1
|
Giles BH, Mann KK. Arsenic as an immunotoxicant. Toxicol Appl Pharmacol 2022; 454:116248. [PMID: 36122737 DOI: 10.1016/j.taap.2022.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
Arsenic is world-wide contaminant to which millions of people are exposed. The health consequences of arsenic exposure are varied, including cancer, cardiometabolic disease, and respiratory disorders. Arsenic is also toxic to the immune system, which may link many of the pathologies associated with arsenic exposure. The immune system can be classified into two interconnected arms: the innate and the adaptive immune responses. Herein, we discuss the effects of arsenic on key cell types within each of these arms, highlighting both in vitro and in vivo responses. These cells include macrophages, neutrophils, dendritic cells, and both B and T lymphocytes. Furthermore, we will explore data from human populations where altered immune status is implicated in disease and identify several data gaps where research is needed to complete our understanding of the immunotoxic effects of arsenic.
Collapse
Affiliation(s)
- Braeden H Giles
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Moulahoum H, Boumaza BMA, Ferrat M, Bounaama A, Djerdjouri B. Arsenic trioxide ameliorates murine colon inflammation through inflammatory cell enzymatic modulation. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:259-270. [PMID: 30415273 DOI: 10.1007/s00210-018-1578-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
Arsenic trioxide (As2O3) is a trending subject in recent therapy approaches despite its described toxicity. In this work, we have investigated the use of arsenic trioxide in a murine model of chemically induced inflammatory bowel disease "colitis." Male mice were randomly separated into four different groups. Controls received vehicle, arsenic group had a daily injection of As2O3 (2.5 mg/kg, i.p.) for 2 days. Colitis was induced through intra-rectal instillation of 4% (v/v) solution of acetic acid in the second day. The treatment group (As2O3 + acetic acid) received the same treatment as the two previous groups. Twenty-four hours after colitis challenge, animals were sacrificed and organs (colons, livers, and kidneys) were taken for analysis. Disease-related macroscopic and microscopic symptoms, as well as histologic observations, showed a high index in the colitis group, which was greatly reduced by the As2O3 pretreatment. Similarly, colon length was reduced during colon inflammation, which was prevented in the presence of As2O3. Inflammatory cells and oxidative stress markers significantly increased during inflammation accompanied by a considerable reduction of antioxidants. As2O3 treatment managed to reverse these observations to normal levels. Mitochondrial implication was observed through mPTP opening phenomena and semi-quantitative cell death estimation. Low-dose As2O3 use as a mean of preventing the acute phase of colitis can be seen as an interesting approach which counts as a great addition to IBD available treatments.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Laboratory of Cell and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria. .,Faculty of Science, Biochemistry Department, Ege University, Bornova, 35100, İzmir, Turkey.
| | - Belkacem Mohamed Amine Boumaza
- Laboratory of Cell and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Meriem Ferrat
- Laboratory of Cell and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Abdelkader Bounaama
- Laboratory of Cell and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Bahia Djerdjouri
- Laboratory of Cell and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
3
|
Zhao Y, Du R, Zhou T, Yang D, Huang Y, Wang Y, Huang J, Ma X, He F, Qiu J, Wang G. Arsenic Trioxide-Coated Stent Is an Endothelium-Friendly Drug Eluting Stent. Adv Healthc Mater 2018; 7:e1800207. [PMID: 29770610 DOI: 10.1002/adhm.201800207] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/29/2018] [Indexed: 12/14/2022]
Abstract
An ideal vascular stent would both inhibit in-stent restenosis (ISR) and promote rapid re-endothelialization. In the current study, the performance of arsenic trioxide (ATO)-drug eluting stent (AES) is compared with the bare metal stent, poly-lactic-co-glycolic acid-coating metal stent, and rapamycin-drug eluting stent (RES). In vivo AES is shown to prevent neointimal hyperplasia more efficiently than the others when implanted into the carotid arteries of rabbits. Moreover, AES promotes endothelial cells proliferation and re-endothelialization more quickly than RES. In vitro ATO exposure significantly increases the viability, proliferation, adhesion, and spreading of primary porcine coronary artery endothelial cells (PCAECs), which are critical for endothelialization. However, ATO exposure reduces the viability of porcine coronary artery smooth muscle cells (PCASMCs). The evaluation of mitochondrial morphology, membrane potential, and function demonstrates that ATO at 2 µmol L-1 causes enlargement of the mitochondrion, enhancement of mitochondrial membrane potential, and adenosine triphosphate (ATP) production in PCAECs but not in PCASMCs. Thus, both in vivo and in vitro studies demonstrate that AES is an effective strategy for rapid re-endothelialization and inhibition of ISR.
