1
|
Grant MP, Alatassi R, Diab MO, Abushal M, Epure LM, Huk OL, Bergeron SG, Im Sampen HJ, Antoniou J, Mwale F. Cobalt ions induce a cellular senescence secretory phenotype in human synovial fibroblast-like cells that may be an early event in the development of adverse local tissue reactions to hip implants. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100490. [PMID: 38828014 PMCID: PMC11141261 DOI: 10.1016/j.ocarto.2024.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Objectives Total hip arthroplasty is a successful procedure for treating advanced osteoarthritis (OA). Metal bearing surfaces remain one of the most widely implanted prosthesis, however approximately 10% of patients develop adverse local tissue reactions (ALTRs), namely lymphocytic predominant soft tissue reaction with or without necrosis and osteolysis resulting in high revision rates. The mechanism(s) for these reactions remains unclear although T lymphocyte mediated type IV hypersensitivity to cobalt (Co) and chromium (Cr) ions have been described. The purpose of this study was to determine the prolonged effects of Co and Cr metal ions on synovial fibroblasts to better understand the impact of the synovial membrane in the development of ALTRs. Methods Human synovial fibroblast-like cells were isolated from donors undergoing arthroplasty. DNA content and Alamar blue assay were used to determine cellular viability against exposure to Co and Cr. A beta-galactosidase assay was used to determine the development of cellular senescence. Western blotting and RT-qPCR were employed to determine changes in senescent associated secretory factors, signaling and anti-oxidant enzyme expression. A fluorescent assay was used to measure accumulation of hydrogen peroxide. Results We demonstrate that prolonged cobalt exposure results in a downregulation of the enzyme catalase resulting in cytosolic accumulation of hydrogen peroxide, decreased Akt activity and cellular senescence. Senescent fibroblasts demonstrated upregulation of proinflammatory cytokines IL-1β and TNFα in addition to the neurotrophic factor NGF. Conclusion Our results provide evidence that metal ions induce a senescent associated secretory phenotype in synovial fibroblasts that could contribute to the development of adverse local tissue reactions.
Collapse
Affiliation(s)
- Michael P. Grant
- Department of Surgery, McGill University, Montreal, Canada
- SMBD-Jewish General Hospital, Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine Road, Room F-602, Montreal, Quebec, H3T 1E2, Canada
| | | | | | | | - Laura M. Epure
- Department of Surgery, McGill University, Montreal, Canada
| | - Olga L. Huk
- Department of Surgery, McGill University, Montreal, Canada
- SMBD-Jewish General Hospital, Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine Road, Room F-602, Montreal, Quebec, H3T 1E2, Canada
| | - Stephane G. Bergeron
- Department of Surgery, McGill University, Montreal, Canada
- SMBD-Jewish General Hospital, Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine Road, Room F-602, Montreal, Quebec, H3T 1E2, Canada
| | - Hee-Jeong Im Sampen
- Department of Biomedical Engineering, University of Illinois Chicago, IL, USA
| | - John Antoniou
- Department of Surgery, McGill University, Montreal, Canada
- SMBD-Jewish General Hospital, Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine Road, Room F-602, Montreal, Quebec, H3T 1E2, Canada
| | - Fackson Mwale
- Department of Surgery, McGill University, Montreal, Canada
- SMBD-Jewish General Hospital, Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine Road, Room F-602, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
2
|
