1
|
Dilxat T, Shi Q, Chen X, Liu X. Garlic oil supplementation blocks inflammatory pyroptosis-related acute lung injury by suppressing the NF-κB/NLRP3 signaling pathway via H 2S generation. Aging (Albany NY) 2024; 16:6521-6536. [PMID: 38613798 PMCID: PMC11042940 DOI: 10.18632/aging.205721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/09/2024] [Indexed: 04/15/2024]
Abstract
Acute lung injury (ALI) is a major cause of acute respiratory failure with a high morbidity and mortality rate, and effective therapeutic strategies for ALI remain limited. Inflammatory response is considered crucial for the pathogenesis of ALI. Garlic, a globally used cooking spice, reportedly exhibits excellent anti-inflammatory bioactivity. However, protective effects of garlic against ALI have never been reported. This study aimed to investigate the protective effects of garlic oil (GO) supplementation on lipopolysaccharide (LPS)-induced ALI models. Hematoxylin and eosin staining, pathology scores, lung myeloperoxidase (MPO) activity measurement, lung wet/dry (W/D) ratio detection, and bronchoalveolar lavage fluid (BALF) analysis were performed to investigate ALI histopathology. Real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to evaluate the expression levels of inflammatory factors, nuclear factor-κB (NF-κB), NLRP3, pyroptosis-related proteins, and H2S-producing enzymes. GO attenuated LPS-induced pulmonary pathological changes, lung W/D ratio, MPO activity, and inflammatory cytokines in the lungs and BALF. Additionally, GO suppressed LPS-induced NF-κB activation, NLRP3 inflammasome expression, and inflammatory-related pyroptosis. Mechanistically, GO promoted increased H2S production in lung tissues by enhancing the conversion of GO-rich polysulfide compounds or by increasing the expression of H2S-producing enzymes in vivo. Inhibition of endogenous or exogenous H2S production reversed the protective effects of GO on ALI and eliminated the inhibitory effects of GO on NF-κB, NLRP3, and pyroptotic signaling pathways. Overall, these findings indicate that GO has a critical anti-inflammatory effect and protects against LPS-induced ALI by suppressing the NF-κB/NLRP3 signaling pathway via H2S generation.
Collapse
Affiliation(s)
- Tursunay Dilxat
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Qiang Shi
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Xiaofan Chen
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Xuxin Liu
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| |
Collapse
|
2
|
Li LX, Wang L, Wang S, Zhang XN, Liu H, Zhang YJ, Wu CT, Zhang CL, Zeng T. Allyl methyl disulfide (AMDS) prevents N,N-dimethyl formamide-induced liver damage by suppressing oxidative stress and NLRP3 inflammasome activation. Food Chem Toxicol 2023; 182:114198. [PMID: 37995826 DOI: 10.1016/j.fct.2023.114198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
N,N-dimethylformamide (DMF), a widely consumed industrial solvent with persistent characteristics, can induce occupational liver damage and pose threats to the general population due to the enormous DMF-containing industrial efflux and emission from indoor facilities. This study was performed to explore the roles of allyl methyl disulfide (AMDS) in liver damage induced by DMF and the underlying mechanisms. AMDS was found to effectively suppress the elevation in the liver weight/body weight ratio and serum aminotransferase activities, and reduce the mortality of mice induced by DMF. In addition, AMDS abrogated DMF-elicited increases in malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels and decreases in glutathione (GSH) levels in mouse livers. The increase in macrophage number, mRNA expression of M1 macrophage biomarkers, and protein expression of key components in the NF-κB pathway and NLRP3 inflammasome induced by DMF exposure were all suppressed by AMDS in mouse livers. Furthermore, AMDS inhibited DMF-induced cell damage and NF-κB activation in cocultured AML12 hepatocytes and J774A.1 macrophages. However, AMDS per se did not significantly affect the protein level and activity of CYP2E1. Collectively, these results demonstrate that AMDS effectively ameliorates DMF-induced acute liver damage possibly by suppressing oxidative stress and inactivating the NF-κB pathway and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Long-Xia Li
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lin Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Xiu-Ning Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yan-Jing Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chuan-Tao Wu
- The Animal Research Center, Shandong University, Jinan, Shandong, 250012, China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Han W, Wang S, Li M, Jiang L, Wang X, Xie K. The protective effect of diallyl trisulfide on cytopenia induced by benzene through modulating benzene metabolism. Food Chem Toxicol 2018; 112:393-399. [PMID: 29305270 DOI: 10.1016/j.fct.2017.12.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 02/02/2023]
Abstract