Collapse
Affiliation(s)
- Yinping Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Ruolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Tian Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Dongchuan Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Yuhua Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Xiaoyi Ma
- Beijing Amsinomed Medical Co., Ltd; Beijing 100021 China
| | - Fugui He
- Beijing Amsinomed Medical Co., Ltd; Beijing 100021 China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| |
Collapse
|
4
|
Ghosh S, Mishra R, Biswas S, Bhadra RK, Mukhopadhyay PK. α-Lipoic Acid Mitigates Arsenic-Induced Hematological Abnormalities in Adult Male Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:242-250. [PMID: 28533572 PMCID: PMC5429492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Arsenic toxicity is a major global health problem and exposure via contaminated drinking water has been associated with hematological and other systemic disorders. The present investigation has been conducted in adult male rats to evaluate the protective ability of α-lipoic acid (ALA) against such hematological disorders. METHODS Twenty-four adult male Wister rats (b.wt.130±10g) were grouped and accordingly group I (control) received the normal diet, group II (treated) was given arsenic orally for 28 consecutive days as arsenic trioxide (3 mg/kgbw/rat/day) whereas group III (supplemented) received the same dose of arsenic along with ALA (25 mg/kgbw/rat/day) as oral supplement. Hematological profile, plasma oxidant/antioxidant status, and erythrocyte morphology were assessed. Statistical analysis was done by one-way ANOVA using SPSS software (version 16.0). RESULTS Arsenic exposure caused reduction of erythrocyte (P=0.021), leucocyte (P<0.001), and hemoglobin (P=0.031) associated with echinocytic transformation as evidenced by light and scanning electron microscopic studies. The other significantly altered parameters include increased mean corpuscular volume (P=0.041) and lymphocytopenia (P<0.001) with insignificant neutropenia and eosinophilia. Altered serum oxidative balance as evidenced by decreased TAS (P<0.001) and increased TOS (P<0.001) with OSI (P<0.001) was also noted. The dietary supplementation of ALA has a beneficial effect against the observed (P<0.05) arsenic toxicities. It brings about the protection by restoring the hematological redox and inflammatory status near normal in treated rats. Arsenic-induced morphological alteration of erythrocytes was also partially attenuated by ALA supplementation. CONCLUSION It is concluded that arsenicosis is associated with hematological alterations and ALA co-supplementation can partially alleviate these changes in an experimental male rat model.
Collapse
Affiliation(s)
- Sonali Ghosh
- Department of Biological Sciences, Presidency University, Kolkata, India
| | - Raghwendra Mishra
- Department of Biological Sciences, Presidency University, Kolkata, India,Department of Physiology, University of Calcutta, Kolkata, India
| | - Sagnik Biswas
- Department of Biological Sciences, Presidency University, Kolkata, India
| | - Rupak K Bhadra
- Department of Infectious Diseases & Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Prabir K Mukhopadhyay
- Department of Biological Sciences, Presidency University, Kolkata, India,Correspondence: Prabir K. Mukhopadhyay, PhD; Department of Biological Sciences, Presidency University, 86/1 College Street, Kolkata-700073, India Tel: +91 943 3160257
| |
Collapse
|
5
|
Silva LR, Girard D. Human eosinophils are direct targets to nanoparticles: Zinc oxide nanoparticles (ZnO) delay apoptosis and increase the production of the pro-inflammatory cytokines IL-1β and IL-8. Toxicol Lett 2016; 259:11-20. [PMID: 27452280 DOI: 10.1016/j.toxlet.2016.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022]
Abstract
Zinc oxide NPs (ZnO) have been recently proposed as novel candidates for the treatment of allergic inflammatory diseases. Paradoxically, recent data suggested that ZnO could cause eosinophilic airway inflammation in rodents. Despite the above observations, there are currently no studies reporting direct interaction between a given NP and human eosinophils themselves. In this study, freshly isolated human eosinophils were incubated with ZnO and several cellular functions were studied. We found that ZnO delay human eosinophil apoptosis, partially by inhibiting caspases and by preventing caspase-4 and Bcl-xL degradation. ZnO do not induce production of reactive oxygen species but increase de novo protein synthesis. In addition, ZnO were found to increase the production of the proinflammatory IL-1β and IL-8 cytokines. Using a pharmacological approach, we demonstrated that inhibition of caspase-1 reversed the ability of ZnO to induce IL-1β and IL-8 production, whereas inhibition of caspase-4 only reversed that of IL-8. Our results indicate the necessity of conducting studies to determine the potential of using NP as nanotherapies, particularly in diseases in which eosinophils may be involved. We conclude that, indeed, human eosinophils represent potential new direct targets to NPs, ZnO in the present case.
