1
|
Lashgari M, Choudhury RP, Banerjee A. Patient-specific in silico 3D coronary model in cardiac catheterisation laboratories. Front Cardiovasc Med 2024; 11:1398290. [PMID: 39036504 PMCID: PMC11257904 DOI: 10.3389/fcvm.2024.1398290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024] Open
Abstract
Coronary artery disease is caused by the buildup of atherosclerotic plaque in the coronary arteries, affecting the blood supply to the heart, one of the leading causes of death around the world. X-ray coronary angiography is the most common procedure for diagnosing coronary artery disease, which uses contrast material and x-rays to observe vascular lesions. With this type of procedure, blood flow in coronary arteries is viewed in real-time, making it possible to detect stenoses precisely and control percutaneous coronary interventions and stent insertions. Angiograms of coronary arteries are used to plan the necessary revascularisation procedures based on the calculation of occlusions and the affected segments. However, their interpretation in cardiac catheterisation laboratories presently relies on sequentially evaluating multiple 2D image projections, which limits measuring lesion severity, identifying the true shape of vessels, and analysing quantitative data. In silico modelling, which involves computational simulations of patient-specific data, can revolutionise interventional cardiology by providing valuable insights and optimising treatment methods. This paper explores the challenges and future directions associated with applying patient-specific in silico models in catheterisation laboratories. We discuss the implications of the lack of patient-specific in silico models and how their absence hinders the ability to accurately predict and assess the behaviour of individual patients during interventional procedures. Then, we introduce the different components of a typical patient-specific in silico model and explore the potential future directions to bridge this gap and promote the development and utilisation of patient-specific in silico models in the catheterisation laboratories.
Collapse
Affiliation(s)
- Mojtaba Lashgari
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Robin P. Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Abhirup Banerjee
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Arefinia F, Aria M, Rabiei R, Hosseini A, Ghaemian A, Roshanpoor A. Non-invasive fractional flow reserve estimation using deep learning on intermediate left anterior descending coronary artery lesion angiography images. Sci Rep 2024; 14:1818. [PMID: 38245614 PMCID: PMC10799954 DOI: 10.1038/s41598-024-52360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
This study aimed to design an end-to-end deep learning model for estimating the value of fractional flow reserve (FFR) using angiography images to classify left anterior descending (LAD) branch angiography images with average stenosis between 50 and 70% into two categories: FFR > 80 and FFR ≤ 80. In this study 3625 images were extracted from 41 patients' angiography films. Nine pre-trained convolutional neural networks (CNN), including DenseNet121, InceptionResNetV2, VGG16, VGG19, ResNet50V2, Xception, MobileNetV3Large, DenseNet201, and DenseNet169, were used to extract the features of images. DenseNet169 indicated higher performance compared to other networks. AUC, Accuracy, Sensitivity, Specificity, Precision, and F1-score of the proposed DenseNet169 network were 0.81, 0.81, 0.86, 0.75, 0.82, and 0.84, respectively. The deep learning-based method proposed in this study can non-invasively and consistently estimate FFR from angiographic images, offering significant clinical potential for diagnosing and treating coronary artery disease by combining anatomical and physiological parameters.
Collapse
Affiliation(s)
- Farhad Arefinia
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrad Aria
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Rabiei
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azamossadat Hosseini
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Ghaemian
- Department of Cardiology, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arash Roshanpoor
- Department of Computer, Yadegar-e-Imam Khomeini (RAH), Islamic Azad University, Janat-Abad Branch, Tehran, Iran
| |
Collapse
|
3
|
Yang L, Wang WJ, Xu C, Bi T, Li YG, Wang SC, Xu L. Novel fast FFR derived from coronary CT angiography based on static first-pass algorithm: a comparison study. J Geriatr Cardiol 2023; 20:40-50. [PMID: 36875165 PMCID: PMC9975489 DOI: 10.26599/1671-5411.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Fractional flow reserve (FFR) is the invasive gold standard for evaluating coronary arterial stenosis. However, there have been a few non-invasive methods such as computational fluid dynamics FFR (CFD-FFR) with coronary CT angiography (CCTA) images that can perform FFR assessment. This study aims to develop a new method based on the principle of static first-pass of CT perfusion imaging technique (SF-FFR) and evaluate the efficacy in direct comparisons between CFD-FFR and the invasive FFR. METHODS A total of 91 patients (105 coronary artery vessels) who were admitted from January 2015 to March 2019 were enrolled in this study, retrospectively. All patients underwent CCTA and invasive FFR. 64 patients (75 coronary artery vessels) were successfully analyzed. The correlation and diagnostic performance of SF-FFR method on per-vessel basis were analyzed, using invasive FFR as the gold standard. As a comparison, we also evaluated the correlation and diagnostic performance of CFD-FFR. RESULTS The SF-FFR showed a good Pearson correlation (r = 0.70, P < 0.001) and intra-class correlation (r = 0.67, P < 0.001) with the gold standard. The Bland-Altman analysis showed that the average difference between the SF-FFR and invasive FFR was 0.03 (0.11-0.16); between CFD-FFR and invasive FFR was 0.04 (-0.10-0.19). Diagnostic accuracy and area under the ROC curve on a per-vessel level were 0.89, 0.94 for SF-FFR, and 0.87, 0.89 for CFD-FFR, respectively. The SF-FFR calculation time was about 2.5 s per case while CFD calculation was about 2 min on an Nvidia Tesla V100 graphic card. CONCLUSIONS The SF-FFR method is feasible and shows high correlation compared to the gold standard. This method could simplify the calculation procedure and save time compared to the CFD method.
