1
|
Iliadis S, Papanikolaou NA. Reactive Oxygen Species Mechanisms that Regulate Protein-Protein Interactions in Cancer. Int J Mol Sci 2024; 25:9255. [PMID: 39273204 PMCID: PMC11395503 DOI: 10.3390/ijms25179255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Reactive oxygen species (ROS) are produced during cellular metabolism and in response to environmental stress. While low levels of ROS play essential physiological roles, excess ROS can damage cellular components, leading to cell death or transformation. ROS can also regulate protein interactions in cancer cells, thereby affecting processes such as cell growth, migration, and angiogenesis. Dysregulated interactions occur via various mechanisms, including amino acid modifications, conformational changes, and alterations in complex stability. Understanding ROS-mediated changes in protein interactions is crucial for targeted cancer therapies. In this review, we examine the role that ROS mechanisms in regulating pathways through protein-protein interactions.
Collapse
Affiliation(s)
- Stavros Iliadis
- Laboratory of Biological Chemistry, Department of Medicine, Section of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki School of Medicine, 54124 Thessaloniki, Macedonia, Greece
| | - Nikolaos A Papanikolaou
- Laboratory of Biological Chemistry, Department of Medicine, Section of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki School of Medicine, 54124 Thessaloniki, Macedonia, Greece
| |
Collapse
|
2
|
Krętowski R, Szynaka B, Jabłońska-Trypuć A, Kiełtyka-Dadasiewicz A, Cechowska-Pasko M. The Synergistic Effect of Reduced Graphene Oxide and Proteasome Inhibitor in the Induction of Apoptosis through Oxidative Stress in Breast Cancer Cell Lines. Int J Mol Sci 2024; 25:5436. [PMID: 38791473 PMCID: PMC11121306 DOI: 10.3390/ijms25105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Reduced graphene oxide (rGO) and a proteasome inhibitor (MG-132) are some of the most commonly used compounds in various biomedical applications. However, the mechanisms of rGO- and MG-132-induced cytotoxicity remain unclear. The aim of this study was to investigate the anticancer effect of rGO and MG-132 against ZR-75-1 and MDA-MB-231 breast cancer cell lines. The results demonstrated that rGO, MG-132 or a mix (rGO + MG-132) induced time- and dose-dependent cytotoxicity in ZR-75-1 and MDA-MB-231 cells. Apart from that, we found that treatment with rGO and MG-132 or the mix increased apoptosis, necrosis and induction of caspase-8 and caspase-9 activity in both breast cancer cell lines. Apoptosis and caspase activation were accompanied by changes in the ultrastructure of mitochondria in ZR-75-1 and MDA-MB-231 cells incubated with rGO. Additionally, in the analyzed cells, we observed the induction of oxidative stress, accompanied by increased apoptosis and cell necrosis. In conclusion, oxidative stress induces apoptosis in the tested cells. At the same time, both mitochondrial and receptor apoptosis pathways are activated. These studies provided new information on the molecular mechanisms of apoptosis in the ZR-75-1 and MDA-MB-231 breast cancer cell lines.
Collapse
Affiliation(s)
- Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland;
| | - Beata Szynaka
- Department of Histology and Embryology, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland;
| | - Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland;
| | - Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodity, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Center, 20-819 Lublin, Poland
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland;
| |
Collapse
|
3
|
Kuo YH, Lai TC, Chang CH, Hsieh HC, Yang FM, Hu MC. 5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) induces apoptosis in breast cancer cells through inhibiting of Mcl-1 expression. Sci Rep 2023; 13:12621. [PMID: 37537243 PMCID: PMC10400577 DOI: 10.1038/s41598-023-39340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
The effective treatment of breast cancer remains a profound clinical challenge, especially due to drug resistance and metastasis which unfortunately arise in many patients. The transcription inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB), as a selective inhibitor of cyclin-dependent kinase 9, was shown to be effective in inducing apoptosis in various hematopoietic malignancies. However, the anticancer efficacy of DRB against breast cancer is still unclear. Herein, we demonstrated that administration of DRB to the breast cancer cell line led to the inhibition of cellular proliferation and induction of the typical signs of apoptotic cells, including the increases in Annexin V-positive cells, DNA fragmentation, and activation of caspase-7, caspase-9, and poly (ADP ribose) polymerase (PARP). Treatment of DRB resulted in a rapid decline in the myeloid cell leukemia 1 (Mcl-1) protein, whereas levels of other antiapoptotic proteins did not change. Overexpression of Mcl-1 decreased the DRB-induced PARP cleavage, whereas knockdown of Mcl-1 enhanced the effects of DRB on PARP activation, indicating that loss of Mcl-1 accounts for the DRB-mediated apoptosis in MCF-7 cells, but not in T-47D. Furthermore, we found that co-treatment of MCF-7 cells with an inhibitor of AKT (LY294002) or an inhibitor of the proteasome (MG-132) significantly augmented the DRB-induced apoptosis. These data suggested that DRB in combination with LY294002 or MG-132 may have a greater therapeutic potency against breast cancer cells.