Collapse
Affiliation(s)
- Luis Rafael Silva
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Québec, Canada.
| |
Collapse
|
6
|
Zhang XY, Yang SM, Zhang HP, Yang Y, Sun SB, Chang JP, Tao XC, Yang TY, Liu C, Yang YM. Endoplasmic reticulum stress mediates the arsenic trioxide-induced apoptosis in human hepatocellular carcinoma cells. Int J Biochem Cell Biol 2015; 68:158-65. [DOI: 10.1016/j.biocel.2015.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/13/2015] [Accepted: 09/22/2015] [Indexed: 01/16/2023]
|
7
|
Antoine F, Simard JC, Girard D. Curcumin inhibits agent-induced human neutrophil functions in vitro and lipopolysaccharide-induced neutrophilic infiltration in vivo. Int Immunopharmacol 2013; 17:1101-7. [DOI: 10.1016/j.intimp.2013.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/18/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
|
8
|
Weng CY, Chiou SY, Wang L, Kou MC, Wang YJ, Wu MJ. Arsenic trioxide induces unfolded protein response in vascular endothelial cells. Arch Toxicol 2013; 88:213-26. [PMID: 23892647 DOI: 10.1007/s00204-013-1101-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/11/2013] [Indexed: 01/13/2023]
Abstract
Chronic arsenic exposure has been linked to endothelial dysfunction and apoptosis. We investigate the involvement of unfolded protein response (UPR) signaling in the arsenic-mediated cytotoxicity of the SVEC4-10 mouse endothelial cells. The SVEC4-10 cells underwent apoptosis in response to As2O3 dose- and time-dependently, accompanied by increased accumulation of calcium, and activation of caspase-3. These phenomena were completely inhibited by α-lipoic acid (LA), which did not scavenge ROS over-production, but were only partially or not ameliorated by tiron, a potent superoxide scavenger. Moreover, arsenic activated UPR, leading to phosphorylation of eukaryotic translation initiation factor 2 subunit α (eIF2α), induction of ATF4, and processing of ATF6. Treatment with arsenic also triggered the expression of endoplasmic reticulum (ER) stress markers, GRP78 (glucose-regulated protein), and CHOP (C/EBP homologous protein). The activation of eIF2α, ATF4 and ATF6 and expression of GRP78 and CHOP are repressed by both LA and tiron, indicating arsenic-induced UPR is mediated through ROS-dependent and ROS-independent pathways. Arsenic also induced ER stress-inducible genes, BAX, PUMA (p53 upregulated modulator of apoptosis), TRB3 (tribbles-related protein 3), and SNAT2 (sodium-dependent neutral amino acid transporter 2). Consistent with intracellular calcium and cell viability data, ROS may not be important in arsenic-induced death, because tiron did not affect the expression of these pro-apoptotic genes. In addition, pretreatment with salubrinal, a selective inhibitor of eIF2α dephosphorylation, enhanced arsenic-induced GRP78 and CHOP expression and partially prevented arsenic cytotoxicity in SVEC4-10 cells. Taken together, these results suggest that arsenic-induced endothelial cytotoxicity is associated with ER stress, which is mediated by ROS-dependent and ROS-independent signaling.
Collapse
Affiliation(s)
- Ching-Yi Weng
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | | | | | | | | | | |
Collapse
|