It has been known that metabolism of benzene is necessary for its toxicity. The purpose of our study is to investigate the effect of diallyl trisulfide (DATS) on attenuating cytopenia in peripheral blood introduced by benzene through regulating benzene metabolism in rats. We established benzene poisoning model with benzene (1.3 g/kg), while the DATS treatment groups were treated with DATS plus benzene (15 or 30 mg/kg) for 28 days, respectively. The results of blood parameters and concentration of metabolites of benzene (t, t-MA and SPMA) determination in urine showed that DATS could effectively attenuate the cytopenia induced by benzene through regulating benzene metabolism. Western blot and chemical method were used to detect the activities and protein expression levels of enzymes CYP2E1 and GSTT1 in liver and enzymes MPO and NQO1 in bone marrow were tested. The results suggested that the inhibition of bioactivation in liver and bone marrow catalyzed by CYP2E1 and MPO and the activation of detoxification catalyzed by GSTT1 and NQO1 might be the critical mechanism, through which DATS modulated benzene metabolism to prevent benzene-induced cytopenia.
Collapse
Affiliation(s)
- Wenting Han
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China; School of Food Engineering, Ludong University, Yantai, Shandong 264025, China.
| | - Shuo Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Ming Li
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Lulu Jiang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Xujing Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Keqin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
El-Akabawy G, El-Sherif NM. Protective role of garlic oil against oxidative damage induced by furan exposure from weaning through adulthood in adult rat testis. Acta Histochem 2016; 118:456-63. [PMID: 27130490 DOI: 10.1016/j.acthis.2016.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
Abstract
Furan is produced in a wide variety of heat-treated foods via thermal degradation. Furan contamination is found to be relatively high in processed baby foods, cereal products, fruits juices, and canned vegetables. Several studies have demonstrated that furan is a potent hepatotoxin and hepatocarcinogen in rodents. However, few studies have investigated the toxic effects of furan in the testis. In addition, the exact mechanism(s) by which furan exerts toxicity in the testis has not been fully elucidated. In this study, we investigated the potential of furan exposure from weaning through adulthood to induce oxidative stress in adult rat testis, as well as the potential of garlic oil (GO) to ameliorate the induced toxicity. Our results reveal that furan administration significantly reduced serum testosterone levels and increased the levels of malondialdehyde (MDA); furthermore, furan administration decreased significantly the enzymatic activity of testicular antioxidants, including glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) and induced histopathological alterations in the testis. GO co-administration ameliorated the reduction in testosterone levels and dramatically attenuated the furan-induced oxidative and histopathological changes. In addition, Go significantly down-regulated the increased caspase-3 and cytochrome P450 2E1 (CYP2E1) expression in the furan-treated testis. To the best of our knowledge, this study is the first to demonstrate the furan-induced oxidative changes in the adult rat testis and the protective role of GO to ameliorate these changes through its antioxidant effects and its ability to inhibit CYP2E1 production.
Collapse
|
5
|
Hassouna I, Ibrahim H, Abdel Gaffar F, El-Elaimy I, Abdel Latif H. Simultaneous administration of hesperidin or garlic oil modulates diazinon-induced hemato- and immunotoxicity in rats. Immunopharmacol Immunotoxicol 2015; 37:442-9. [DOI: 10.3109/08923973.2015.1081932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application. J Nutr Metab 2015; 2015:760689. [PMID: 26167297 PMCID: PMC4488002 DOI: 10.1155/2015/760689] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/20/2015] [Indexed: 12/16/2022] Open
Abstract
Research into human biotransformation and elimination systems continues to evolve. Various clinical and in vivo studies have been undertaken to evaluate the effects of foods and food-derived components on the activity of detoxification pathways, including phase I cytochrome P450 enzymes, phase II conjugation enzymes, Nrf2 signaling, and metallothionein. This review summarizes the research in this area to date, highlighting the potential for foods and nutrients to support and/or modulate detoxification functions. Clinical applications to alter detoxification pathway activity and improve patient outcomes are considered, drawing on the growing understanding of the relationship between detoxification functions and different disease states, genetic polymorphisms, and drug-nutrient interactions. Some caution is recommended, however, due to the limitations of current research as well as indications that many nutrients exert biphasic, dose-dependent effects and that genetic polymorphisms may alter outcomes. A whole-foods approach may, therefore, be prudent.
