1
|
Qureshi A, Ouattara LA, El-Sayed NS, Verma A, Doncel GF, Choudhary MI, Siddiqui H, Parang K. Synthesis and Evaluation of Anti-HIV Activity of Mono- and Di-Substituted Phosphonamidate Conjugates of Tenofovir. Molecules 2022; 27:4447. [PMID: 35889320 PMCID: PMC9316519 DOI: 10.3390/molecules27144447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
The activity of nucleoside and nucleotide analogs as antiviral agents requires phosphorylation by endogenous enzymes. Phosphate-substituted analogs have low bioavailability due to the presence of ionizable negatively-charged groups. To circumvent these limitations, several prodrug approaches have been proposed. Herein, we hypothesized that the conjugation or combination of the lipophilic amide bond with nucleotide-based tenofovir (TFV) (1) could improve the anti-HIV activity. During the current study, the hydroxyl group of phosphonates in TFV was conjugated with the amino group of L-alanine, L-leucine, L-valine, and glycine amino acids and other long fatty ester hydrocarbon chains to synthesize 43 derivatives. Several classes of derivatives were synthesized. The synthesized compounds were characterized by 1H NMR, IR, UV, and mass spectrometry. In addition, several of the synthesized compounds were evaluated as racemic mixtures for anti-HIV activity in vitro in a single round infection assay using TZM-bl cells at 100 ng/mL. TFV (1) was used as a positive control and inhibited HIV infection by 35%. Among all the evaluated compounds, the disubstituted heptanolyl ester alanine phosphonamidate with naphthol oleate (69), pentanolyl ester alanine phosphonamidate with phenol oleate (62), and butanolyl ester alanine phosphonamidate with naphthol oleate (87) ester conjugates of TFV were more potent than parent drug TFV with 79.0%, 76.5%, 71.5% inhibition, respectively, at 100 ng/mL. Furthermore, two fatty acyl amide conjugates of tenofovir alafenamide (TAF) were synthesized and evaluated for comparative studies with TAF and TFV conjugates. Tetradecanoyl TAF conjugate 95 inhibited HIV infection by 99.6% at 100 ng/mL and showed comparable activity to TAF (97-99% inhibition) at 10-100 ng/mL but was more potent than TAF when compared at molar concentration.
Collapse
Affiliation(s)
- Aaminat Qureshi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Louise A. Ouattara
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.A.O.); (G.F.D.)
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.V.)
- Cellulose and Paper Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Amita Verma
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.V.)
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.A.O.); (G.F.D.)
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Biochemistry, King Abdul Aziz University, Jeddah 21452, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Campus C, Surabaya 60115, Indonesia
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.V.)
| |
Collapse
|
2
|
Schinazi RF, Patel D, Ehteshami M. The best backbone for HIV prevention, treatment, and elimination: Emtricitabine+tenofovir. Antivir Ther 2022; 27:13596535211067599. [PMID: 35491570 DOI: 10.1177/13596535211067599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The advent of antiretroviral combination therapy has significantly impacted the HIV/AIDS epidemic. No longer a death sentence, HIV infection can be controlled and suppressed using cocktail therapies that contain two or more small molecule drugs. This review aims to highlight the discovery, development, and impact of one such molecule, namely, emtricitabine (FTC, emtriva), which is one of the most successful drugs in the fight against HIV/AIDS and has been taken by over 94% of individuals infected with HIV in the USA. We also pay tribute to Dr. John C. Martin, former CEO and Chairman of Gilead Sciences, who unexpectedly passed away in 2021. A true visionary, he was instrumental in delivering FTC, as part of combination therapy with TDF (tenofovir, viread) to the global stage. As the fight to eradicate HIV marches on, we honor Dr. Martin's legacy of collaboration, achievement, and hope.
Collapse
Affiliation(s)
- Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, 1371Emory University School of Medicine and Children Healthcare of Atlanta, Atlanta, GA, USA
| | - Dharmeshkumar Patel
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, 1371Emory University School of Medicine and Children Healthcare of Atlanta, Atlanta, GA, USA
| | - Maryam Ehteshami
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, 1371Emory University School of Medicine and Children Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
3
|
Hartline CB, Keith KA, Eagar J, Harden EA, Bowlin TL, Prichard MN. A standardized approach to the evaluation of antivirals against DNA viruses: Orthopox-, adeno-, and herpesviruses. Antiviral Res 2018; 159:104-112. [PMID: 30287226 DOI: 10.1016/j.antiviral.2018.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023]
Abstract
The search for new compounds with a broad spectrum of antiviral activity is important and requires the evaluation of many compounds against several distinct viruses. Researchers attempting to develop new antiviral therapies for DNA virus infections currently use a variety of cell lines, assay conditions and measurement methods to determine in vitro drug efficacy, making it difficult to compare results from within the same laboratory as well as between laboratories. In this paper we describe a common assay platform designed to facilitate the parallel evaluation of antiviral activity against herpes simplex virus type 1, herpes simplex virus type 2, varicella-zoster virus, cytomegalovirus, vaccinia virus, cowpox virus, and adenovirus. The automated assays utilize monolayers of primary human foreskin fibroblast cells in 384-well plates as a common cell substrate and cytopathic effects and cytotoxicity are quantified with CellTiter-Glo. Data presented demonstrate that each of the assays is highly robust and yields data that are comparable to those from other traditional assays, such as plaque reduction assays. The assays proved to be both accurate and robust and afford an in depth assessment of antiviral activity against the diverse class of viruses with very small quantities of test compounds. In an accompanying paper, we present a standardized approach to evaluating antivirals against lymphotropic herpesviruses and polyomaviruses and together these studies revealed new activities for reference compounds. This approach has the potential to accelerate the development of broad spectrum therapies for the DNA viruses.
