1
|
Lian Z, Yu SR, Cui YX, Li SF, Su L, Song JX, Lee CY, Chen QX, Chen H. Rosuvastatin Enhances Lymphangiogenesis after Myocardial Infarction by Regulating the miRNAs/Vascular Endothelial Growth Factor Receptor 3 (miRNAs/VEGFR3) Pathway. ACS Pharmacol Transl Sci 2024; 7:335-347. [PMID: 38357274 PMCID: PMC10863446 DOI: 10.1021/acsptsci.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Several clinical studies have suggested that the early administration of statins could reduce the risk of in-hospital mortality in acute myocardial infarction (AMI) patients. Recently, some studies have identified that stimulating lymphangiogenesis after AMI could improve cardiac function by reducing myocardial edema and inflammation. This study aimed to identify the effect of rosuvastatin on postinfarct lymphangiogenesis and to identify the underlying mechanism of this effect. METHOD Myocardial infarction (MI) was induced by ligation of the left anterior descending coronary artery in mice orally administered rosuvastatin for 7 days. The changes in cardiac function, pathology, and lymphangiogenesis following MI were measured by echocardiography and immunostaining. EdU, Matrigel tube formation, and scratch wound assays were used to evaluate the effect of rosuvastatin on the proliferation, tube formation, and migration of the lymphatic endothelial cell line SVEC4-10. The expression of miR-107-3p, miR-491-5p, and VEGFR3 was measured by polymerase chain reaction (PCR) and Western blotting. A gain-of-function study was performed using miR-107-3p and miR-491-5p mimics. RESULTS The rosuvastatin-treated mice had a significantly improved ejection fraction and increased lymphatic plexus density 7 days after MI. Rosuvastatin also reduced myocardial edema and inflammatory response after MI. We used a VEGFR3 inhibitor to partially reverse these effects. Rosuvastatin promoted the proliferation, migration, and tube formation of SVEC4-10 cells. PCR and Western blot analyses revealed that rosuvastatin intervention downregulated miR-107-3p and miR-491-5p and promoted VEGFR3 expression. The gain-of-function study showed that miR-107-3p and miR-491-5p could inhibit the proliferation, migration, and tube formation of SVEC4-10 cells. CONCLUSION Rosuvastatin could improve heart function by promoting lymphangiogenesis after MI by regulating the miRNAs/VEGFR3 pathway.
Collapse
Affiliation(s)
- Zheng Lian
- Cardiovascular
Center, Beijing Tongren Hospital, Capital
Medical University, Xihuan South Road No. 2, Economic-Technological
Development Area, Beijing 100176, China
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Shi-Ran Yu
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Yu-Xia Cui
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Su-Fang Li
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Li−Na Su
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Jun-Xian Song
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Chong-Yoo Lee
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Qi-Xin Chen
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Hong Chen
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| |
Collapse
|
2
|
Ghosh N, Chacko L, Bhattacharya H, Vallamkondu J, Nag S, Dey A, Karmakar T, Reddy PH, Kandimalla R, Dewanjee S. Exploring the Complex Relationship between Diabetes and Cardiovascular Complications: Understanding Diabetic Cardiomyopathy and Promising Therapies. Biomedicines 2023; 11:biomedicines11041126. [PMID: 37189744 DOI: 10.3390/biomedicines11041126] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Diabetes mellitus (DM) and cardiovascular complications are two unmet medical emergencies that can occur together. The rising incidence of heart failure in diabetic populations, in addition to apparent coronary heart disease, ischemia, and hypertension-related complications, has created a more challenging situation. Diabetes, as a predominant cardio-renal metabolic syndrome, is related to severe vascular risk factors, and it underlies various complex pathophysiological pathways at the metabolic and molecular level that progress and converge toward the development of diabetic cardiomyopathy (DCM). DCM involves several downstream cascades that cause structural and functional alterations of the diabetic heart, such as diastolic dysfunction progressing into systolic dysfunction, cardiomyocyte hypertrophy, myocardial fibrosis, and subsequent heart failure over time. The effects of glucagon-like peptide-1 (GLP-1) analogues and sodium-glucose cotransporter-2 (SGLT-2) inhibitors on cardiovascular (CV) outcomes in diabetes have shown promising results, including improved contractile bioenergetics and significant cardiovascular benefits. The purpose of this article is to highlight the various pathophysiological, metabolic, and molecular pathways that contribute to the development of DCM and its significant effects on cardiac morphology and functioning. Additionally, this article will discuss the potential therapies that may be available in the future.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, Rockville, MD 20850-3173, USA