Abdel Hamid OI, Attia ME, Hirshon JM, El-Shinawi M, El-Hussaini M, El-Setouhy M. Psychiatric Disorders and Genotoxicity Following Primary Metal on Polyethylene Total Hip Arthroplasty and Their Correlation to Cobalt/Chromium Levels. Drug Healthc Patient Saf 2022; 14:97-111. [PMID: 35880007 PMCID: PMC9308046 DOI: 10.2147/dhps.s360643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Hip arthroplasty (HA) using implantable metal components is among the commonest orthopedic interventions. However, it can be followed by several complications following corrosion and the release of metal ions. Several studies proved that damaged genomic DNA may contribute to the pathophysiology of mental disorders. Aim The current work aims to evaluate the psychiatric disorders in metal on polyethylene hip arthroplasty (MOP-HA) patients and its correlation to cobalt/chromium (Co/Cr) levels and genotoxicity. Methods The work was a longitudinal follow-up study including 34 adults with unilateral primary MOP-HA meeting the inclusion and exclusion criteria. Preoperatively, 6, 12-months-postoperatively, patients were examined for cognitive impairment using mini-mental-state-examination (MMSE), depression using major-depressive-inventory (MDI), and blood samples were collected for estimation of Co/Cr, detection of genotoxicity by single-cell-gel-electrophoresis (comet assay) and serum 8-hydroxy-2'-deoxyguanosine (8-OHdG). Results Cognitive impairment was reported in 18.5% and 14.8% at 6-months, and 12-months postoperative, respectively. Depressive disorder was recorded in 22.2% at 6-months and 14.8% at 12-months postoperative. The marginal homogeneity tests proved a non-significant difference. There was a non-significant difference in preoperative, 6-months, 12-months postoperative MMSE, and MDI scores. There were significantly increased Co/Cr levels at 6-months postoperative. The levels decreased at 12-months postoperative, however, still significantly higher than preoperative values. There was a significant increase in serum 8-OHdG and the levels were positively correlated to cobalt levels at both 6 and 12-months-postoperative. There was a non-significant difference among preoperative, 6-months, and 12-months postoperative comet assay measurements. Conclusion From previous findings, we can conclude that will-functioning MOP hip arthroplasty can induce increased ion levels and positively correlated increase in biochemical markers of genotoxicity (8-OHdG).
Collapse
Affiliation(s)
- Omaima I Abdel Hamid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed E Attia
- Orthopedics Departments, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Jon M Hirshon
- Department of Emergency Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Galala University, Galala City, Suez, Egypt
| | - Moustafa El-Hussaini
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maged El-Setouhy
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Family and Community Medicine, Faculty of Medince, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Cowie RM, Jennings LM. Third body damage and wear in arthroplasty bearing materials: A review of laboratory methods. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100028. [PMID: 36824573 PMCID: PMC9934499 DOI: 10.1016/j.bbiosy.2021.100028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 09/05/2021] [Indexed: 12/28/2022] Open
Abstract
Third body wear of arthroplasty bearing materials can occur when hard particles such as bone, bone cement or metal particles become trapped between the articulating surfaces. This can accelerate overall implant wear, potentially leading to early failure. With the development of novel bearing materials and coatings, there is a need to develop and standardise test methods which reflect third body damage seen on retrieved implants. Many different protocols and approaches have been developed to replicate third body wear in the laboratory but there is currently no consensus as to the optimal method for simulating this wear mode, hence the need to better understand existing methods. The aim of this study was to review published methods for experimental simulation of third body wear of arthroplasty bearing materials, to discuss the advantages and limitations of different approaches, the variables to be considered when designing a method and to highlight gaps in the current literature. The methods were divided into those which introduced abrasive particles into the articulating surfaces of the joint and those whereby third body damage is created directly to the articulating surfaces. However, it was found that there are a number of parameters, for example the influence of particle size on wear, which are not yet fully understood. The study concluded that the chosen method or combination of methods used should primarily be informed by the research question to be answered and risk analysis of the device.
