1
|
Kurki A, Paakinaho K, Hannula M, Karjalainen S, Kuismanen K, Hyttinen J, Miettinen S, Sartoneva R. Promoting cell proliferation and collagen production with ascorbic acid 2-phosphate-releasing poly(l-lactide-co-ε-caprolactone) membranes for treating pelvic organ prolapse. Regen Biomater 2024; 11:rbae060. [PMID: 38903561 PMCID: PMC11187500 DOI: 10.1093/rb/rbae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 06/22/2024] Open
Abstract
Pelvic organ prolapse (POP) afflicts millions of women globally. In POP, the weakened support of the pelvic floor results in the descent of pelvic organs into the vagina, causing a feeling of bulging, problems in urination, defaecation and/or sexual function. However, the existing surgical repair methods for relapsed POP remain insufficient, highlighting the urgent need for more effective alternatives. Collagen is an essential component in pelvic floor tissues, providing structural support, and its production is controlled by ascorbic acid. Therefore, we investigated novel ascorbic acid 2-phosphate (A2P)-releasing poly(l-lactide-co-ε-caprolactone) (PLCLA2P) membranes in vitro to promote cell proliferation and extracellular matrix protein production to strengthen the natural support of the pelvic fascia for POP applications. We analysed the mechanical properties and the impact of PLCLA2P on cellular responses through cell culture analysis using human vaginal fibroblasts (hVFs) and human adipose-derived stem/stromal cells (hASCs) compared to PLCL. In addition, the A2P release from PLCLA2P membranes was assessed in vitro. The PLCLA2P demonstrated slightly lower tensile strength (2.2 ± 0.4 MPa) compared to PLCL (3.7 ± 0.6 MPa) for the first 4 weeks in vitro. The A2P was most rapidly released during the first 48 h of in vitro incubation. Our findings demonstrated significantly increased proliferation and collagen production of both hVFs and hASCs on A2P-releasing PLCLA2P compared to PLCL. In addition, extracellular collagen Type I fibres were detected in hVFs, suggesting enhanced collagen maturation on PLCLA2P. Moreover, increased extracellular matrix protein expression was detected on PLCLA2P in both hVFs and hASCs compared to plain PLCL. In conclusion, these findings highlight the potential of PLCLA2P as a promising candidate for promoting tissue regeneration in applications aimed for POP tissue engineering applications.
Collapse
Affiliation(s)
- Alma Kurki
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
- Tays Research Services, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33520 Tampere, Finland
| | - Kaarlo Paakinaho
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
- Tays Research Services, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33520 Tampere, Finland
| | - Markus Hannula
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
| | - Sanna Karjalainen
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
| | - Kirsi Kuismanen
- Department of Obstetrics and Gynaecology, Tampere University Hospital, 33520 Tampere, Finland
| | - Jari Hyttinen
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
| | - Susanna Miettinen
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
- Tays Research Services, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33520 Tampere, Finland
| | - Reetta Sartoneva
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
- Tays Research Services, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33520 Tampere, Finland
- Department of Obstetrics and Gynaecology, Wellbeing Services County of South Ostrobothnia, 60220 Seinäjoki, Finland
| |
Collapse
|
2
|
Sartoneva R, Paakinaho K, Hannula M, Kuismanen K, Huhtala H, Hyttinen J, Miettinen S. Ascorbic Acid 2-Phosphate Releasing Supercritically Foamed Porous Poly-L-Lactide-Co-ε-Caprolactone Scaffold Enhances the Collagen Production of Human Vaginal Stromal Cells: A New Approach for Vaginal Tissue Engineering. Tissue Eng Regen Med 2024; 21:81-96. [PMID: 37907765 PMCID: PMC10764701 DOI: 10.1007/s13770-023-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The reconstructive surgery of vaginal defects is highly demanding and susceptible to complications, especially in larger defects requiring nonvaginal tissue grafts. Thus, tissue engineering-based solutions could provide a potential approach to the reconstruction of vaginal defects. METHODS Here, we evaluated a novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide foamed poly-L-lactide-co-ε-caprolactone (scPLCLA2P) scaffold for vaginal reconstruction with vaginal epithelial (EC) and stromal (SC) cells. The viability, proliferation, and phenotype of ECs and SCs were evaluated in monocultures and in cocultures on d 1, d 7 and d 14. Furthermore, the collagen production of SCs on scPLCLA2P was compared to that on scPLCL without A2P on d 14. RESULTS Both ECs and SCs maintained their viability on the scPLCLA2P scaffold in mono- and coculture conditions, and the cells maintained their typical morphology during the 14-d culture period. Most importantly, the scPLCLA2P scaffolds supported the collagen production of SCs superior to plain scPLCL based on total collagen amount, collagen I and III gene expression results and collagen immunostaining results. CONCLUSION This is the first study evaluating the effect of A2P on vaginal tissue engineering, and the results are highly encouraging, indicating that scPLCLA2P has potential as a scaffold for vaginal tissue engineering.