Collapse
|
7
|
Zeng T, Zhang CL, Song FY, Zhao XL, Xie KQ. CMZ reversed chronic ethanol-induced disturbance of PPAR-α possibly by suppressing oxidative stress and PGC-1α acetylation, and activating the MAPK and GSK3β pathway. PLoS One 2014; 9:e98658. [PMID: 24892905 PMCID: PMC4043914 DOI: 10.1371/journal.pone.0098658] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023] Open
Abstract
Background Cytochrome P4502E1 (CYP2E1) has been suggested to play critical roles in the pathogenesis of alcoholic fatty liver (AFL), but the underlying mechanisms remains unclear. The current study was designed to evaluate whether CYP2E1 suppression by chlormethiazole (CMZ) could suppress AFL in mice, and to explore the underlying mechanisms. Methods Mice were treated with or without CMZ (50 mg/kg bw, i.p.) and subjected to liquid diet with or without ethanol (5%, w/v) for 4 weeks. Biochemical parameters were measured using commercial kits. The protein and mRNA levels were detected by western blot and qPCR, respectively. Histopathology and immunohistochemical assay were performed with routine methods. Results CYP2E1 inhibition by CMZ completely blocked AFL in mice, shown as the decline of the hepatic and serum triglyceride levels, and the fewer fat droplets in the liver sections. Chronic ethanol exposure led to significant decrease of the mRNA and protein levels of peroxisome proliferator-activated receptor α (PPAR-α), which was blocked by CMZ co-treatment. CMZ co-treatment suppressed ethanol-induced oxidative stress, overproduction of tumor necrosis α (TNF-α), and decrease of protein levels of the PPAR-α co-activators including p300 and deacetylated PGC1-α. Furthermore, CMZ co-treatment led to the activation of AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), and PI3K/Akt/GSK3β pathway. However, chronic ethanol-induced decline of acyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) protein levels was partially restored by CMZ, while the activation of autophagy appeared to be suppressed by CMZ. Conclusion These results suggested that CMZ suppressed chronic ethanol-induced oxidative stress, TNF-α overproduction, decline of p300 protein level and deacetylation of PGC1-α, and activated AMPK, MAPK, and PI3K/Akt/GSK3β pathway, which might contribute to the activation of PPAR-α and account for the protection of CMZ against AFL.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Fu-Yong Song
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Xiu-Lan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
- * E-mail:
| |
Collapse
|
8
|
Zeng T, Li Y, Zhang CL, Yu LH, Zhu ZP, Zhao XL, Xie KQ. Garlic oil suppressed the hematological disorders induced by chemotherapy and radiotherapy in tumor-bearing mice. J Food Sci 2014; 78:H936-42. [PMID: 23772706 DOI: 10.1111/1750-3841.12137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 03/24/2013] [Indexed: 12/31/2022]
Abstract
Although the anticancer effects of garlic and its products have been demonstrated by a variety of studies; however, few studies were conducted to investigate the effects of garlic on the adverse effects of chemo/radiotherapy. In order to clarify the above question and make a more comprehensive understanding of the anticancer effects of garlic, tumor xenograft mice model was established by subcutaneous injection of H22 tumor cells, and was used for the investigation of effects of garlic oil (GO) on the chemo/radiotherapy. In the chemotherapy test, tumor-bearing mice were treated with cyclophosphamide (CTX) or CTX plus GO (25 or 50 mg/kg bw) for 14 d, while the mice received a single 5 Gy total body radiation or radiation plus GO (25 or 50 mg/kg bw) in radiotherapy test. The results showed that GO did not increase the tumor inhibitory rate of CTX/radiation, which indicated that GO could not enhance the chemo/radiosensitivity of cancer cells. However, the decrease of the peripheral total white blood cells (WBCs) count induced by CTX/radiation was significantly suppressed by GO cotreatment. Furthermore, GO cotreatment significantly inhibited the decrease of the DNA contents and the micronuclei ratio of the bone marrow. Lastly, the reduction of the endogenous spleen colonies induced by CTX/radiation was significantly suppressed by GO cotreatment. These findings support the idea that GO consumption may benefit for the cancer patients receiving chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Tao Zeng
