - Daniel J Cleather
- School of Sport, Health and Applied Science, St Mary's University, Twickenham, London, UK
| |
Collapse
|
7
|
Price PDB, Gissane C, Cleather DJ. Reliability and Minimal Detectable Change Values for Predictions of Knee Forces during Gait and Stair Ascent Derived from the FreeBody Musculoskeletal Model of the Lower Limb. Front Bioeng Biotechnol 2017; 5:74. [PMID: 29276707 PMCID: PMC5727024 DOI: 10.3389/fbioe.2017.00074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
FreeBody is a musculoskeletal model of the lower limb used to calculate predictions of muscle and joint contact forces. The validation of FreeBody has been described in a number of publications; however, its reliability has yet to be established. The purpose of this study was, therefore, to establish the test-retest reliability of FreeBody in a population of healthy adults in order to add support to previous and future research using FreeBody that demonstrates differences between cohorts after an intervention. We hypothesized that test-retest estimations of knee contact forces from FreeBody would demonstrate a high intra-class correlation. Kinematic and kinetic data from nine older participants (4 men: mean age = 63 ± 11 years; 5 women: mean age = 49 ± 4 years) performing level walking and stair ascent was collected on consecutive days and then analyzed using FreeBody. There was a good level of intra-session agreement between the waveforms for the individual trials of each activity during testing session 1 (R = 0.79-0.97). Similarly, overall there was a good inter-session agreement within subjects (R = 0.69-0.97) although some subjects showed better agreement than others. There was a high level of agreement between the group mean waveforms of the two sessions for all variables (R = 0.882-0.997). The intra-class correlation coefficients (ICC) were very high for peak tibiofemoral joint contact forces (TFJ) and hamstring forces during gait, for peak patellofemoral joint contact forces and quadriceps forces during stair ascent and for peak lateral TFJ and the proportion of TFJ accounted for by the medial compartment during both tasks (ICC = 0.86-0.96). Minimal detectable change (MDC) of the peak knee forces during gait ranged between 0.43 and 1.53 × body weight (18-170% of the mean peak values). The smallest MDCs were found for medial TFJ share (4.1 and 5.8% for walking and stair ascent, respectively, or 4.8 and 6.7% of the mean peak values). In conclusion, the results of this study support the use of FreeBody to investigate the effect of interventions on muscle and joint contact forces at the cohort level, but care should be taken if using FreeBody at the subject level.
Collapse
Affiliation(s)
- Phil D B Price
- School of Sport, Health and Applied Sciences, St. Mary's University, Twickenham, United Kingdom
| | - Conor Gissane
- School of Sport, Health and Applied Sciences, St. Mary's University, Twickenham, United Kingdom
| | - Daniel J Cleather
- School of Sport, Health and Applied Sciences, St. Mary's University, Twickenham, United Kingdom
| |
Collapse
|
8
|
Parr M, Price PD, Cleather DJ. Effect of a gluteal activation warm-up on explosive exercise performance. BMJ Open Sport Exerc Med 2017; 3:e000245. [PMID: 28761719 PMCID: PMC5530111 DOI: 10.1136/bmjsem-2017-000245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 11/29/2022] Open
Abstract
Objectives To evaluate the effect of a gluteal activation warm-up on the performance of an explosive exercise (the high hang pull (HHP)). Methods Seventeen professional rugby union players performed one set of three HHPs (with 80% of their one repetition maximum load) following both a control and activation warm-up. Peak electrical activity of the gluteus maximus and medius was quantified using electromyography (EMG). In addition, the kinematics and kinetics of nine players was also recorded using force plate and motion capture technology. These data were analysed using a previously described musculoskeletal model of the right lower limb in order to provide estimates of the muscular force expressed during the movement. Results The mean peak EMG activity of the gluteus maximus was significantly lower following the activation warm-up as compared with the control (p<0.05, effect size d=0.30). There were no significant differences in the mean peak estimated forces in gluteus maximus and medius, the quadriceps or hamstrings (p=0.053), although there was a trend towards increased force in gluteus maximus and hamstrings following the activation warm-up. There were no differences between the ground reaction forces following the two warm-ups. Conclusion This study suggests that a gluteal activation warm-up may facilitate recruitment of the gluteal musculature by potentiating the glutes in such a way that a smaller neural drive evokes the same or greater force production during movement. This could in turn potentially improve movement quality.