Collapse
Affiliation(s)
- Reetta Sartoneva
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
- Department of Obstetrics and Gynaecology, Seinäjoki Central Hospital, Seinäjoki, Finland.
| | - Kaarlo Paakinaho
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Markus Hannula
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Kirsi Kuismanen
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Department of Obstetrics and Gynaecology, Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| |
Collapse
|
3
|
Farr NTH, Roman S, Schäfer J, Quade A, Lester D, Hearnden V, MacNeil S, Rodenburg C. A novel characterisation approach to reveal the mechano-chemical effects of oxidation and dynamic distension on polypropylene surgical mesh. RSC Adv 2021; 11:34710-34723. [PMID: 35494782 PMCID: PMC9042683 DOI: 10.1039/d1ra05944k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022] Open
Abstract
Polypropylene (PP) surgical mesh, used successfully for the surgical repair of abdominal hernias, is associated with serious clinical complications when used in the pelvic floor for repair of stress urinary incontinence or support of pelvic organ prolapse. While manufacturers claim that the material is inert and non-degradable, there is a growing body of evidence that asserts PP fibres are subject to oxidative damage and indeed explanted material from patients suffering with clinical complications has shown some evidence of fibre cracking and oxidation. It has been proposed that a pathological cellular response to the surgical mesh contributes to the medical complications; however, the mechanisms that trigger the specific host response against the material are not well understood. Specifically, this study was constructed to investigate the mechano-chemical effects of oxidation and dynamic distension on polypropylene surgical mesh. To do this we used a novel advanced spectroscopical characterisation technique, secondary electron hyperspectral imaging (SEHI), which is based on the collection of secondary electron emission spectra in a scanning electron microscope (SEM) to reveal mechanical-chemical reactions within PP meshes.
Collapse
Affiliation(s)
- Nicholas T H Farr
- Department of Materials Science and Engineering, University of Sheffield Sir Robert Hadfield Building, Mappin Street UK
- Insigneo Institute for in silico Medicine The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street Sheffield UK
| | - Sabiniano Roman
- Department of Materials Science and Engineering, University of Sheffield Sir Robert Hadfield Building, Mappin Street UK
| | - Jan Schäfer
- Leibniz Institute for Plasma Science and Technology (INP e.V.) Felix-Hausdorff-Str. 2 17489 Greifswald Germany
| | - Antje Quade
- Leibniz Institute for Plasma Science and Technology (INP e.V.) Felix-Hausdorff-Str. 2 17489 Greifswald Germany
| | - Daniel Lester
- Polymer Characterisation Research Technology Platform, University of Warwick Library Road CV4 7AL Coventry UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield Sir Robert Hadfield Building, Mappin Street UK
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield Sir Robert Hadfield Building, Mappin Street UK
| | - Cornelia Rodenburg
- Department of Materials Science and Engineering, University of Sheffield Sir Robert Hadfield Building, Mappin Street UK
| |
Collapse
|
4
|
Abstract
Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are conditions which result in significant physical, mental and social consequences for women worldwide. The high rates of recurrence reported with primary repair for POP led to the use of synthetic mesh to augment repairs in both primary and secondary cases following failed previous POP repair. The widely reported, unacceptably high rates of complications associated with the use of synthetic, transvaginal mesh in pelvic floor repair have severely limited the treatment options that surgeons can offer. This article summarises the recent advances in pelvic floor repair, such as improved quantification and modelling of the biomechanics of the pelvic floor and the developing technology within the field of tissue engineering for treatment of SUI/POP, including biomaterials and cell-based therapies. Finally, we will discuss the issues surrounding the commercial introduction of synthetic mesh for use within the pelvic floor and what lessons can be learned for the future as well as the current guidance surrounding treatment for SUI/POP.