- School of Public Health, Shandong Univ., 44 Wenhua West Road, Shandong Province, Jinan City, 250012, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Zeng T, Zhang CL, Song FY, Zhao XL, Yu LH, Zhu ZP, Xie KQ. The activation of HO-1/Nrf-2 contributes to the protective effects of diallyl disulfide (DADS) against ethanol-induced oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1830:4848-59. [PMID: 23816986 DOI: 10.1016/j.bbagen.2013.06.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diallyl disulfide (DADS) is a garlic-derived organosulfur compound. The current study is designed to evaluate the protective effects of DADS against ethanol-induced oxidative stress, and to explore the underlying mechanisms by examining the HO-1/Nrf-2 pathway. METHODS We investigated whether or not DADS could activate the HO-1 in normal human liver cell LO2, and then evaluated the protective effects of DADS against ethanol-induced damage in LO2 cells and in acute ethanol-intoxicated mice. The biochemical parameters were measured using commercial kits. HO-1 mRNA level was determined by RT-PCR. Histopathology and immunofluorescence assay were performed with routine methods. Protein levels were measured by western blot. RESULTS DADS significantly increased the mRNA and protein levels of HO-1, stimulated the nuclear translocation of Nrf-2 and increased the phosphorylation of MAPK in LO2 cells. The nuclear translocation of Nrf-2 was abrogated by MAPK inhibitors. DADS significantly suppressed ethanol-induced elevation of lactate dehydrogenase (LDH) and aspartate transaminase (AST) activities, decrease of glutathione (GSH) level, increase of malondialdehyde (MDA) levels, and apoptosis of LO2 cells, which were all blocked by ZnPPIX. In mice, DADS effectively suppressed acute ethanol-induced elevation of aminotransferase activities, and improved liver histopathological changes, which might be associated with HO-1 activation. CONCLUSION These results demonstrate that DADS could induce the activation of HO-1/Nrf-2 pathway, which may contribute to the protective effects of DADS against ethanol-induced liver injury. GENERAL SIGNIFICANCE DADS may be beneficial for the prevention and treatment of ALD due to significant activation of HO-1/Nrf-2 pathway.
Collapse
Affiliation(s)
- Tao Zeng
- School of Public Health, Shandong University, Shandong Province, Jinan City, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang CL, Zeng T, Zhao XL, Xie KQ. Garlic oil attenuated nitrosodiethylamine-induced hepatocarcinogenesis by modulating the metabolic activation and detoxification enzymes. Int J Biol Sci 2013; 9:237-45. [PMID: 23494807 PMCID: PMC3596709 DOI: 10.7150/ijbs.5549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/06/2013] [Indexed: 11/30/2022] Open
Abstract
Nitrosodiethylamine (NDEA) is a potent carcinogen widely existing in the environment. Our previous study has demonstrated that garlic oil (GO) could prevent NDEA-induced hepatocarcinogenesis in rats, but the underlying mechanisms are not fully understood. It has been well documented that the metabolic activation may play important roles in NDEA-induced hepatocarcinogenesis. Therefore, we designed the current study to explore the potential mechanisms by investigating the changes of hepatic phase Ⅰ enzymes (including cytochrome P450 enzyme (CYP) 2E1, CYP1A2 and CYP1A1) and phase Ⅱ enzymes (including glutathione S transferases (GSTs) and UDP- Glucuronosyltransferases (UGTs)) by using enzymatic methods, real-time PCR, and western blotting analysis. We found that NDEA treatment resulted in significant decreases of the activities of CYP2E1, CYP1A2, GST alpha, GST mu, UGTs and increases of the activities of CYP1A1 and GST pi. Furthermore, the mRNA and protein levels of CYP2E1, CYP1A2, GST alpha, GST mu and UGT1A6 in the liver of NDEA-treated rats were significantly decreased compared with those of the control group rats, while the mRNA and protein levels of CYP1A1 and GST pi were dramatically increased. Interestingly, all these adverse effects induced by NDEA were simultaneously and significantly suppressed by GO co-treatment. These data suggest that the protective effects of GO against NDEA-induced hepatocarcinogenesis might be, at least partially, attributed to the modulation of phase I and phase II enzymes.