Collapse
Affiliation(s)
- Lin Yang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | | | - Chao Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tao Bi
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | | | | | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Alskaf E, Dutta U, Scannell CM, Chiribiri A. Deep learning applications in coronary anatomy imaging: a systematic review and meta-analysis. JOURNAL OF MEDICAL ARTIFICIAL INTELLIGENCE 2022; 5:11. [PMID: 36861064 PMCID: PMC7614252 DOI: 10.21037/jmai-22-36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background The application of deep learning on medical imaging is growing in prevalence in the recent literature. One of the most studied areas is coronary artery disease (CAD). Imaging of coronary artery anatomy is fundamental, which has led to a high number of publications describing a variety of techniques. The aim of this systematic review is to review the evidence behind the accuracy of deep learning applications in coronary anatomy imaging. Methods The search for the relevant studies, which applied deep learning on coronary anatomy imaging, was performed in a systematic approach on MEDLINE and EMBASE databases, followed by reviewing of abstracts and full texts. The data from the final studies was retrieved using data extraction forms. A meta-analysis was performed on a subgroup of studies, which looked at fractional flow reserve (FFR) prediction. Heterogeneity was tested using tau2, I2 and Q tests. Finally, a risk of bias was performed using Quality Assessment of Diagnostic Accuracy Studies (QUADAS) approach. Results A total of 81 studies met the inclusion criteria. The most common imaging modality was coronary computed tomography angiography (CCTA) (58%) and the most common deep learning method was convolutional neural network (CNN) (52%). The majority of studies demonstrated good performance metrics. The most common outputs were focused on coronary artery segmentation, clinical outcome prediction, coronary calcium quantification and FFR prediction, and most studies reported area under the curve (AUC) of ≥80%. The pooled diagnostic odds ratio (DOR) derived from 8 studies looking at FFR prediction using CCTA was 12.5 using the Mantel-Haenszel (MH) method. There was no significant heterogeneity amongst studies according to Q test (P=0.2496). Conclusions Deep learning has been used in many applications on coronary anatomy imaging, most of which are yet to be externally validated and prepared for clinical use. The performance of deep learning, especially CNN models, proved to be powerful and some applications have already translated into medical practice, such as computed tomography (CT)-FFR. These applications have the potential to translate technology into better care of CAD patients.
Collapse
Affiliation(s)
- Ebraham Alskaf
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Utkarsh Dutta
- GKT School of Medical Education, King’s College London, London, UK
| | - Cian M. Scannell
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK,Medical Image Analysis Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Amedeo Chiribiri
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
5
|
Chakshu NK, Nithiarasu P. An AI based digital-twin for prioritising pneumonia patient treatment. Proc Inst Mech Eng H 2022; 236:1662-1674. [PMID: 36121054 PMCID: PMC9647318 DOI: 10.1177/09544119221123431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
A digital-twin based three-tiered system is proposed to prioritise patients for urgent intensive care and ventilator support. The deep learning methods are used to build patient-specific digital-twins to identify and prioritise critical cases amongst severe pneumonia patients. The three-tiered strategy is proposed to generate severity indices to: (1) identify urgent cases, (2) assign critical care and mechanical ventilation, and (3) discontinue mechanical ventilation and critical care at the optimal time. The severity indices calculated in the present study are the probability of death and the probability of requiring mechanical ventilation. These enable the generation of patient prioritisation lists and facilitates the smooth flow of patients in and out of Intensive Therapy Units (ITUs). The proposed digital-twin is built on pre-trained deep learning models using data from more than 1895 pneumonia patients. The severity indices calculated in the present study are assessed using the standard benchmark of Area Under Receiving Operating Characteristic Curve (AUROC). The results indicate that the ITU and mechanical ventilation can be prioritised correctly to an AUROC value as high as 0.89. This model may be employed in its current form to COVID-19 patients, but transfer learning with COVID-19 patient data will improve the predictions. The digital-twin model developed and tested is available via accompanying Supplemental material.