Collapse
Affiliation(s)
- Caroll B Hartline
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, 35233, United States
| | - Kathy A Keith
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, 35233, United States
| | - Jessica Eagar
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, 35233, United States
| | - Emma A Harden
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, 35233, United States
| | | | - Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, 35233, United States.
| |
Collapse
|
4
|
Britt WJ, Prichard MN. New therapies for human cytomegalovirus infections. Antiviral Res 2018; 159:153-174. [PMID: 30227153 DOI: 10.1016/j.antiviral.2018.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
The recent approval of letermovir marks a new era of therapy for human cytomegalovirus (HCMV) infections, particularly for the prevention of HCMV disease in hematopoietic stem cell transplant recipients. For almost 30 years ganciclovir has been the therapy of choice for these infections and by today's standards this drug exhibits only modest antiviral activity that is often insufficient to completely suppress viral replication, and drives the selection of drug-resistant variants that continue to replicate and contribute to disease. While ganciclovir remains the therapy of choice, additional drugs that inhibit novel molecular targets, such as letermovir, will be required as highly effective combination therapies are developed not only for the treatment of immunocompromised hosts, but also for congenitally infected infants. Sustained efforts, largely in the biotech industry and academia, have identified additional highly active lead compounds that have progressed into clinical studies with varying levels of success and at least two have the potential to be approved in the near future. Some of the new drugs in the pipeline inhibit new molecular targets, remain effective against isolates that have developed resistance to existing therapies, and promise to augment existing therapeutic regimens. Here, we will describe some of the unique features of HCMV biology and discuss their effect on therapeutic needs. Existing drugs will also be discussed and some of the more promising candidates will be reviewed with an emphasis on those progressing through clinical studies. The in vitro and in vivo antiviral activity, spectrum of antiviral activity, and mechanism of action of new compounds will be reviewed to provide an update on potential new therapies for HCMV infections that have progressed significantly in recent years.
Collapse
Affiliation(s)
- William J Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA
| | - Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA.
| |
Collapse
|
5
|
Pendergraff HM, Krishnamurthy PM, Debacker AJ, Moazami MP, Sharma VK, Niitsoo L, Yu Y, Tan YN, Haitchi HM, Watts JK. Locked Nucleic Acid Gapmers and Conjugates Potently Silence ADAM33, an Asthma-Associated Metalloprotease with Nuclear-Localized mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:158-168. [PMID: 28918018 PMCID: PMC5498289 DOI: 10.1016/j.omtn.2017.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022]
Abstract
Two mechanisms dominate the clinical pipeline for oligonucleotide-based gene silencing, namely, the antisense approach that recruits RNase H to cleave target RNA and the RNAi approach that recruits the RISC complex to cleave target RNA. Multiple chemical designs can be used to elicit each pathway. We compare the silencing of the asthma susceptibility gene ADAM33 in MRC-5 lung fibroblasts using four classes of gene silencing agents, two that use each mechanism: traditional duplex small interfering RNAs (siRNAs), single-stranded small interfering RNAs (ss-siRNAs), locked nucleic acid (LNA) gapmer antisense oligonucleotides (ASOs), and novel hexadecyloxypropyl conjugates of the ASOs. Of these designs, the gapmer ASOs emerged as lead compounds for silencing ADAM33 expression: several gapmer ASOs showed subnanomolar potency when transfected with cationic lipid and low micromolar potency with no toxicity when delivered gymnotically. The preferential susceptibility of ADAM33 mRNA to silencing by RNase H may be related to the high degree of nuclear retention observed for this mRNA. Dynamic light scattering data showed that the hexadecyloxypropyl ASO conjugates self-assemble into clusters. These conjugates showed reduced potency relative to unconjugated ASOs unless the lipophilic tail was conjugated to the ASO using a biocleavable linkage. Finally, based on the lead ASOs from (human) MRC-5 cells, we developed a series of homologous ASOs targeting mouse Adam33 with excellent activity. Our work confirms that ASO-based gene silencing of ADAM33 is a useful tool for asthma research and therapy.
Collapse
Affiliation(s)
- Hannah M Pendergraff
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Pranathi Meda Krishnamurthy
- RNA Therapeutics Institute, UMass Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA 01605, USA
| | - Alexandre J Debacker
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; RNA Therapeutics Institute, UMass Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA 01605, USA
| | - Michael P Moazami
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; RNA Therapeutics Institute, UMass Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA 01605, USA
| | - Vivek K Sharma
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; RNA Therapeutics Institute, UMass Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA 01605, USA
| | - Liisa Niitsoo
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yong Yu
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| | - Hans Michael Haitchi
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; NIHR Southampton Respiratory Biomedical Research Unit at University Hospital Southampton NHS Foundation Trust, Southampton, Southampton SO16 6YD, UK.