Collapse
Affiliation(s)
- Matt Parr
- School of Sport, Health and Applied Sciences, St Mary's University, Twickenham, UK.,Department of Strength and Conditioning, Leicester Tigers (Leicester Football Club), Leicester, UK
| | - Phil Db Price
- School of Sport, Health and Applied Sciences, St Mary's University, Twickenham, UK
| | - Daniel J Cleather
- School of Sport, Health and Applied Sciences, St Mary's University, Twickenham, UK
| |
Collapse
|
9
|
Ding Z, Nolte D, Kit Tsang C, Cleather DJ, Kedgley AE, Bull AMJ. In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model. J Biomech Eng 2016; 138:021018. [DOI: 10.1115/1.4032412] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 11/08/2022]
Abstract
Segment-based musculoskeletal models allow the prediction of muscle, ligament, and joint forces without making assumptions regarding joint degrees-of-freedom (DOF). The dataset published for the “Grand Challenge Competition to Predict in vivo Knee Loads” provides directly measured tibiofemoral contact forces for activities of daily living (ADL). For the Sixth Grand Challenge Competition to Predict in vivo Knee Loads, blinded results for “smooth” and “bouncy” gait trials were predicted using a customized patient-specific musculoskeletal model. For an unblinded comparison, the following modifications were made to improve the predictions: further customizations, including modifications to the knee center of rotation; reductions to the maximum allowable muscle forces to represent known loss of strength in knee arthroplasty patients; and a kinematic constraint to the hip joint to address the sensitivity of the segment-based approach to motion tracking artifact. For validation, the improved model was applied to normal gait, squat, and sit-to-stand for three subjects. Comparisons of the predictions with measured contact forces showed that segment-based musculoskeletal models using patient-specific input data can estimate tibiofemoral contact forces with root mean square errors (RMSEs) of 0.48–0.65 times body weight (BW) for normal gait trials. Comparisons between measured and predicted tibiofemoral contact forces yielded an average coefficient of determination of 0.81 and RMSEs of 0.46–1.01 times BW for squatting and 0.70–0.99 times BW for sit-to-stand tasks. This is comparable to the best validations in the literature using alternative models.
Collapse
Affiliation(s)
- Ziyun Ding
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK e-mail:
| | - Daniel Nolte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK e-mail:
| | - Chui Kit Tsang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK e-mail:
| | - Daniel J. Cleather
- School of Sport, Health and Applied Science, St Mary's University, Waldegrave Road, Twickenham TW1 4SX, UK e-mail:
| | - Angela E. Kedgley
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK e-mail:
| | - Anthony M. J. Bull
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK e-mail:
| |
Collapse
|
10
|
Cleather DJ, Bull AMJ. The development of a segment-based musculoskeletal model of the lower limb: introducing FreeBody. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140449. [PMID: 26543569 PMCID: PMC4632533 DOI: 10.1098/rsos.140449] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 05/29/2015] [Indexed: 05/05/2023]
Abstract
Traditional approaches to the biomechanical analysis of movement are joint-based; that is the mechanics of the body are described in terms of the forces and moments acting at the joints, and that muscular forces are considered to create moments about the joints. We have recently shown that segment-based approaches, where the mechanics of the body are described by considering the effect of the muscle, ligament and joint contact forces on the segments themselves, can also prove insightful. We have also previously described a simultaneous, optimization-based, musculoskeletal model of the lower limb. However, this prior model incorporates both joint- and segment-based assumptions. The purpose of this study was therefore to develop an entirely segment-based model of the lower limb and to compare its performance to our previous work. The segment-based model was used to estimate the muscle forces found during vertical jumping, which were in turn compared with the muscular activations that have been found in vertical jumping, by using a Geers' metric to quantify the magnitude and phase errors. The segment-based model was shown to have a similar ability to estimate muscle forces as a model based upon our previous work. In the future, we will evaluate the ability of the segment-based model to be used to provide results with clinical relevance, and compare its performance to joint-based approaches. The segment-based model described in this article is publicly available as a GUI-based Matlab® application and in the original source code (at www.msksoftware.org.uk).
Collapse
Affiliation(s)
- Daniel J. Cleather
- School of Sport, Health and Applied Sciences, St Mary's University, Twickenham, UK
- Author for correspondence: Daniel J. Cleather e-mail: ;
| | | |
Collapse
|
11
|
On the role of the patella, ACL and joint contact forces in the extension of the knee. PLoS One 2014; 9:e115670. [PMID: 25536067 PMCID: PMC4275277 DOI: 10.1371/journal.pone.0115670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
Traditional descriptions of the knee suggest that the function of the patella is to facilitate knee extension by increasing the moment arm of the quadriceps muscles. Through modelling and evidence from the literature it is shown in this paper that the presence of the patella makes the ability of the quadriceps to rotate the thigh greater than their ability to rotate the tibia. Furthermore, this difference increases as the knee is flexed, thus demonstrating a pattern that is consistent with many human movements. This paper also shows that the anterior cruciate ligament plays a previously unheralded role in extending the shank and that translation at the tibiofemoral and patellofemoral joints is important in improving the capacity for thigh rotation when the knee is flexed. This study provides new insights as to how the structure of the knee is adapted to its purpose and illustrates how the functional anatomy of the knee contributes to its extension function.