Collapse
Affiliation(s)
- Yi-Hsuan Kuo
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Tsai-Chun Lai
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chia-Hsin Chang
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Han-Ching Hsieh
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Feng-Ming Yang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - Meng-Chun Hu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan.
| |
Collapse
|
4
|
Hsieh PC, Peng CK, Liu GT, Kuo CY, Tzeng IS, Wang MC, Lan CC, Huang KL. Aqueous Extract of Descuraniae Semen Attenuates Lipopolysaccharide-Induced Inflammation and Apoptosis by Regulating the Proteasomal Degradation and IRE1α-Dependent Unfolded Protein Response in A549 Cells. Front Immunol 2022; 13:916102. [PMID: 35812413 PMCID: PMC9265213 DOI: 10.3389/fimmu.2022.916102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Lipopolysaccharide (LPS)-induced acute lung injury (ALI) induces endoplasmic reticulum stress, unfolded protein response (UPR), apoptosis, and inflammation. Inositol-requiring enzyme 1 (IRE1)-α is important for adaptive and apoptotic UPR determination during ER stress. The aqueous extract of Descuraniae Semen (AEDS) is reported to be a safe and effective herb for the treatment of pulmonary edema as it shows anti-inflammatory activities. Methods We investigated the effects of AEDS on LPS-induced ALI in A549 cells with respect to the regulation of IRE1α-dependent UPR, proteasomal degradation, mitochondrial membrane potential (MtMP), inflammation, and apoptosis. Results AEDS attenuated ER stress by regulating the proteasomal degradation. LPS induced ER stress [binding immunoglobulin protein (BiP), phosphorylated IRE1α, sliced X-box binding protein 1 [XBP1s], phosphorylated cJUN NH2-terminal kinase (pJNK), B-cell lymphoma (Bcl)-2-associated X (Bax), Bcl-2], inflammation (nucleus factor-kappa B (NF-κB) p65 nuclear translocation, nucleus NF-κB, pro-inflammatory cytokines] and apoptosis [C/EBP homologous protein (CHOP), cytochrome c, caspase-8, and caspase-6, and TUNEL] were significantly attenuated by AEDS treatment in A549 cells. AEDS prevents LPS-induced decreased expression of MtMP in A549 cells. Conclusions AEDS attenuated LPS-induced inflammation and apoptosis by regulating proteasomal degradation, promoting IRE1α-dependent adaptive UPR, and inhibiting IRE1α-dependent apoptotic UPR. Moreover, IRE1α-dependent UPR plays a pivotal role in the mechanisms of LPS-induced ALI. Based on these findings, AEDS is suggested as a potential therapeutic option for treating patients with ALI.