Collapse
Affiliation(s)
- Raelene M Cowie
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Louise M Jennings
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
McCarthy SM, Hall DJ, Mathew MT, Jacobs JJ, Lundberg HJ, Pourzal R. Are Damage Modes Related to Microstructure and Material Loss in Severely Damaged CoCrMo Femoral Heads? Clin Orthop Relat Res 2021; 479:2083-2096. [PMID: 34019490 PMCID: PMC8373544 DOI: 10.1097/corr.0000000000001819] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/19/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Fretting and corrosion in metal-on-polyethylene total hip arthoplasty (THA) modular junctions can cause adverse tissue reactions that are responsible for 2% to 5% of revision surgeries. Damage within cobalt-chromium-molybdenum (CoCrMo) alloy femoral heads can progress chemically and mechanically, leading to damage modes such as column damage, imprinting, and uniform fretting damage. At present, it is unclear which of these damage modes are most detrimental and how they may be linked to implant alloy metallurgy. The alloy microstructure exhibits microstructural features such as grain boundaries, hard phases, and segregation bands, which may enable different damage modes, higher material loss, and the potential risk of adverse local tissue reactions. QUESTIONS/PURPOSES In this study, we asked: (1) How prevalent is chemically dominated column damage compared with mechanically dominated damage modes in severely damaged metal-on-polyethylene THA femoral heads made from wrought CoCrMo alloy? (2) Is material loss greater in femoral heads that underwent column damage? (3) Do material loss and the presence of column damage depend on alloy microstructure as characterized by grain size, hard phase content, and/or banding? METHODS Surgically retrieved wrought CoCrMo modular femoral heads removed between June 2004 and June 2019 were scored using a modified version of the Goldberg visually based scoring system. Of the total 1002 heads retrieved over this period, 19% (190 of 1002) were identified as severely damaged, exhibiting large areas of fretting scars, black debris, pits, and/or etch marks. Of these, 43% (81 of 190) were excluded for metal-on-metal articulations, alternate designs (such as bipolar, dual-mobility, hemiarthroplasty, metal adaptor sleeves), or previous sectioning of the implant for past studies. One sample was excluded retroactively as metallurgical analysis revealed that it was made of cast alloy, yielding a total of 108 for further analysis. Information on patient age (57 ± 11 years) and sex (56% [61 of 108] were males), reason for removal, implant time in situ (99 ± 78 months), implant manufacturer, head size, and the CoCrMo or titanium-based stem alloy pairing were collected. Damage modes and volumetric material loss within the head tapers were identified using an optical coordinate measuring machine. Samples were categorized by damage mode groups by column damage, imprinting, a combination of column damage and imprinting, or uniform fretting. Metallurgical samples were processed to identify microstructural characteristics of grain size, hard phase content, and banding. Nonparametric Mann-Whitney U and Kruskal-Wallis statistical tests were used to examine volumetric material loss compared with damage mode and microstructural features, and linear regression was performed to correlate patient- and manufacturer-specific factors with volumetric material loss. RESULTS Chemically driven column damage was seen in 48% (52 of 108) of femoral heads, with 34% (37 of 108) exhibiting a combination of column damage and imprinting, 12% (13 of 108) of heads displaying column damage and uniform fretting, and 2% (2 of 108) exhibiting such widespread column damage that potentially underlying mechanical damage modes could not be verified. Implants with column damage showed greater material loss than those with mechanically driven damage alone, with median (range) values of 1.2 mm3 (0.2 to 11.7) versus 0.6 mm3 (0 to 20.7; p = 0.03). Median (range) volume loss across all femoral heads was 0.9 mm3 (0 to 20.7). Time in situ, contact area, patient age, sex, head size, manufacturer, and stem alloy type were not associated with volumetric material loss. Banding of the alloy microstructure, with a median (range) material loss of 1.1 mm3 (0 to 20.7), was associated with five times higher material loss compared with those with a homogeneous microstructure, which had a volume loss of 0.2 mm3 (0 to 4.1; p = 0.02). Hard phase content and grain size showed no correlation with material loss. CONCLUSION Chemically dominated column damage was a clear indicator of greater volume loss in this study sample of 108 severely damaged heads. Volumetric material loss strongly depended on banding (microstructural segregations) within the alloy. Banding of the wrought CoCrMo microstructure should be avoided during the manufacturing process to reduce volumetric material loss and the release of corrosion products to the periprosthetic tissue. CLINICAL RELEVANCE Approximately 30% of THAs rely on wrought CoCrMo femoral heads. Most femoral heads in this study exhibited a banded microstructure that was associated with larger material loss and the occurrence of chemically dominated column damage. This study suggests that elimination of banding from the alloy could substantially reduce the release of implant debris in vivo, which could potentially also reduce the risk of adverse local tissue reactions to implant debris.