Collapse
Affiliation(s)
- Emma Mironska
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Red Hill, Sheffield, S37HQ, UK
| | - Christopher Chapple
- Urology Department, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Red Hill, Sheffield, S37HQ, UK
| |
Collapse
|
5
|
A Storage-Dependent Platinum Functionalization with a Commercial Pre-Polymer Useful for Hydrogen Peroxide and Ascorbic Acid Detection. SENSORS 2019; 19:s19112435. [PMID: 31141953 PMCID: PMC6603770 DOI: 10.3390/s19112435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022]
Abstract
A preliminary assessment of properties of the commercial product Chemiplus 2DS HB (BI-QEM Specialties SpA) is proposed. Cyclic voltammetry of this oligomer containing sulfate/sulfone groups shows a single oxidative peak at +0.866 V vs. Ag/AgCl, and its passivating process on Pt electrode suggests the formation of a non-conductive layer. Electrode modification was achieved by exploiting the constant potential amperometry setting potential at +0.900 V vs. Ag/AgCl. A substantial change in the oxidative currents from electroactive species H2O2 and ascorbic acid (AA) were observed on Pt/Chemiplus 2DS HB sensors compared to unmodified Pt. Furthermore, the influence of different storage conditions on modified sensors was examined. A storage solution containing AA concentration from 0.1 until 10 mM maintained effective AA rejection of Pt/Chemiplus 2DS HB after 7 days from construction; H2O2 oxidation capability was also retained. Sulfone and sulfonate groups of Chemiplus 2DS HB are likely responsible for the dimensionality of the film and the electrostatic interaction leading to a self-blocking/self-rejection of AA. The way Pt/Chemiplus can reveal the AA presence depends on the maintaining of AA rejection, and this peculiarity can distinguish it from other sensors or biosensors.
Collapse
|
6
|
Mangır N, Bullock AJ, Roman S, Osman N, Chapple C, MacNeil S. Production of ascorbic acid releasing biomaterials for pelvic floor repair. Acta Biomater 2016; 29:188-197. [PMID: 26478470 PMCID: PMC4678952 DOI: 10.1016/j.actbio.2015.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/10/2015] [Accepted: 10/14/2015] [Indexed: 01/31/2023]
Abstract
OBJECTIVE An underlying abnormality in collagen turnover is implied in the occurrence of complications and recurrences after mesh augmented pelvic floor repair surgeries. Ascorbic acid is a potent stimulant of collagen synthesis. The aim of this study is to produce ascorbic acid releasing poly-lactic acid (PLA) scaffolds and evaluate them for their effects on extracellular matrix production and the strength of the materials. MATERIALS AND METHODS Scaffolds which contained either l-ascorbic acid (AA) and Ascorbate-2-Phosphate (A2P) were produced with emulsion electrospinning. The release of both drugs was measured by UV spectrophotometry. Human dermal fibroblasts were seeded on scaffolds and cultured for 2weeks. Cell attachment, viability and total collagen production were evaluated as well as mechanical properties. RESULTS No significant differences were observed between AA, A2P, Vehicle and PLA scaffolds in terms of fibre diameter and pore size. The encapsulation efficiency and successful release of both AA and A2P were demonstrated. Both AA and A2P containing scaffolds were significantly more hydrophilic and stronger in both dry and wet states compared to PLA scaffolds. Fibroblasts produced more collagen on scaffolds containing either AA or A2P compared to cells grown on control scaffolds. CONCLUSION This study is the first to directly compare the two ascorbic acid derivatives in a tissue engineered scaffold and shows that both AA and A2P releasing electrospun PLA scaffolds increased collagen production of fibroblasts to similar extents but AA scaffolds seemed to be more hydrophilic and stronger compared to A2P scaffolds. STATEMENT OF SIGNIFICANCE Mesh augmented surgical repair of the pelvic floor currently relies on non-degradable materials which results in severe complications in some patients. There is an unmet and urgent need for better pelvic floor repair materials. Our current understanding suggests that the ideal material should be able to better integrate into sites of implantation both biologically and mechanically. The impact of vitamin C on extracellular matrix production is well established but we in this study have undertaken a critical comparison of two derivatives of vitamin C as they are released from a biodegradable scaffold. This strategy proved to be equally useful with both derivatives in terms of new tissue production yet we observed significant differences in mechanical properties of these biomaterials.
Collapse
Affiliation(s)
- Naşide Mangır
- Department of Materials Science Engineering, Kroto Research Institute, University of Sheffield, United Kingdom; Royal Hallamshire Hospital, Urology Clinic, Sheffield, United Kingdom
| | - Anthony J Bullock
- Department of Materials Science Engineering, Kroto Research Institute, University of Sheffield, United Kingdom
| | - Sabiniano Roman
- Department of Materials Science Engineering, Kroto Research Institute, University of Sheffield, United Kingdom
| | - Nadir Osman
- Department of Materials Science Engineering, Kroto Research Institute, University of Sheffield, United Kingdom; Royal Hallamshire Hospital, Urology Clinic, Sheffield, United Kingdom
| | | | - Sheila MacNeil
- Department of Materials Science Engineering, Kroto Research Institute, University of Sheffield, United Kingdom.
| |
Collapse
|