Collapse
Affiliation(s)
- Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Guan-Ting Liu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ming-Chieh Wang
- Department of Pharmacy, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chou-Chin Lan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Kun-Lun Huang, ; Chou-Chin Lan,
| | - Kun-Lun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
- *Correspondence: Kun-Lun Huang, ; Chou-Chin Lan,
| |
Collapse
|
5
|
Meng X, Cui X, Shao X, Liu Y, Xing Y, Smith V, Xiong S, Macip S, Chen Y. poly(I:C) synergizes with proteasome inhibitors to induce apoptosis in cervical cancer cells. Transl Oncol 2022; 18:101362. [PMID: 35151092 PMCID: PMC8842080 DOI: 10.1016/j.tranon.2022.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
|
6
|
Hadfield JD, Sokhi S, Chan GK. Cell Synchronization Techniques for Studying Mitosis. Methods Mol Biol 2022; 2579:73-86. [PMID: 36045199 DOI: 10.1007/978-1-0716-2736-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell synchronization allows the examination of cell cycle progression. Nocodazole and other microtubule poisons have been used extensively to interfere with microtubule function and arrest cells in mitosis. Since microtubules are important for many cellular functions, alternative cell cycle synchronization techniques independent of microtubule inhibition are also used for synchronizing cells in mitosis. Here we describe using nocodazole, STLC, and combining thymidine block with MG132 to synchronize cells in mitosis. These inhibitors are reversible and mitotic cells can be released into the G1 phase synchronously. These techniques can be applied to both Western blot and timelapse imaging to study mitotic progression.
Collapse
Affiliation(s)
- Joanne D Hadfield
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Sargun Sokhi
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Gordon K Chan
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Guo WW, Zhang ZT, Wei Q, Zhou Y, Lin MT, Chen JJ, Wang TT, Guo NN, Zhong XC, Lu YY, Yang QY, Han M, Gao J. Intracellular Restructured Reduced Glutathione-Responsive Peptide Nanofibers for Synergetic Tumor Chemotherapy. Biomacromolecules 2020; 21:444-453. [PMID: 31851512 DOI: 10.1021/acs.biomac.9b01202] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Self-assembled peptide nanofibers have been widely studied in cancer nanotherapeutics with their excellent biocompatibility and low toxicity of degradation products, showing the significant potential in inhibiting tumor progression. However, poor solubility prevents direct intravenous administration of nanofibers. Although water-soluble peptide precursors have been formed via the method of phosphorylation for intravenous administration, their opportunities for broad in vivo application are limited by the weak capacity of encapsulating drugs. Herein, we designed a novel restructured reduced glutathione (GSH)-responsive drug delivery system encapsulating doxorubicin for systemic administration, which achieved the intracellular restructuration from three-dimensional micelles into one-dimensional nanofibers. After a long blood circulation, micelles endocytosed by tumor cells could degrade in response to high GSH levels, achieving more release and accumulation of doxorubicin at desired sites. Further, the synergistic chemotherapy effects of self-assembled nanofibers were confirmed in both in vitro and in vivo experiments.
Collapse
|
8
|
Lin Y, Kong F, Li Y, Wang Y, Song L, Zhao C. The tumor suppressor OVCA1 is a short half-life protein degraded by the ubiquitin-proteasome pathway. Oncol Lett 2019; 17:2328-2334. [PMID: 30675298 PMCID: PMC6341780 DOI: 10.3892/ol.2018.9852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer gene 1 (OVCA1) is a tumor suppressor associated with ovarian cancer, which is involved in cell proliferation regulation, embryonic development and tumorigenesis. Loss of heterozygosity in the OVCA1 gene occurs in 50-86% of cases of ovarian cancer; however, the physiological and biochemical functions of OVCA1 are not yet clear. In the present study, the stability and degradation of OVCA1 were investigated in A2780, Hela and 293 cells. The results revealed that the OVCA1 protein was unstable by MG132 inhibiting proteasome mediated degradation, co-immunoprecipitation and half-life measurement experiments. The cellular protein levels of endogenous OVCA1 were too low to be detected by western blotting. In addition, carbobenzoxy-L-leucyl-L-leucyl-L-leucinal inhibited the degradation of OVCA1 in cells. The co-immunoprecipitation assay revealed that the OVCA1 protein interacted with ubiquitin to form a poly-ubiquitinated complex in cells. The half-life of OVCA1, measured by inhibiting protein synthesis with cycloheximide, was <2 h. The present study demonstrated that OVCA1 may be degraded by the ubiquitin-mediated proteasome pathway and may be considered a short half-life protein. In conclusion, the regulation of OVCA1 protein degradation via the ubiquitin-proteasome pathway may represent a novel direction in the development of ovarian cancer therapy.