Collapse
Affiliation(s)
- Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Shandong, Jinan 250012, PR China
| | | | | | | |
Collapse
|
11
|
Zeng T, Zhang CL, Zhao XL, Xie KQ. The Roles of Garlic on the Lipid Parameters: A Systematic Review of the Literature. Crit Rev Food Sci Nutr 2013; 53:215-30. [DOI: 10.1080/10408398.2010.523148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Zeng T, Zhang CL, Song FY, Zhao XL, Yu LH, Zhu ZP, Xie KQ. PI3K/Akt pathway activation was involved in acute ethanol-induced fatty liver in mice. Toxicology 2012; 296:56-66. [PMID: 22459179 DOI: 10.1016/j.tox.2012.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 12/16/2022]
Abstract
Accumulating evidences support the important roles of sterol regulatory element-binding protein-1 (SREBP-1) activation in ethanol-induced fatty liver, but the underlying mechanisms for its activation are not fully understood. Recent studies have demonstrated that phosphatidylinositol 3 kinase (PI3K)/Akt pathway activation could enhance SREBP-1 activity. The current study was designed to investigate the potential roles of PI3K/Akt pathway in acute ethanol-induced fatty liver in mice. In the first experiment, mice were treated with ethanol (2.5 or 5 g/kg bw) or isocaloric/isovolumetric maltose-dextrin solution, and sacrificed at several time points after ethanol exposure. As expected, ethanol dose-dependently increased the hepatic triglyceride (TG) levels and the protein levels of the mature form of SREBP-1 (n-SREBP-1). The phosphorylation of Akt and glycogen synthase kinase-3β (GSK-3β) was significantly increased in mice treated with ethanol (5 g/kg bw), while the protein levels of PI3K-p85 were significantly reduced. To confirm the roles of PI3K/Akt pathway, mice were then pretreated with wortmannin (0.7 or 1.4 mg/kg bw), a specific PI3K/Akt pathway inhibitor, before exposure to ethanol. Interestingly, a dual effect of wortmannin was observed. Low dose of wortmannin significantly reduced the hepatic TG levels, while high dose of wortmannin aggravated ethanol-induced fatty liver. The ratio of LC3II/LC3I of wortmannin (1.4 mg/kg bw) group mice was significantly increased, while the p62 protein level was significantly decreased compared to those of ethanol group, which indicated that wortmannin (1.4 mg/kg bw) might suppress the lipid degradation by autophagy. These results supported the hypothesis that PI3K/Akt activation might be involved in acute ethanol-induced fatty liver, and PI3K/Akt inhibitors might have therapeutic potential for the treatment of ethanol-induced fatty liver.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Shandong Province, Jinan City 250012, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhang CL, Zeng T, Zhao XL, Yu LH, Zhu ZP, Xie KQ. Protective effects of garlic oil on hepatocarcinoma induced by N-nitrosodiethylamine in rats. Int J Biol Sci 2012; 8:363-74. [PMID: 22393308 PMCID: PMC3291853 DOI: 10.7150/ijbs.3796] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/16/2012] [Indexed: 01/11/2023] Open
Abstract
To investigate the protective effects and the possible mechanisms of garlic oil (GO) against N-nitrosodiethylamine (NDEA)-induced hepatocarcinoma in rats, Wistar rats were gavaged with GO (20 or 40 mg/kg) for 1 week, and then were gavaged with GO and NDEA (10 mg/kg) for the next 20 weeks. The changes of morphology, histology, the biochemical indices of serum, and DNA oxidative damage of liver were examined to assess the protective effects. Lipid peroxidation (LPO), antioxidant defense system, and apoptosis-related proteins were measured to investigate potential mechanisms. At the end of the study (21 weeks), GO administration significantly inhibited the increase of the nodule incidence and average nodule number per nodule-bearing liver induced by NDEA, improved hepatocellular architecture, and dramatically inhibited NDEA-induced elevation of serum biochemical indices (alanine aminotransferase , aspartate aminotransferase, alkaline phosphatase and gamma-glutamyl transpeptidase) and hepatic 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in a dose-dependent manner. The mechanistic studies demonstrated that GO counteracted NDEA-induced oxidative stress in rats illustrated by the restoration of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST) levels, and the reduction of the malondialdehyde (MDA) levels in liver. Furthermore, the mRNA and protein levels of Bcl-2, Bcl-xl, andβ-arrestin-2 were significantly decreased whereas those of Bax and caspase-3 were significantly increased. These data suggest that GO exhibited significant protection against NDEA-induced hepatocarcinogenesis, which might be related with the enhancement of the antioxidant activity and the induction of apoptosis.