Collapse
|
12
|
Cleather DJ, Southgate DFL, Bull AMJ. The role of the biarticular hamstrings and gastrocnemius muscles in closed chain lower limb extension. J Theor Biol 2014; 365:217-25. [PMID: 25451963 DOI: 10.1016/j.jtbi.2014.10.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 10/06/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
The role of the biarticular muscles is a topic that has received considerable attention however their function is not well understood. In this paper, we argue that an analysis that is based upon considering the effect of the biarticular muscles on the segments that they span (rather than their effect on joint rotations) can be illuminating. We demonstrate that this understanding is predicated on a consideration of the relative sizes of the moment arms of a biarticular muscle about the two joints that it crosses. The weight of the previous literature suggests that the moment arms of both the biarticular hamstrings and gastrocnemius are smaller at the knee than at the hip or ankle, (respectively). This in turn leads to the conclusion that both biarticular hamstrings and gastrocnemius are extensors of the lower limb. We show that the existence of these biarticular structures lends a degree of flexibility to the motor control strategies available for lower limb extension. In particular, the role of the gastrocnemius and biarticular hamstrings in permitting a large involvement of the quadriceps musculature in closed chain lower limb extension may be more important than is typically portrayed. Finally, the analysis presented in this paper demonstrates the importance of considering the effects of muscles on the body as a whole, not just on the joints they span.
Collapse
Affiliation(s)
- Daniel J Cleather
- School of Sport, Health and Applied Sciences, St. Mary's University, Twickenham, UK.
| | | | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
13
|
Blajer W, Dziewiecki K, Mazur Z. An improved inverse dynamics formulation for estimation of external and internal loads during human sagittal plane movements. Comput Methods Biomech Biomed Engin 2013; 18:362-75. [PMID: 23758087 DOI: 10.1080/10255842.2013.799147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Planar musculoskeletal models are common in the inverse dynamics analysis of human movements such as walking, running and jumping. The continued interest in such models is justified by their simplicity and computational efficiency. Related to a human planar model, a unified formulation for both the flying and support phases of the sagittal plane movements is developed. The actuation involves muscle forces in the lower limbs and the resultant muscle torques in the other body joints. The dynamic equations, introduced in absolute coordinates of the segments, are converted into useful compact forms using the projective technique. The solution to a determinate inverse dynamics problem allows for the explicit determination of the external reactions (presumed to vanish during the flying phases) and the resultant muscle torques in all the model joints. The indeterminate inverse dynamics problem is then focused on the assessment of muscle forces and joint reaction forces selectively in the supporting lower limb. Numerical results of the inverse dynamics simulation of sample sagittal plane movements are reported to illustrate the validity and effectiveness of the improved formulation.
Collapse
Affiliation(s)
- Wojciech Blajer
- a Faculty of Mechanical Engineering, Institute of Applied Mechanics and Power Engineering, University of Technology and Humanities in Radom , ul. Krasickiego 54, 26-600 Radom , Poland
| | | | | |
Collapse
|
14
|
Cleather DJ, Goodwin JE, Bull AMJ. Hip and knee joint loading during vertical jumping and push jerking. Clin Biomech (Bristol, Avon) 2013; 28:98-103. [PMID: 23146164 PMCID: PMC3966561 DOI: 10.1016/j.clinbiomech.2012.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 09/12/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND The internal joint contact forces experienced at the lower limb have been frequently studied in activities of daily living and rehabilitation activities. In contrast, the forces experienced during more dynamic activities are not well understood, and those studies that do exist suggest very high degrees of joint loading. METHODS In this study a biomechanical model of the right lower limb was used to calculate the internal joint forces experienced by the lower limb during vertical jumping, landing and push jerking (an explosive exercise derived from the sport of Olympic weightlifting), with a particular emphasis on the forces experienced by the knee. FINDINGS The knee experienced mean peak loadings of 2.4-4.6×body weight at the patellofemoral joint, 6.9-9.0×body weight at the tibiofemoral joint, 0.3-1.4×body weight anterior tibial shear and 1.0-3.1×body weight posterior tibial shear. The hip experienced a mean peak loading of 5.5-8.4×body weight and the ankle 8.9-10.0×body weight. INTERPRETATION The magnitudes of the total (resultant) joint contact forces at the patellofemoral joint, tibiofemoral joint and hip are greater than those reported in activities of daily living and less dynamic rehabilitation exercises. The information in this study is of importance for medical professionals, coaches and biomedical researchers in improving the understanding of acute and chronic injuries, understanding the performance of prosthetic implants and materials, evaluating the appropriateness of jumping and weightlifting for patient populations and informing the training programmes of healthy populations.
Collapse
Affiliation(s)
- Daniel J Cleather
- St. Mary’s University College, Twickenham, UK
,Department of Bioengineering, Imperial College London, London, UK
| | - Jon E Goodwin
- St. Mary’s University College, Twickenham, UK
,Department of Bioengineering, Imperial College London, London, UK
| | - Anthony MJ Bull
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|