Collapse
Affiliation(s)
| | - Deborah J. Hall
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | | | - Joshua J. Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hannah J. Lundberg
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
5
|
Wang Q, Eltit F, Garbuz D, Duncan C, Masri B, Greidanus N, Wang R. CoCrMo metal release in metal‐on‐highly crosslinked polyethylene hip implants. J Biomed Mater Res B Appl Biomater 2020; 108:1213-1228. [DOI: 10.1002/jbm.b.34470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/18/2019] [Accepted: 07/29/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Qiong Wang
- Department of Materials EngineeringUniversity of British Columbia Vancouver British Columbia Canada
- School of Biomedical EngineeringUniversity of British Columbia Vancouver British Columbia Canada
- Centre for Hip Health and Mobility Vancouver British Columbia Canada
| | - Felipe Eltit
- Department of Materials EngineeringUniversity of British Columbia Vancouver British Columbia Canada
- School of Biomedical EngineeringUniversity of British Columbia Vancouver British Columbia Canada
- Centre for Hip Health and Mobility Vancouver British Columbia Canada
| | - Donald Garbuz
- Department of OrthopaedicsUniversity of British Columbia Vancouver British Columbia Canada
| | - Clive Duncan
- Department of OrthopaedicsUniversity of British Columbia Vancouver British Columbia Canada
| | - Bassam Masri
- Department of OrthopaedicsUniversity of British Columbia Vancouver British Columbia Canada
| | - Nelson Greidanus
- Department of OrthopaedicsUniversity of British Columbia Vancouver British Columbia Canada
| | - Rizhi Wang
- Department of Materials EngineeringUniversity of British Columbia Vancouver British Columbia Canada
- School of Biomedical EngineeringUniversity of British Columbia Vancouver British Columbia Canada
- Centre for Hip Health and Mobility Vancouver British Columbia Canada
| |
Collapse
|
6
|
Gibon E, Amanatullah DF, Loi F, Pajarinen J, Nabeshima A, Yao Z, Hamadouche M, Goodman SB. The biological response to orthopaedic implants for joint replacement: Part I: Metals. J Biomed Mater Res B Appl Biomater 2016; 105:2162-2173. [PMID: 27328111 DOI: 10.1002/jbm.b.33734] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 04/19/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Joint replacement is a commonly performed, highly successful orthopaedic procedure, for which surgeons have a large choice of different materials and implant designs. The materials used for joint replacement must be both biologically acceptable to minimize adverse local tissue reactions, and robust enough to support weight bearing during common activities of daily living. Modern joint replacements are made from metals and their alloys, polymers, ceramics, and composites. This review focuses on the biological response to the different biomaterials used for joint replacement. In general, modern materials for joint replacement are well tolerated by the body as long as they are in bulk (rather than in particulate or ionic) form, are mechanically stable and noninfected. If the latter conditions are not met, the prosthesis will be associated with an acute/chronic inflammatory reaction, peri-prosthetic osteolysis, loosening and failure. This article (Part 1 of 2) is dedicated to the use of metallic devices in orthopaedic surgery including the associated biological response to metallic byproducts is a review of the basic science literature regarding this topic. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2162-2173, 2017.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopaedic Surgery, Stanford University, Stanford, California.,Laboratoire de Biomécanique et Biomatériaux Ostéo-Articulaires - UMR CNRS 7052, Faculté de Médecine - Université Paris7, Paris, France.,Department of Orthopaedic Surgery, Hopital Cochin, APHP, Université Paris5, Paris, France
| | - Derek F Amanatullah
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Florence Loi
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Akira Nabeshima
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Moussa Hamadouche
- Department of Orthopaedic Surgery, Hopital Cochin, APHP, Université Paris5, Paris, France
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| |
Collapse
|