Collapse
Affiliation(s)
- Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Zeng T, Zhang CL, Song FY, Zhao XL, Xie KQ. Garlic oil alleviated ethanol-induced fat accumulation via modulation of SREBP-1, PPAR-α, and CYP2E1. Food Chem Toxicol 2011; 50:485-91. [PMID: 22138249 DOI: 10.1016/j.fct.2011.11.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/01/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022]
Abstract
Garlic oil (GO) has been shown to partially attenuate ethanol-induced fatty liver, but the underlying mechanisms remain unclear. The current study was designed to evaluate the protective effects of GO against ethanol-induced steatosis in vitro and in vivo, and to explore potential mechanisms by investigating the sterol regulatory element binding protein-1c (SREBP-1c), peroxisome proliferators-activated receptor-α (PPAR-α), cytochrome P4502E1 (CYP2E1), and etc. In the in vitro study, human normal cell LO2 was exposed to 100 mM ethanol in the presence or absence of GO for 24 h. We found that ethanol increased the protein levels of n-SREBP-1c and CYP2E1, but decreased the protein levels of PPAR-α, which was significantly attenuated by GO co-treatment. In the in vivo study, male Kun-Ming mice were pretreated with single dose of GO (50-200 mg/kg body weight) at 2 h before ethanol (4.8 g/kg body weight) exposure. The changes of n-SREBP-1c, PPAR-α and CYP2E1 were paralleled well to those of in vitro study. Furthermore, GO significantly reduced the protein levels of fatty acid synthase (FAS), and suppressed ethanol-induced hepatic mitochondrial dysfunction. These results suggested that GO had the potential to ameliorate alcoholic steatosis which might be related to its modulation on SREBP-1c, PPAR-α, and CYP2E1.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Shandong, Jinan 250012, PR China.
| | | | | | | | | |
Collapse
|
15
|
Jadeja RN, Thounaojam MC, Ansarullah, Jadav SV, Patel MD, Patel DK, Salunke SP, Padate GS, Devkar RV, Ramachandran AV. Toxicological evaluation and hepatoprotective potential of Clerodendron glandulosum.Coleb leaf extract. Hum Exp Toxicol 2010; 30:63-70. [DOI: 10.1177/0960327110368420] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This inventory evaluates toxicological effects and hepatoprotective potential of Clerodendron glandulosum.Coleb (CG) aqueous extract. Acute and subchronic toxicity tests were performed using Swiss albino mice as per the guideline of Organisation for Economic Cooperation and Development (OECD). Also, hepatoprotective potential of CG extract was examined in experimental model of carbon tetrachloride (CCl 4)-induced hepatotoxicity. Acute and subchronic toxicity tests revealed that CG extract is non-toxic and its median lethal dose (LD50) value is >5000 mg/kg bodyweight. Also, rats pretreated with CG extract followed by administration of CCl4 recorded significant decrement in plasma marker enzymes of hepatic damage, total bilirubin content and hepatic lipid peroxidation. While, hepatic reduced glutathione, ascorbic acid content, activity levels of superoxide and catalase and plasma total protein content were significantly increased. Microscopic examination of liver showed that pretreatment with CG extract prevented CCl4-induced hepatic damage in CG + CCl 4 group. CG extract has hepatoprotective potential by modulating activity levels of enzymes and metabolites governing liver function and by helping in maintaining cellular integrity of hepatocytes that is comparable with that of standard drug silymarin. CG extract exhibits potent hepatoprotective activity against CCl4-induced hepatic damage but does not exhibit any toxic manifestations.
Collapse
Affiliation(s)
- Ravirajsinh N Jadeja
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| | - Menaka C Thounaojam
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| | - Ansarullah
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| | - Snehal V Jadav
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| | - Mitul D Patel
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| | - Dipak K Patel
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| | - Sunita P Salunke
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| | - Geeta S Padate
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| | - Ranjitsinh V Devkar
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India,
| | - AV Ramachandran
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|