Collapse
Affiliation(s)
- Yingwei Lin
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Fandou Kong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yan Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yinghui Wang
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ling Song
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Chunyan Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
9
|
Proteasome Inhibitor–Loaded Micelles Enhance Antitumor Activity Through Macrophage Reprogramming by NF-κB Inhibition. J Pharm Sci 2017; 106:2438-2446. [DOI: 10.1016/j.xphs.2017.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022]
|
10
|
Ghosh C, Gupta N, More P, Sengupta P, Mallick A, Santra MK, Basu S. Engineering and In VitroEvaluation of Acid Labile Cholesterol Tethered MG132 Nanoparticle for Targeting Ubiquitin-Proteasome System in Cancer. ChemistrySelect 2016. [DOI: 10.1002/slct.201601117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chandramouli Ghosh
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Neha Gupta
- Cancer and Epigenetics Lab; National Center for Cell Science (NCCS), Ganeshkhind; Pune 411007, Maharashtra India
| | - Piyush More
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Poulomi Sengupta
- Physical Chemistry Division; CSIR National Chemical Laboratory; Academy of Scientific & Innovative Research (AcSIR); Dr. Homi Bhaba Road Pune 411008, Maharashtra India
| | - Abhik Mallick
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Manas Kumar Santra
- Cancer and Epigenetics Lab; National Center for Cell Science (NCCS), Ganeshkhind; Pune 411007, Maharashtra India
| | - Sudipta Basu
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| |
Collapse
|
11
|
Lü L, Liu X, Wang C, Hu F, Wang J, Huang H. Dissociation of E-cadherin/β-catenin complex by MG132 and bortezomib enhances CDDP induced cell death in oral cancer SCC-25 cells. Toxicol In Vitro 2015; 29:1965-76. [DOI: 10.1016/j.tiv.2015.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/04/2015] [Accepted: 07/08/2015] [Indexed: 11/30/2022]
|
12
|
Brodskii VY, Sharova NP, Mal’chenko LA, Konchenko DS, Dubovaya TK, Zvezdina ND. Blockade of proteasome activity disturbs the rhythm of synthesis of the protein marker of direct cell-cell interactions. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Chao TH, Chang MY, Su SJ, Su SH. Inducible nitric oxide synthase mediates MG132 lethality in leukemic cells through mitochondrial depolarization. Free Radic Biol Med 2014; 74:175-87. [PMID: 24909615 DOI: 10.1016/j.freeradbiomed.2014.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/28/2014] [Accepted: 05/29/2014] [Indexed: 11/29/2022]
Abstract
Proteasomes are highly expressed in rapidly growing neoplastic cells and essential for controlling the cell cycle process and mitochondrial homeostasis. Pharmacological inhibition of the proteasome shows a significant anticancer effect on hematopoietic malignancies that is usually associated with the generation of reactive oxygen species. In this study, we comprehensively investigated the role of endogenous oxidants in various cellular events of K562 leukemic cells in response to treatment with MG132, a proteasome inhibitor. MG132 at 1.4 µM potently triggered G2/M arrest, mitochondrial depolarization, and apoptosis. By such treatment, the protein level of inducible nitric oxide synthase (iNOS) was doubled and cellular oxidants, including nitric oxide, superoxide, and their derivatives, were increasingly produced. In MG132-treated cells, the increase in iNOS-derived oxidants was responsible for mitochondrial depolarization and caspase-dependent apoptosis, but was insignificant in G2/M arrest. The amount of iNOS was negatively correlated with that of manganese superoxide dismutase (MnSOD). Whereas iNOS activity was inhibited by aminoguanidine, cellular MnSOD levels as well as mitochondrial membrane potentials were upregulated, and consequentially G2/M arrest and apoptosis were thoroughly reversed. It is suggested that cells rich in functional mitochondria possess improved proteasome activity, which antagonizes the cytotoxic and cytostatic effects of MG132. In contrast to iNOS, endothelial NOS-driven cGMP-dependent signaling promoted mitochondrial function and survival of MG132-stressed cells. In conclusion, the functional interplay of proteasomes and mitochondria is crucial for leukemic cell growth, wherein iNOS plays a key role.