Collapse
Affiliation(s)
- Neeraj Kavan Chakshu
- Biomedical Engineering Group, Zienkiewicz Centre
for Computational Engineering, Faculty of Science and Engineering, Swansea
University, Swansea, UK
| | - Perumal Nithiarasu
- Biomedical Engineering Group, Zienkiewicz Centre
for Computational Engineering, Faculty of Science and Engineering, Swansea
University, Swansea, UK
| |
Collapse
|
6
|
Rostam-Alilou AA, Safari M, Jarrah HR, Zolfagharian A, Bodaghi M. A machine learning model for non-invasive detection of atherosclerotic coronary artery aneurysm. Int J Comput Assist Radiol Surg 2022; 17:2221-2229. [PMID: 35948765 DOI: 10.1007/s11548-022-02725-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Atherosclerosis plays a significant role in the initiation of coronary artery aneurysms (CAA). Although the treatment options for this kind of vascular disease are developing, there are challenges and limitations in both selecting and applying sufficient medical solutions. For surgical interventions, that are novel therapies, non-invasive specific patient-based studies could lead to obtaining more promising results. Despite medical and pathological tests, these pre-surgical investigations require special biomedical and computer-aided engineering techniques. In this study, a machine learning (ML) model is proposed for the non-invasive detection of atherosclerotic CAA for the first time. METHODS The database for study was collected from hemodynamic analysis and computed tomography angiography (CTA) of 80 CAAs from 61 patients, approved by the Institutional Review Board (IRB). The proposed ML model is formulated for learning by a one-class support vector machine (1SVM) that is a field of ML to provide techniques for outlier and anomaly detection. RESULTS The applied ML algorithms yield reasonable results with high and significant accuracy in designing a procedure for the non-invasive diagnosis of atherosclerotic aneurysms. This proposed method could be employed as a unique artificial intelligence (AI) tool for assurance in clinical decision-making procedures for surgical intervention treatment methods in the future. CONCLUSIONS The non-invasive diagnosis of the atherosclerotic CAAs, which is one of the vital factors in the accomplishment of endovascular surgeries, is important due to some clinical decisions. Although there is no accurate tool for managing this kind of diagnosis, an ML model that can decrease the probability of endovascular surgical failures, death risk, and post-operational complications is proposed in this study. The model is able to increase the clinical decision accuracy for low-risk selection of treatment options.
Collapse
Affiliation(s)
- Ali A Rostam-Alilou
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Marziyeh Safari
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Hamid R Jarrah
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong, 3216, Australia
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
7
|
Lee HJ, Kim YW, Kim JH, Lee YJ, Moon J, Jeong P, Jeong J, Kim JS, Lee JS. Optimization of FFR prediction algorithm for gray zone by hemodynamic features with synthetic model and biometric data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106827. [PMID: 35500505 DOI: 10.1016/j.cmpb.2022.106827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Recent attempts on adopting artificial intelligence algorithm on coronary diagnosis had limitations on data quantity and quality. While most of previous studies only used vessel image as input data, flow features and biometric features should be also considered. Moreover, the accuracy should be optimized within gray zone as the purpose is to decide stent insertion with estimated fractional flow reserve. OBJECTIVES The main purpose of this study is to develop an artificial intelligence-based coronary vascular diagnosis system focused on performance in the gray zone, from CT image extraction to FFR estimation. Three main issues should be considered for an algorithm to be used for pre-screening: algorithm optimization in the gray zone, minimization of labor during image processing, and consideration of flow and biometric features. This paper introduces a full FFR pre-screening system from automatic image extraction to an algorithm for estimating the FFR value. METHOD The main techniques used in this study are an automatic image extraction algorithm, lattice Boltzmann method based computational fluid dynamics analysis of a synthetic model and patient data, and an AI algorithm optimization. For feature extraction, this study focused on an automatic process to reduce manual labor. The algorithm consisted of two steps: the first algorithm calculates flow features from geometrical features, and the second algorithm estimates the FFR value from flow features and patient biometric features. Algorithm selection, outlier elimination, and k-fold selection were included to optimize the algorithm. CONCLUSION Eight types of algorithms including two neural network models and six machine learning models were optimized and tested. The random forest model shows the highest performance before optimization, whereas the multilayer perceptron regressor shows the highest gray zone accuracy after optimization.
Collapse
Affiliation(s)
- Hyeong Jun Lee
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Young Woo Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Jun Hong Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Yong-Joon Lee
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Korea
| | | | | | | | - Jung-Sun Kim
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Korea
| | - Joon Sang Lee
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea.
| |
Collapse
|
8
|
Khir AW, Segers P. Physiological fluid mechanics: A special Issue with a taster of forefront research. Proc Inst Mech Eng H 2020; 234:1183-1186. [PMID: 33040681 DOI: 10.1177/0954411920959955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|