| | - Jonathan K Watts
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; RNA Therapeutics Institute, UMass Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Chong Y, Stuyver L, Otto MJ, Schinazi RF, Chu CK. Mechanism of Antiviral Activities of 3′-Substituted L-Nucleosides against 3Tc-Resistant HBV Polymerase: A Molecular Modelling Approach. ACTA ACUST UNITED AC 2016; 14:309-19. [PMID: 14968937 DOI: 10.1177/095632020301400603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Comparison of the active sites of the human HIV-1 reverse transcriptase (RT) and the homology-modelled hepatitis B virus (HBV) polymerase shows that the active sites of both enzymes are open to L-nucleosides, but the position where the 3′-substituent of the L-ribose projects in HBV polymerase is wider and deeper than HIV-1 RT, which enables the HBV polymerase to accommodate various 3′-substituted L-nucleosides. However, the space is not sufficient to accommodate a bulky 3′-substituent such as the 3′-azido group of L-3′-azido-3′-deoxythymidine. Analysis of the minimized structure of rtM204V HBV polymerase/ 3TCTP complex shows that, instead of the steric stress produced by rtV204, a loss of the van der Waals contact around the oxathiolane sugar moiety of 3TCTP caused by the mutation results in the disruption of the active site. Therefore, nucleosides, which are stabilized by additional specific interaction with the enzyme residues, can have more opportunities to circumvent the destabilization by the loss of hydrophobic interaction conferred by mutation. Specifically, the substitution at the 3′-position would be beneficial as the HBV polymerase has wide open space composed of the highly conserved motif (YMDD) where the 3′-substituents of the L-nucleosides project. As an example, our study shows that the 3′-fluorine atom contributes to the antiviral activity of L-3′-Fd4CTP against rtM204V HBV polymerase by readily compensating for the loss of the van der Waals interaction around the 2′,3′-double bond through a formation of a hydrogen bond to the amide backbone of rtD205.
Collapse
Affiliation(s)
- Youhoon Chong
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Ga., USA
| | | | | | | | | |
Collapse
|
7
|
Guo H, Sun S, Yang Z, Tang X, Wang Y. Strategies for ribavirin prodrugs and delivery systems for reducing the side-effect hemolysis and enhancing their therapeutic effect. J Control Release 2015; 209:27-36. [DOI: 10.1016/j.jconrel.2015.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 12/16/2022]
|
8
|
Synthesis and evaluation of a new phosphorylated ribavirin prodrug. Antiviral Res 2013; 99:18-26. [PMID: 23624267 DOI: 10.1016/j.antiviral.2013.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 11/21/2022]
Abstract
Ribavirin is an important broad-spectrum antiviral drug. However, its utilization can be limited by its potential to cause hemolytic anemia as well as its variability in dosing levels and efficacy outcomes. To overcome these issues, we report on a new alkoxyalkylphosphodiester prodrug of ribavirin (2) that is designed to release the active ribavirin-monophosphate species selectively in nucleated cells while limiting its exposure in anucleated red blood cells (RBCs). Prodrug 2 displays improved in vitro antiviral activity against the hepatitis C virus replicon and influenza virus. Unlike ribavirin, prodrug 2 does not significantly decrease ATP levels in RBCs. Prodrug 2 demonstrates decreased uptake in RBCs but increased uptake in HepG2 hepatocytes when compared to ribavirin. In vivo, prodrug 2 is orally bioavailable and well-tolerated in rats in which it is processed to ribavirin and accumulates in the liver. These results indicate that prodrug 2 has the potential for safer, lower, less frequent, and less variable administration than ribavirin.
Collapse
|
9
|
Beadle JR, Hostetler KY. Alkoxyalkyl Ester Prodrugs of Antiviral Nucleoside Phosphates and Phosphonates. ANTIVIRAL DRUG STRATEGIES 2011. [DOI: 10.1002/9783527635955.ch8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Synthesis, transport and antiviral activity of Ala-Ser and Val-Ser prodrugs of cidofovir. Bioorg Med Chem Lett 2011; 21:4045-9. [PMID: 21641218 DOI: 10.1016/j.bmcl.2011.04.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/26/2011] [Indexed: 11/23/2022]
Abstract
We report the synthesis and biological evaluation of Ala-(Val-)l-Ser-CO(2)R prodrugs of 1, where a dipeptide promoiety is conjugated to the P(OH)(2) group of cidofovir (1) via esterification by the Ser side chain hydroxyl group and an ethyl group (4 and 5) or alone (6 and 7). In a murine model, oral administration of 4 or 5 did not significantly increase total cidofovir species in the plasma compared to 1 or 2, but 7 resulted in a 15-fold increase in a rat model and had an in vitro EC(50) value against human cytomegalovirus comparable to 1. Neither 6 nor 7 exhibited toxicity up to 100 μM in KB or HFF cells.
Collapse
|
11
|
Prichard MN, Kern ER. The search for new therapies for human cytomegalovirus infections. Virus Res 2010; 157:212-21. [PMID: 21095209 DOI: 10.1016/j.virusres.2010.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022]
Abstract
Ganciclovir (GCV), the therapy of choice for human cytomegalovirus (CMV) infections and foscarnet, a drug used to treat GCV-resistant CMV infections was approved more than twenty years ago. Although cidofovir and a prodrug of GCV have since been added to the armamentarium, a highly effective drug without significant toxicities has yet to be approved. Such a therapeutic agent is required for treatment of immunocompromised hosts and infants, which bear the greatest burden of disease. The modest antiviral activity of existing drugs is insufficient to completely suppress viral replication, which results in the selection of drug-resistant variants that remain pathogenic, continue to replicate, and contribute to disease. Sustained efforts, largely in the biotech industry and academia, have identified highly active lead compounds that have progressed into clinical studies with varying levels of success. A few of these compounds inhibit new molecular targets, remain effective against isolates that have developed resistance to existing therapies, and promise to augment existing therapies. Some of the more promising drugs will be discussed with an emphasis on those progressing to clinical studies. Their antiviral activity both in vitro and in vivo, spectrum of antiviral activity, and mechanism of action will be reviewed to provide an update on the progress of potential new therapies for CMV infections.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233-1711, USA.