Collapse
Affiliation(s)
- Tung Hui Chao
- Institute of Medical Sciences, College of Medicine, Tzu-Chi University, Hualien 97004, Taiwan
| | - Meng-Ya Chang
- Institute of Medical Sciences, College of Medicine, Tzu-Chi University, Hualien 97004, Taiwan; Department of Medical Research, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
| | - Shu-Jem Su
- Department of Medical Laboratory Science and Biotechnology, School of Medicine and Health Sciences, FooYin University, Kaohsiung, Taiwan
| | - Shu-Hui Su
- Institute of Medical Sciences, College of Medicine, Tzu-Chi University, Hualien 97004, Taiwan; Department of Molecular Biology and Human Genetics, College of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu-Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
14
|
Rae C, Tesson M, Babich JW, Boyd M, Mairs RJ. Radiosensitization of noradrenaline transporter-expressing tumour cells by proteasome inhibitors and the role of reactive oxygen species. EJNMMI Res 2013; 3:73. [PMID: 24219987 PMCID: PMC3828419 DOI: 10.1186/2191-219x-3-73] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/01/2013] [Indexed: 12/24/2022] Open
Abstract
Background The radiopharmaceutical 131I-metaiodobenzylguanidine (131I-MIBG) is used for the targeted radiotherapy of noradrenaline transporter (NAT)-expressing neuroblastoma. Enhancement of 131I-MIBG's efficacy is achieved by combination with the topoisomerase I inhibitor topotecan - currently being evaluated clinically. Proteasome activity affords resistance of tumour cells to radiation and topoisomerase inhibitors. Therefore, the proteasome inhibitor bortezomib was evaluated with respect to its cytotoxic potency as a single agent and in combination with 131I-MIBG and topotecan. Since elevated levels of reactive oxygen species (ROS) are induced by bortezomib, the role of ROS in tumour cell kill was determined following treatment with bortezomib or the alternative proteasome inhibitor, MG132. Methods Clonogenic assay and growth of tumour xenografts were used to investigate the effects of proteasome inhibitors alone or in combination with radiation treatment. Synergistic interactions in vitro were evaluated by combination index analysis. The dependency of proteasome inhibitor-induced clonogenic kill on ROS generation was assessed using antioxidants. Results Bortezomib, in the dose range 1 to 30 nM, decreased clonogenic survival of both SK-N-BE(2c) and UVW/NAT cells, and this was prevented by antioxidants. It also acted as a sensitizer in vitro when administered with X-radiation, with 131I-MIBG, or with 131I-MIBG and topotecan. Moreover, bortezomib enhanced the delay of the growth of human tumour xenografts in athymic mice when administered in combination with 131I-MIBG and topotecan. MG132 and bortezomib had similar radiosensitizing potency, but only bortezomib-induced cytotoxicity was ROS-dependent. Conclusions Proteasome inhibition shows promise for the treatment of neuroblastoma in combination with 131I-MIBG and topotecan. Since the cytotoxicity of MG132, unlike that of bortezomib, was not ROS-dependent, the latter proteasome inhibitor may have a favourable toxicity profile in normal tissues.
Collapse
Affiliation(s)
| | | | | | | | - Robert J Mairs
- Radiation Oncology, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1BD, Scotland.
