1
|
Dong W, Wan J, Yu H, Shen B, Yang G, Nie Q, Tian Y, Qin L, Song C, Chen B, Li L, Hong S. Nrf2 protects against methamphetamine-induced nephrotoxicity by mitigating oxidative stress and autophagy in mice. Toxicol Lett 2023; 384:136-148. [PMID: 37567421 DOI: 10.1016/j.toxlet.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Methamphetamine (MA) is a widely abused drug that can cause kidney damage. However, the molecular mechanism remains unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates resistance to oxidative and proteotoxic stress. In this study, we investigated the role of Nrf2 in MA-induced renal injury in mice. Nrf2 was pharmacologically activated and genetically knocked-out in mice. The animal model of MA-induced nephrotoxicity was established by injecting MA (2 mg/kg) intraperitoneally twice a day for 5 days. Histopathological alterations were shown in the MA-exposed kidneys. MA significantly increased renal function biomarkers and kidney injury molecule-1 (KIM-1) levels. MA decreased superoxide dismutase activity and increased malondialdehyde levels. Autophagy-related factors (LC3 and Beclin 1) were elevated in MA-treated mice. Furthermore, Nrf2 increased in the MA-exposed kidneys. Activation of Nrf2 may attenuate histopathological changes in the kidneys of MA-treated mice. Pre-administration of Nrf2 agonist significantly decreased KIM-1 expression, oxidative stress, and autophagy in the kidneys after MA toxicity. In contrast, Nrf2 knockout mice treated with MA lost renal tubular morphology. Nrf2 deficiency increased KIM-1 expression, oxidative stress, and autophagy in the MA-exposed kidneys. Our results demonstrate that Nrf2 may protect against MA-induced nephrotoxicity by mitigating oxidative stress and autophagy.
Collapse
Affiliation(s)
- Wenjuan Dong
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Jia Wan
- Hunan Provincial People's Hospital, Hunan 410005, China
| | - Hao Yu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China; West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baoyu Shen
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Qianyun Nie
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China; Department of Pathology Medicine, Hainan Medical University, Haikou 571199, China
| | - Yan Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Lixiang Qin
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Chunhui Song
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Bingzheng Chen
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| | - Shijun Hong
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
2
|
Jiang HY, Bao YN, Lin FM, Jin Y. Triptolide regulates oxidative stress and inflammation leading to hepatotoxicity via inducing CYP2E1. Hum Exp Toxicol 2021; 40:S775-S787. [PMID: 34758665 DOI: 10.1177/09603271211056330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Triptolide (TP), the main active compound extracted from medicine-tripterygium wilfordii Hook f. (TWHF). It has anti-tumor and immunomodulatory properties. Our study aimed to investigate the mechanisms of hepatotoxicity treated with TP in vivo and in vitro, as well as their relationship with the NF-κB (p65) signal pathway; and to assess TP-induced hepatotoxicity after CYP2E1 modulation by the known inhibitor, clomethiazole, and the known inducer, pyrazole. Mice were given TP to cause liver injury and IHHA-1 cells were given TP to cause hepatocyte injury. The enzyme activity and hepatotoxicity changed dramatically when the CYP2E1 inhibitor and inducer were added. In comparison to the control group, the enzyme inducer increased the activity of CYP2E1, whereas the enzyme inhibitor had the opposite effect. Our findings suggest that TP is an inducer of CYP2E1 via a time-dependent activation mechanism. In addition, TP can promote oxidative stress, inflammatory and involving the NF-κB (p65) signal pathway. Therefore, we used triptolide to stimulate C57 mice and IHHA-1 cells to determine whether TP can promote oxidative stress and inflammation by activating CYP2E1 in response to exacerbated liver damage and participate in NF-κB (p65) signaling pathway.
Collapse
Affiliation(s)
- Hai-Yan Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yan-Ni Bao
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Feng-Mei Lin
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yong Jin
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|