| | | |
Collapse
|
12
|
Synthesis and early development of hexadecyloxypropylcidofovir: an oral antipoxvirus nucleoside phosphonate. Viruses 2010; 2:2213-2225. [PMID: 21994617 PMCID: PMC3185567 DOI: 10.3390/v2102213] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 11/16/2022] Open
Abstract
Hexadecyloxypropyl-cidofovir (HDP-CDV) is a novel ether lipid conjugate of (S)-1-(3-hydroxy-2-phosphonoylmethoxypropyl)-cytosine (CDV) which exhibits a remarkable increase in antiviral activity against orthopoxviruses compared with CDV. In contrast to CDV, HDP-CDV is orally active and lacks the nephrotoxicity of CDV itself. Increased oral bioavailability and increased cellular uptake is facilitated by the lipid portion of the molecule which is responsible for the improved activity profile. The lipid portion of HDP-CDV is cleaved in the cell, releasing CDV which is converted to CDV diphosphate, the active metabolite. HDP-CDV is a highly effective agent against a variety of orthopoxvirus infections in animal models of disease including vaccinia, cowpox, rabbitpox and ectromelia. Its activity was recently demonstrated in a case of human disseminated vaccinia infection after it was added to a multiple drug regimen. In addition to the activity against orthopoxviruses, HDP-CDV (CMX001) is active against all double stranded DNA viruses including CMV, HSV-1, HSV-2, EBV, adenovirus, BK virus, orf, JC, and papilloma viruses, and is under clinical evaluation as a treatment for human infections with these agents.
Collapse
|
13
|
Mercorelli B, Sinigalia E, Loregian A, Palù G. Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev Med Virol 2008; 18:177-210. [PMID: 18027349 DOI: 10.1002/rmv.558] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, in particular transplant recipients and AIDS patients, and is the most frequent congenital viral infection in humans. There are currently five drugs approved for HCMV treatment: ganciclovir and its prodrug valganciclovir, foscarnet, cidofovir and fomivirsen. These drugs have provided a major advance in HCMV disease management, but they suffer from poor bioavailability, significant toxicity and limited effectiveness, mainly due to the development of drug resistance. Fortunately, there are several novel and potentially very effective new compounds which are under pre-clinical and clinical evaluation and may address these limitations. This review focuses on HCMV proteins that are directly or indirectly involved in viral DNA replication and represent already established or potential novel antiviral targets, and describes both currently available drugs and new compounds against such protein targets.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35121 Padua, Italy
| | | | | | | |
Collapse
|
14
|
Liu ZY, Wang B, Zhao LX, Li YH, Shao HY, Yi H, You XF, Li ZR. Synthesis and anti-influenza activities of carboxyl alkoxyalkyl esters of 4-guanidino-Neu5Ac2en (zanamivir). Bioorg Med Chem Lett 2007; 17:4851-4. [PMID: 17611105 DOI: 10.1016/j.bmcl.2007.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 04/20/2007] [Accepted: 06/13/2007] [Indexed: 11/26/2022]
Abstract
Three alkoxyalkyl 2-carboxylate ester derivatives related to zanamivir were synthesized. All of the analogs of zanamivir modified at carboxylic moiety with alkoxyalkyl esters 1a-c showed higher activities than ribavirin on influenza A and B virus in the MDCK cells. Oral treatment or intraperitoneal administration of compound 1c showed significantly protective effects in mice infected with influenza A virus with low toxicities.
Collapse
Affiliation(s)
- Zong-Ying Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Williams-Aziz SL, Hartline CB, Harden EA, Daily SL, Prichard MN, Kushner NL, Beadle JR, Wan WB, Hostetler KY, Kern ER. Comparative activities of lipid esters of cidofovir and cyclic cidofovir against replication of herpesviruses in vitro. Antimicrob Agents Chemother 2005; 49:3724-33. [PMID: 16127046 PMCID: PMC1195409 DOI: 10.1128/aac.49.9.3724-3733.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cidofovir (CDV) is an effective therapy for certain human cytomegalovirus (HCMV) infections in immunocompromised patients that are resistant to other antiviral drugs, but the compound is not active orally. To improve oral bioavailability, a series of lipid analogs of CDV and cyclic CDV (cCDV), including hexadecyloxypropyl-CDV and -cCDV and octadecyloxyethyl-CDV and -cCDV, were synthesized and found to have multiple-log-unit enhanced activity against HCMV in vitro. On the basis of the activity observed with these analogs, additional lipid esters were synthesized and evaluated for their activity against herpes simplex virus (HSV) types 1 and 2, human cytomegalovirus, murine cytomegalovirus, varicella-zoster virus (VZV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), and HHV-8. Using several different in vitro assays, concentrations of drug as low as 0.001 microM reduced herpesvirus replication by 50% (EC50) with the CDV analogs, whereas the cCDV compounds were generally less active. In most of the assays performed, the EC50 values of the lipid esters were at least 100-fold lower than the EC50 values for unmodified CDV or cCDV. The lipid analogs were also active against isolates that were resistant to CDV, ganciclovir, or foscarnet. These results indicate that the lipid ester analogs are considerably more active than CDV itself against HSV, VZV, CMV, EBV, HHV-6, and HHV-8 in vitro, suggesting that they may have potential for the treatment of infections caused by a variety of herpesviruses.