| |
Collapse
|
15
|
Blocking Plasmodium falciparum development via dual inhibition of hemoglobin degradation and the ubiquitin proteasome system by MG132. PLoS One 2013; 8:e73530. [PMID: 24023882 PMCID: PMC3759421 DOI: 10.1371/journal.pone.0073530] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/22/2013] [Indexed: 12/31/2022] Open
Abstract
Among key potential drug target proteolytic systems in the malaria parasite Plasmodium falciparum are falcipains, a family of hemoglobin-degrading cysteine proteases, and the ubiquitin proteasomal system (UPS), which has fundamental importance in cellular protein turnover. Inhibition of falcipains blocks parasite development, primarily due to inhibition of hemoglobin degradation that serves as a source of amino acids for parasite growth. Falcipains prefer P2 leucine in substrates and peptides, and their peptidyl inhibitors with leucine at the P2 position show potent antimalarial activity. The peptidyl inhibitor MG132 (Z-Leu-Leu-Leu-CHO) is a widely used proteasome inhibitor, which also has P2 leucine, and has also been shown to inhibit parasite development. However, the antimalarial targets of MG132 are unclear. We investigated whether MG132 blocks malaria parasite development by inhibiting hemoglobin degradation and/or by targeting the UPS. P. falciparum was cultured with inhibitors of the UPS (MG132, epoxomicin, and lactacystin) or falcipains (E64), and parasites were assessed for morphologies, extent of hemoglobin degradation, and accumulation of ubiquitinated proteins. MG132, like E64 and unlike epoxomicin or lactacystin, blocked parasite development, with enlargement of the food vacuole and accumulation of undegraded hemoglobin, indicating inhibition of hemoglobin degradation by MG132, most likely due to inhibition of hemoglobin-degrading falcipain cysteine proteases. Parasites cultured with epoxomicin or MG132 accumulated ubiquitinated proteins to a significantly greater extent than untreated or E64-treated parasites, indicating that MG132 inhibits the parasite UPS as well. Consistent with these findings, MG132 inhibited both cysteine protease and UPS activities present in soluble parasite extracts, and it strongly inhibited recombinant falcipains. MG132 was highly selective for inhibition of P. falciparum (IC50 0.0476 µM) compared to human peripheral blood mononuclear cells (IC50 10.8 µM). Thus, MG132 inhibits two distinct proteolytic systems in P. falciparum, and it may serve as a lead molecule for development of dual-target inhibitors of malaria parasites.
Collapse
|
16
|
Wang J, Xu L, Yun X, Yang K, Liao D, Tian L, Jiang H, Lu W. Proteomic analysis reveals that proteasome subunit beta 6 is involved in hypoxia-induced pulmonary vascular remodeling in rats. PLoS One 2013; 8:e67942. [PMID: 23844134 PMCID: PMC3700908 DOI: 10.1371/journal.pone.0067942] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background Chronic hypoxia (CH) is known to be one of the major causes of pulmonary hypertension (PH), which is characterized by sustained elevation of pulmonary vascular resistance resulting from vascular remodeling. In this study, we investigated whether the ubiquitin proteasome system (UPS) was involved in the mechanism of hypoxia-induced pulmonary vascular remodeling. We isolated the distal pulmonary artery (PA) from a previously defined chronic hypoxic pulmonary hypertension (CHPH) rat model, performed proteomic analyses in search of differentially expressed proteins belonging to the UPS, and subsequently identified their roles in arterial remodeling. Results Twenty-two proteins were differently expressed between the CH and normoxic group. Among them, the expression of proteasome subunit beta (PSMB) 1 and PSMB6 increased after CH exposure. Given that PSMB1 is a well-known structural subunit and PSMB6 is a functional subunit, we sought to assess whether PSMB6 could be related to the multiple functional changes during the CHPH process. We confirmed the proteomic results by real-time PCR and Western blot. With the increase in quantity of the active subunit, proteasome activity in both cultured pulmonary artery smooth muscle cells (PASMCs) and isolated PA from the hypoxic group increased. An MTT assay revealed that the proteasome inhibitor MG132 was able to attenuate the hypoxia-induced proliferation of PASMC in a dose-dependent manner. Knockdown of PSMB6 using siRNA also prevented hypoxia-induced proliferation. Conclusion The present study revealed the association between increased PSMB6 and CHPH. CH up-regulated proteasome activity and the proliferation of PASMCs, which may have been related to increased PSMB6 expression and the subsequently enhanced functional catalytic sites of the proteasome. These results suggested an essential role of the proteasome during CHPH development, a novel finding requiring further study.
Collapse
Affiliation(s)
- Jian Wang
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (WL); (JW)
| | - Lei Xu
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xin Yun
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kai Yang
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dongjiang Liao
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lichun Tian
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wenju Lu
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- * E-mail: (WL); (JW)
| |
Collapse
|
17
|
Cavaliere V, Papademetrio DL, Lombardo T, Costantino SN, Blanco GA, Alvarez EMC. Caffeic acid phenylethyl ester and MG132, two novel nonconventional chemotherapeutic agents, induce apoptosis of human leukemic cells by disrupting mitochondrial function. Target Oncol 2013; 9:25-42. [PMID: 23430344 DOI: 10.1007/s11523-013-0256-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/04/2013] [Indexed: 01/30/2023]
Abstract
The ability to modulate balance between cell survival and death is recognized for its great therapeutic potential. Therefore, research continues to focus on elucidation of cell machinery and signaling pathways that control cell proliferation and apoptosis. Conventional chemotherapeutic agents often have a cytostatic effect over tumor cells. New natural or synthetic chemotherapeutic agents have a wider spectrum of interesting antitumor activities that merit in-depth studies. In the present work, we aimed at characterizing the molecular mechanism leading to induction of cell death upon treatment of the lymphoblastoid cell line PL104 with caffeic acid phenylethyl ester (CAPE), MG132 and two conventional chemotherapeutic agents, doxorubicine (DOX) and vincristine (VCR). Our results showed several apoptotic hallmarks such as phosphatidylserine (PS) exposure on the outer leaflet of the cell membrane, nuclear fragmentation, and increase sub-G1 DNA content after all treatments. In addition, all four drugs downregulated survivin expression. CAPE and both chemotherapeutic agents reduced Bcl-2, while only CAPE and MG132 significantly increased Bax level. CAPE and VCR treatment induced the collapse of mitochondrial membrane potential (∆ψm). All compounds induced cytochrome c release from mitochondrial compartment to cytosol. However, only MG132 caused the translocation of Smac/DIABLO. Except for VCR treatment, all other drugs increased reactive oxygen species (ROS) production level. All treatments induced activation of caspases 3/7, but only CAPE and MG132 led to the activation of caspase 9. In conclusion, our results indicate that CAPE and MG132 treatment of PL104 cells induced apoptosis through the mitochondrial intrinsic pathway, whereas the apoptotic mechanism induced by DOX and VCR may proceed through the extrinsic pathway.
Collapse
Affiliation(s)
- Victoria Cavaliere
- Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina,
| | | | | | | | | | | |
Collapse
|
18
|
Chitra S, Nalini G, Rajasekhar G. The ubiquitin proteasome system and efficacy of proteasome inhibitors in diseases. Int J Rheum Dis 2012; 15:249-60. [DOI: 10.1111/j.1756-185x.2012.01737.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Selvarajan Chitra
- Sri Ramachandra Medical College and Research Institute; Sri Ramachandra University; Chennai; India
| | - Ganesan Nalini
- Sri Ramachandra Medical College and Research Institute; Sri Ramachandra University; Chennai; India
| | | |
Collapse
|
19
|
Park WH, Kim SH. MG132, a proteasome inhibitor, induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion. Oncol Rep 2012; 27:1284-91. [PMID: 22266922 PMCID: PMC3583605 DOI: 10.3892/or.2012.1642] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/30/2011] [Indexed: 12/31/2022] Open
Abstract
MG132 as a proteasome inhibitor can induce apoptotic cell death in lung cancer cells. However, little is known about the toxicological cellular effects of MG132 on normal primary lung cells. Here, we investigated the effects of N-acetyl cysteine (NAC) and vitamin C (well known antioxidants) or L-buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) on MG132-treated human pulmonary fibroblast (HPF) cells in relation to cell death, reactive oxygen species (ROS) and glutathione (GSH). MG132 induced growth inhibition and death in HPF cells, accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). MG132 increased ROS levels and GSH-depleted cell numbers in HPF cells. Both antioxidants, NAC and vitamin C, prevented growth inhibition, death and MMP (ΔΨm) loss in MG132-treated HPF cells and also attenuated ROS levels in these cells. BSO showed a strong increase in ROS levels in MG132-treated HPF cells and slightly enhanced the growth inhibition, cell death, MMP (ΔΨm) loss and GSH depletion. In addition, NAC decreased anonymous ubiquitinated protein levels in MG132-treated HPF cells. Furthermore, superoxide dismutase (SOD) 2, catalase (CTX) and GSH peroxidase (GPX) siRNAs enhanced HPF cell death by MG132, which was not correlated with ROS and GSH level changes. In conclusion, MG132 induced the growth inhibition and death of HPF cells, which were accompanied by increasing ROS levels and GSH depletion. Both NAC and vitamin C attenuated HPF cell death by MG132, whereas BSO slightly enhanced the death.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Chonbuk National University, Jeonju 561-180, Republic of Korea.