Collapse
Affiliation(s)
- Stephanie L Williams-Aziz
- University of Alabama School of Medicine, 1600 6th Ave. South, 128 Children's Harbor Bldg., Birmingham, AL 35233, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hammond JL, Parikh UM, Koontz DL, Schlueter-Wirtz S, Chu CK, Bazmi HZ, Schinazi RF, Mellors JW. In vitro selection and analysis of human immunodeficiency virus type 1 resistant to derivatives of beta-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine. Antimicrob Agents Chemother 2005; 49:3930-2. [PMID: 16127074 PMCID: PMC1195387 DOI: 10.1128/aac.49.9.3930-3932.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serial passage of human immunodeficiency virus type 1 in MT-2 cells in increasing concentrations of the d- and l-enantiomers of beta-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine (d4FC) resulted in the selection of viral variants with reverse transcriptase substitutions M184I or M184V for l-d4FC and I63L, K65R, K70N, K70E, or R172K for d-d4FC. Phenotypic analysis of site-directed mutants defined the role of these mutations in reducing susceptibility to l- or d-d4FC.
Collapse
Affiliation(s)
- Jennifer L Hammond
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dalmau D, Klimkait T, Telenti A. Resistance to New Anti-HIV Agents: Problems in the Pathway of Drug Registration. Antivir Ther 2005. [DOI: 10.1177/135965350501000701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance data are now requested by the regulatory agencies as an integral part of the approval process of new antiretroviral drugs. We examined the means by which resistance data was gathered during pre-clinical and clinical Phases I, II and III of drug development, and how the public and academic experts access these proprietary data. The analysis identified various opportunities for improvement of the current process, in particular the need for standards in generating and reporting resistance data on new antiretroviral drugs, and the need to enforce warnings in the product labelling on the drug combinations that can potentially lead to resistance and treatment failure.
Collapse
Affiliation(s)
- David Dalmau
- Institute of Microbiology, University Hospital, Lausanne, Switzerland
- Service of Infectious Diseases, Hospital Mutua de Terrassa, Barcelona, Spain
| | | | - Amalio Telenti
- Institute of Microbiology, University Hospital, Lausanne, Switzerland
- Service of Infectious Diseases, University Hospital, Lausanne, Switzerland
| |
Collapse
|
18
|
Moser MJ, Ruckstuhl M, Larsen CA, Swearingen AJ, Kozlowski M, Bassit L, Sharma PL, Schinazi RF, Prudent JR. Quantifying mixed populations of drug-resistant human immunodeficiency virus type 1. Antimicrob Agents Chemother 2005; 49:3334-40. [PMID: 16048944 PMCID: PMC1196292 DOI: 10.1128/aac.49.8.3334-3340.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to survive prolonged treatment with antiretroviral nucleoside analogs, the human immunodeficiency virus type 1 (HIV-1) is selectively forced to acquire mutations in the reverse transcriptase (RT) gene. Some of these mutations are more common than others and have become markers for antiretroviral resistance. For the early detection of these markers, a novel MultiCode-RTx one-step testing system to rapidly and simultaneously characterize mixtures of HIV-1 targets was designed. For cDNA, nucleotide polymorphisms for codon M184V (ATG to GTG) and K65R (AAA to AGA) could be differentiated and quantified even when the population mixture varied as much as 1 to 10,000. Standard mixed-population curves using 1 to 100% of the mutant or wild type generated over 4 logs of total viral particle input did not affect the overall curves, making the method robust. The system was also applied to a small set of samples extracted from infected individuals on nucleoside reverse transcriptase inhibitor therapy. Of 13 samples tested, all were positive for HIV and 10 of the 13 genotypes determined were concordant with the line probe assay. MultiCode-RTx could be applied to other drug-selected mutations in the viral genome or for applications where single-base changes in DNA or RNA occur at frequencies reaching 0.01% to 1%, respectively.
Collapse
Affiliation(s)
- Michael J Moser
- EraGen Biosciences, Inc., 918 Deming Way, Madison, WI 53717, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kern ER, Collins DJ, Wan WB, Beadle JR, Hostetler KY, Quenelle DC. Oral treatment of murine cytomegalovirus infections with ether lipid esters of cidofovir. Antimicrob Agents Chemother 2004; 48:3516-22. [PMID: 15328119 PMCID: PMC514741 DOI: 10.1128/aac.48.9.3516-3522.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To improve the oral bioavailability of cidofovir (CDV), a series of ether lipid ester prodrugs were synthesized and evaluated for activity against murine cytomegalovirus (MCMV) infection. Four of these analogs, hexadecyloxypropyl (HDP)-CDV, octadecyloxyethyl (ODE)-CDV, oleyloxyethyl (OLE)-CDV, and oleyloxypropyl (OLP)-CDV, were found to have greater activity than CDV against human CMV and MCMV in vitro. The efficacy of oral treatment with these compounds against MCMV infections in BALB/c mice was then determined. Treatment with HDP-CDV, ODE-CDV, OLE-CDV, or OLP-CDV at 2.0 to 6.7 mg/kg of body weight provided significant protection when daily treatments were initiated 24 to 48 h after viral inoculation. Additionally, HDP-CDV or ODE-CDV administered twice weekly or as a single dose of 1.25 to 10 mg/kg was effective in reducing mortality when treatment was initiated at 24 h, 48 h, or, in some cases, 72 h after viral inoculation. In animals treated daily with HDP-CDV or ODE-CDV, virus titers in lung, liver, spleen, kidney, pancreas, salivary gland, and blood were reduced 3 to 5 log(10)-fold, which was comparable to CDV given intraperitoneally. These results indicated that HDP-CDV or ODE-CDV given orally was as effective as parenteral CDV for the treatment of experimental MCMV infection and suggest that further evaluation for use in CMV infections in humans is warranted.
Collapse
Affiliation(s)
- Earl R Kern
- Department of Pediatrics, The University of Alabama at Birmingham, School of Medicine, CHB 128, 1600 6th Ave. South, Birmingham, AL 35233, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Erion MD, Reddy KR, Boyer SH, Matelich MC, Gomez-Galeno J, Lemus RH, Ugarkar BG, Colby TJ, Schanzer J, Van Poelje PD. Design, synthesis, and characterization of a series of cytochrome P(450) 3A-activated prodrugs (HepDirect prodrugs) useful for targeting phosph(on)ate-based drugs to the liver. J Am Chem Soc 2004; 126:5154-63. [PMID: 15099098 DOI: 10.1021/ja031818y] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new class of phosphate and phosphonate prodrugs, called HepDirect prodrugs, is described that combines properties of rapid liver cleavage with high plasma and tissue stability to achieve increased drug levels in the liver. The prodrugs are substituted cyclic 1,3-propanyl esters designed to undergo an oxidative cleavage reaction catalyzed by a cytochrome P(450) (CYP) expressed predominantly in the liver. Reported herein is the discovery of a prodrug series containing an aryl substituent at C4 and its use for the delivery of nucleoside-based drugs to the liver. Prodrugs of 5'-monophosphates of vidarabine, lamivudine (3TC), and cytarabine as well as the phosphonic acid adefovir were shown to cleave following exposure to liver homogenates and exhibit good stability in blood and other tissues. Prodrug cleavage required the presence of the aryl group in the cis-configuration, but was relatively independent of the nucleoside and absolute stereochemistry at C4. Mechanistic studies suggested that prodrug cleavage proceeded via an initial CYP3A-catalyzed oxidation to an intermediate ring-opened monoacid, which subsequently was converted to the phosph(on)ate and an aryl vinyl ketone by a beta-elimination reaction. Studies in primary rat hepatocytes and normal rats comparing 3TC and the corresponding HepDirect prodrug demonstrated the ability of these prodrugs to effectively bypass the rate-limiting nucleoside kinase step and produce higher levels of the biologically active nucleoside triphosphate.
Collapse
Affiliation(s)
- Mark D Erion
- Departments of Medicinal Chemistry and Biochemistry, Metabasis Therapeutics, Inc., San Diego, California 92121 USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ray AS, Schinazi RF, Murakami E, Basavapathruni A, Shi J, Zorca SM, Chu CK, Anderson KS. Probing the mechanistic consequences of 5-fluorine substitution on cytidine nucleotide analogue incorporation by HIV-1 reverse transcriptase. Antivir Chem Chemother 2004; 14:115-25. [PMID: 14521328 DOI: 10.1177/095632020301400301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Beta-D and beta-L-enantiomers of 2',3'-dideoxycytidine analogues are potent chain-terminators and antimetabolites for viral and cellular replication. Seemingly small modifications markedly alter their antiviral and toxicity patterns. This review discusses previously published and recently obtained data on the effects of 5- and 2'-fluorine substitution on the pre-steady state incorporation of 2'-deoxycytidine-5'-monophosphate analogues by HIV-1 reverse transcriptase (RT) in light of their biological activity. The addition of fluorine at the 5-position of the pyrimidine ring altered the kinetic parameters for all nucleotides tested. Only the 5-fluorine substitution of the clinically relevant nucleosides (-)-beta-L-2',3'-dideoxy-3'-thia-5-fluorocytidine (L-FTC, Emtriva), and (+)-beta-D-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine (D-D4FC, Reverset), caused a higher overall efficiency of nucleotide incorporation during both DNA- and RNA-directed synthesis. Enhanced incorporation by RT may in part explain the potency of these nucleosides against HIV-1. In other cases, a lack of correlation between RT incorporation in enzymatic assays and antiviral activity in cell culture illustrates the importance of other cellular factors in defining antiviral potency. The substitution of fluorine at the 2' position of the deoxyribose ring negatively affects incorporation by RT indicating the steric gate of RT can detect electrostatic perturbations. Intriguing results pertaining to drug resistance have led to a better understanding of HIV-1 RT resistance mechanisms. These insights serve as a basis for understanding the mechanism of action for nucleoside analogues and, coupled with studies on other key enzymes, may lead to the more effective use of fluorine to enhance the potency and selectivity of antiviral agents.