| | | |
Collapse
|
20
|
Park WH. Mitogen-activated protein kinase inhibitors differently affect the growth inhibition and death of a proteasome inhibitor, MG132-treated human pulmonary fibroblast cells. Hum Exp Toxicol 2011; 30:1945-54. [PMID: 21421692 DOI: 10.1177/0960327111403173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carbobenzoxy-Leu-Leu-leucinal (MG132) as a proteasome inhibitor can induce growth inhibition and death in lung cancer or normal cells. However, little is known about relationship between proteasome inhibition and mitogen-activated protein kinase (MAPK) signaling in normal lung cells. Thus, in the present study, we investigated the effects of MAPK inhibitors on MG132-treated human pulmonary fibroblast (HPF) cells in relation to cell growth inhibition, cell death, reactive oxygen species (ROS) and glutathione (GSH). Treatment with 15 μM MG132 increased ROS levels including mitochondrial O(2•)(-) and GSH depleted cell numbers in HPF cells at 24 hours. MAP kinase or ERK kinase (MEK) inhibitor did not significantly affect cell growth inhibition, cell death, the loss of mitochondrial membrane potential (MMP; ΔΨ(m)), ROS level and GSH depletion in MG132-treated HPF cells. c-Jun N-terminal kinase (JNK) inhibitor attenuated the growth inhibition and death by MG132. This inhibitor also significantly decreased O(2•)(-) level in MG132-treated HPF cells. Although p38 inhibitor slightly enhanced HPF cell growth inhibition by MG132, this inhibitor and siRNA prevented HPF cell death induced by MG132. p38 inhibitor also attenuated d O(2•)(-) level and GSH depletion. Moreover, extracellular signal regulated kinase (ERK), JNK or p38 siRNA did not strongly affect ROS levels in MG132-treated HPF cells. ERK and JNK siRNAs decreased anonymous ubiquitinated protein levels in MG132-treated HPF cells. In conclusion, MAPK inhibitors differently affected the growth inhibition and death of MG132-treated HPF cells. Especially, p38 inhibitor attenuated HPF cell death by MG132, which was in part related to changes in ROS and GSH levels.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, JeonJu, Republic of Korea.
| |
Collapse
|
21
|
Seo G, Kim SK, Byun YJ, Oh E, Jeong SW, Chae GT, Lee SB. Hydrogen peroxide induces Beclin 1-independent autophagic cell death by suppressing the mTOR pathway via promoting the ubiquitination and degradation of Rheb in GSH-depleted RAW 264.7 cells. Free Radic Res 2010; 45:389-99. [PMID: 21067284 DOI: 10.3109/10715762.2010.535530] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel mechanism for H₂O₂-induced autophagic cell death in GSH-depleted RAW 264.7 cells, a murine macrophage cell line, is proposed. Under GSH-depleted conditions, H₂O₂-induced autophagic cell, characterized by an increased LC3-II/I ratio, a decreased level of p62 and the formation of autophagic vacuoles, was inhibited by bafilomycin A1 and by Atg5 siRNA transfection, whereas the cell death was not inhibited by zVAD-fmk, by PI3K inhibitors or by Beclin 1 siRNA transfection. In addition, H₂O₂ treatment reduced the activity of mTOR and promoted the ubiquitination and degradation of Rheb, a key upstream activator of mTOR. Furthermore, proteasome inhibition with MG132 restored the expression of Rheb and increased mTOR activity, resulting in an increased viability of H₂O₂-treated cells. Collectively, these findings demonstrate that H₂O₂ induces Beclin 1-independent autophagic cell death by suppressing the mTOR pathway via promoting the ubiquitination and degradation of Rheb in GSH-depleted RAW 264.7 cells.
Collapse
Affiliation(s)
- Gimoon Seo
- Institute of Hansen's Disease, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | |
Collapse
|