Collapse
Affiliation(s)
- Adrian S Ray
- Department of Pharmacology, Yale University School of Medicine, New Haven, Conn., USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Quenelle DC, Collins DJ, Wan WB, Beadle JR, Hostetler KY, Kern ER. Oral treatment of cowpox and vaccinia virus infections in mice with ether lipid esters of cidofovir. Antimicrob Agents Chemother 2004; 48:404-12. [PMID: 14742188 PMCID: PMC321539 DOI: 10.1128/aac.48.2.404-412.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four newly synthesized ether lipid esters of cidofovir (CDV), hexadecyloxypropyl-CDV (HDP-CDV), octadecyloxyethyl-CDV (ODE-CDV), oleyloxypropyl-CDV (OLP-CDV), and oleyloxyethyl-CDV (OLE-CDV), were found to have enhanced activities against vaccinia virus (VV) and cowpox virus (CV) in vitro compared to those of CDV. The compounds were administered orally and were evaluated for their efficacies against lethal CV or VV infections in mice. HDP-CDV, ODE-CDV, and OLE-CDV were effective at preventing mortality from CV infection when treatments were initiated 24 h after viral inoculation, but only HDP-CDV and ODE-CDV maintained efficacy when treatments were initiated as late as 72 h postinfection. Oral pretreatment with HDP-CDV and ODE-CDV were also effective when they were given 5, 3, or 1 day prior to inoculation with CV, even when each compound was administered as a single dose. Both HDP-CDV and ODE-CDV were also effective against VV infections when they were administered orally 24 or 48 h after infection. In animals treated with HDP-CDV or ODE-CDV, the titers of both CV and VV in the liver, spleen, and kidney were reduced 3 to 7 log(10). In contrast, virus replication in the lungs was not significantly reduced. These data indicate that HDP-CDV or ODE-CDV given orally is as effective as CDV given parenterally for the treatment of experimental CV and VV infections and suggest that these compounds may be useful for the treatment of orthopoxvirus infections in humans.
Collapse
Affiliation(s)
- Debra C Quenelle
- The University of Alabama School of Medicine, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
23
|
Aldern KA, Ciesla SL, Winegarden KL, Hostetler KY. Increased antiviral activity of 1-O-hexadecyloxypropyl-[2-(14)C]cidofovir in MRC-5 human lung fibroblasts is explained by unique cellular uptake and metabolism. Mol Pharmacol 2003; 63:678-81. [PMID: 12606777 DOI: 10.1124/mol.63.3.678] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been renewed interest in finding orally active drugs against smallpox. Cidofovir (CDV) given by parenteral injection has been shown to protect against lethal poxvirus infection. We have been interested in the synthesis and evaluation of orally active derivatives of CDV. Previous studies showed that the CDV and cyclic cidofovir (cCDV) analogs 1-O-hexa-decyloxypropyl-CDV (HDP-CDV) and 1-O-hexadecyloxypropyl-cCDV (HDP-cCDV), show >100-fold increases in antiviral activity versus the unmodified nucleosides against cells infected with orthopoxviruses, cowpox, and vaccinia virus. In contrast to CDV, HDP-CDV is orally bioavailable and has been reported to be orally active in lethal cowpox virus infection in mice. To assess the metabolic basis for the increased antiviral activity of HDP-CDV in vitro, we studied the cellular uptake and anabolic metabolism of (14)C-labeled CDV, cCDV, and their alkoxyalkanol esters HDP-CDV and HDP-cCDV. HDP-CDV and HDP-cCDV were taken up rapidly by MRC-5 human lung fibroblasts in vitro, but uptake of CDV and cCDV was much slower. Analysis of cellular metabolites showed that levels of cidofovir diphosphate (CDV-DP), the active antiviral compound, were >100 times greater with HDP-CDV than levels observed with CDV. When cells were exposed to HDP-CDV, the intracellular half-life of CDV-DP was 10 days versus 2.7 days reported when cells are exposed to CDV. HDP-CDV seems to circumvent poor cellular uptake by rapid association with cellular membrane phospholipids, whereas CDV uptake proceeds via the slow process of fluid endocytosis.
Collapse
Affiliation(s)
- Kathy A Aldern
- Department of Medicine, San Diego VA Healthcare System, San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
24
|
Abstract
The potential use of variola or another orthopoxvirus such as monkeypox as a weapon of bioterrorism has stimulated efforts to develop new drugs for treatment of smallpox or other poxvirus infections. At the present time only cidofovir is approved for use in the emergency treatment of smallpox outbreaks. Although cidofovir is very active against the orthopoxviruses in vitro and in animal model infections, it is not active when given orally and must be administered with precaution so as to avoid renal toxicity. In an attempt to identify alternative treatment modalities for these infections we have determined the anti-poxvirus activity in vitro of most of the approved antiviral agents as well as a number of cidofovir analogs and prodrugs. From these studies, we have identified the nucleotide analog, adefovir dipivoxil, some alkoxyalkyl esters of cidofovir and a number of prodrugs of cidofovir that warrant further investigation as potential therapies for smallpox or other orthopoxvirus infections.
Collapse
Affiliation(s)
- Earl R Kern
- Department of Pediatrics, University of Alabama School of Medicine, BBRB 309, 845 19th Street South, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
25
|
Stuyver LJ, Lostia S, Adams M, Mathew JS, Pai BS, Grier J, Tharnish PM, Choi Y, Chong Y, Choo H, Chu CK, Otto MJ, Schinazi RF. Antiviral activities and cellular toxicities of modified 2',3'-dideoxy-2',3'-didehydrocytidine analogues. Antimicrob Agents Chemother 2002; 46:3854-60. [PMID: 12435688 PMCID: PMC132758 DOI: 10.1128/aac.46.12.3854-3860.2002] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antiviral efficacies and cytotoxicities of 2',3'- and 4'-substituted 2',3'-didehydro-2',3'-dideoxycytidine analogs were evaluated. All compounds were tested (i) against a wild-type human immunodeficiency virus type 1 (HIV-1) isolate (strain xxBRU) and lamivudine-resistant HIV-1 isolates, (ii) for their abilities to inhibit hepatitis B virus (HBV) production in the inducible HepAD38 cell line, and (iii) for their abilities to inhibit bovine viral diarrhea virus (BVDV) production in acutely infected Madin-Darby bovine kidney cells. Some compounds demonstrated potent antiviral activities against the wild-type HIV-1 strain (range of 90% effective concentrations [EC(90)s], 0.14 to 5.2 micro M), but marked increases in EC(90)s were noted when the compounds were tested against the lamivudine-resistant HIV-1 strain (range of EC(90)s, 53 to >100 micro M). The beta-L-enantiomers of both classes of compounds were more potent than the corresponding beta-D-enantiomers. None of the compounds showed antiviral activity in the assay that determined their abilities to inhibit BVDV, while two compounds inhibited HBV production in HepAD38 cells (EC(90), 0.25 micro M). The compounds were essentially noncytotoxic in human peripheral blood mononuclear cells and HepG2 cells. No effect on mitochondrial DNA levels was observed after a 7-day incubation with the nucleoside analogs at 10 micro M. These studies demonstrate that (i) modification of the sugar ring of cytosine nucleoside analogs with a 4'-thia instead of an oxygen results in compounds with the ability to potently inhibit wild-type HIV-1 but with reduced potency against lamivudine-resistant virus and (ii) the antiviral activity of beta-D-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine against wild-type HIV-1 (EC(90), 0.08 micro M) and lamivudine-resistant HIV-1 (EC(90) = 0.15 micro M) is markedly reduced by introduction of a 3'-fluorine in the sugar (EC(90)s of compound 2a, 37.5 and 494 micro M, respectively).
Collapse
Affiliation(s)
- Lieven J Stuyver
- Veterans Affairs Medical Center and Department of Pediatrics, Emory University School of Medicine, Decatur, Georgia 30033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Beadle JR, Hartline C, Aldern KA, Rodriguez N, Harden E, Kern ER, Hostetler KY. Alkoxyalkyl esters of cidofovir and cyclic cidofovir exhibit multiple-log enhancement of antiviral activity against cytomegalovirus and herpesvirus replication in vitro. Antimicrob Agents Chemother 2002; 46:2381-6. [PMID: 12121908 PMCID: PMC127379 DOI: 10.1128/aac.46.8.2381-2386.2002] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incidence of cytomegalovirus (CMV) retinitis is declining in AIDS patients but remains a significant clinical problem in patients with organ transplants and bone marrow transplants. Prophylaxis with ganciclovir (GCV) or valganciclovir reduces the incidence of CMV disease but may lead to the emergence of drug-resistant virus with mutations in the UL97 or UL54 gene. It would be useful to have other types of oral therapy for CMV disease. We synthesized hexadecyloxypropyl and octadecyloxyethyl derivatives of cyclic cidofovir (cCDV) and cidofovir (CDV) and found that these novel analogs had 2.5- to 4-log increases in antiviral activity against CMV compared to the activities of unmodified CDV and cCDV. Multiple-log increases in activity were noted against laboratory CMV strains and various CMV clinical isolates including GCV-resistant strains with mutations in the UL97 and UL54 genes. Preliminary cell studies suggest that the increase in antiviral activity may be partially explained by a much greater cell penetration of the novel analogs. 1-O-Hexadecyloxypropyl-CDV, 1-O-octadecyloxyethyl-CDV, and their corresponding cCDV analogs are worthy of further preclinical evaluation for treatment and prevention of CMV and herpes simplex virus infections in humans.
Collapse
Affiliation(s)
- James R Beadle
- Department of Medicine, Veterans Affairs Medical Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0676, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Kern ER, Hartline C, Harden E, Keith K, Rodriguez N, Beadle JR, Hostetler KY. Enhanced inhibition of orthopoxvirus replication in vitro by alkoxyalkyl esters of cidofovir and cyclic cidofovir. Antimicrob Agents Chemother 2002; 46:991-5. [PMID: 11897580 PMCID: PMC127114 DOI: 10.1128/aac.46.4.991-995.2002] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide phosphonates cidofovir (CDV) and cyclic cidofovir (cCDV) are potent antiviral compounds when administered parenterally but are not well absorbed orally. These compounds have been reported to have activity against orthopoxvirus replication in vitro and in animal models when administered parenterally or by aerosol. To obtain better oral activity, we synthesized a novel series of analogs of CDV and cCDV by esterification with two long-chain alkoxyalkanols, 3-hexadecyloxy-1-propanol (HDP-CDV; HDP-cCDV) or 3-octadecyloxy-1-ethanol (ODE-CDV; ODE-cCDV). Their activities were evaluated and compared with those of CDV and cCDV in human foreskin fibroblast (HFF) cells infected with vaccinia virus (VV) or cowpox virus (CV) using a plaque reduction assay. The 50% effective concentrations (EC(50)s) against VV in HFF cells for CDV and cCDV were 46.2 and 50.6 microM compared with 0.84 and 3.8 microM for HDP-CDV and HDP-cCDV, respectively. The EC(50)s for ODE-CDV and ODE-cCDV were 0.20 and 1.1 microM, respectively. The HDP analogs were 57- and 13-fold more active than the parent nucleotides, whereas the ODE analogs were 231- and 46-fold more active than the unmodified CDV and cCDV. Similar results were obtained using CV. Cytotoxicity studies indicated that although the analogs were more toxic than the parent nucleotides, the selective index was increased by 4- to 13-fold. These results indicate that the alkoxyalkyl esters of CDV and cCDV have enhanced activity in vitro and need to be evaluated for their oral absorption and efficacy in animal models.
Collapse
Affiliation(s)
- Earl R Kern
- University of Alabama School of Medicine, Birmingham, Alabama 35294-2170, USA.
| | | | | | | | | | | | | |
Collapse
|