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | | | - Sagnik Nag
- Department of Biotechnology, Vellore Institute of Technology (VIT), School of Biosciences & Technology, Tiruvalam Road, Vellore 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Tanushree Karmakar
- Dr. B C Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India
| | | | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
3
|
Zhao Z, Wang X, Lu M, Gao Y. Rosuvastatin Improves Endothelial Dysfunction in Diabetes by Normalizing Endoplasmic Reticulum Stress via Calpain-1 Inhibition. Curr Pharm Des 2023; 29:2579-2590. [PMID: 37881071 DOI: 10.2174/0113816128250494231016065438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Rosuvastatin contributes to the improvement of vascular complications in diabetes, but the protective mechanisms remain unclear. The aim of the present study was to investigate the effect and mechanism of rosuvastatin on endothelial dysfunction induced by diabetes. METHODS Calpain-1 knockout (Capn1 EK684-/-) and C57BL/6 mice were intraperitoneally injected with STZ to induce type 1 diabetes. Human umbilical vein endothelial cells (HUVECs) were incubated with high glucose in this study. The function of isolated vascular rings, apoptosis, and endoplasmic reticulum stress (ERS) indicators were measured in this experiment. RESULTS The results showed that rosuvastatin (5 mg/kg/d) and calpain-1 knockout improved impaired vasodilation in an endothelial-dependent manner, and this effect was abolished by an ERS inducer. Rosuvastatin administration inhibited calpain-1 activation and ERS induced by high glucose, as well as apoptosis and oxidative stress both in vivo and in vitro. In addition, an ERS inducer (tunicamycin) offset the beneficial effect of rosuvastatin on endothelial dysfunction and ERS, which was accompanied by increased calpain-1 expression. The ERS inhibitor showed a similar improvement in endothelial dysfunction with rosuvastatin but could not increase the improvement in endothelial function of rosuvastatin. CONCLUSION These results suggested that rosuvastatin improves endothelial dysfunction by suppressing calpain- 1 and normalizing ERS, subsequently decreasing apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Zhao Zhao
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin, China
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xinpeng Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- Liaoning Provincial Key Laboratory of Cardiovascular Drugs, Jinzhou Medical University, Jinzhou, China
| | - Yuxia Gao
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Bhattacharjee S, Elancheran R, Dutta K, Deb PK, Devi R. Cardioprotective potential of the antioxidant-rich bioactive fraction of Garcinia pedunculata Roxb. ex Buch.-Ham. against isoproterenol-induced myocardial infarction in Wistar rats. Front Pharmacol 2022; 13:1009023. [PMID: 36267270 PMCID: PMC9577557 DOI: 10.3389/fphar.2022.1009023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
This Study aimed to characterise the phenolic compounds in Garcinia pedunculata extract and assess their potential antioxidant activity as well as its cardioprotective potential in isoproterenol-induced cardiac hypertrophy in an experimental animal model. In vitro antioxidant properties were determined using DPPH, ABTS, FRAP, PMD assays. In vitro lipid peroxidation experiment was also performed with heart tissues. Cardioprotective and cardiotoxicity effects were determined using the cell line studies. The cardioprotective effect of GP was assessed in a rat model of isoproterenol-(ISO-) induced cardiac hypertrophy by subcutaneous administration. Heart weight/tail length ratio and cardiac hypertrophy indicators were reduced after oral administration of GP. Additionally, GP reduced oxidative stress and heart inflammation brought on by ISO. In H9c2 cells, the antihypertrophic and anti-inflammatory effects of the extract of GP were seen in the presence of ISO, which were further supported by the in vivo observations. This study makes a compelling case for the possibility that supplementing with dried GP fruit can prevent heart hypertrophy by reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Swarnali Bhattacharjee
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
- Department of Zoology, Gauhati University, Guwahati, Assam, India
| | - R. Elancheran
- Department of Chemistry, Annamalai University, Chidambaram, TamilNadu, India
- *Correspondence: R. Elancheran, ; Rajlakshmi Devi,
| | - Kasturi Dutta
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Prashanta Kumar Deb
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
- *Correspondence: R. Elancheran, ; Rajlakshmi Devi,
| |
Collapse
|
5
|
Schoch L, Sutelman P, Suades R, Casani L, Padro T, Badimon L, Vilahur G. Hypercholesterolemia-Induced HDL Dysfunction Can Be Reversed: The Impact of Diet and Statin Treatment in a Preclinical Animal Model. Int J Mol Sci 2022; 23:8596. [PMID: 35955730 PMCID: PMC9368958 DOI: 10.3390/ijms23158596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
High-density lipoproteins (HDL) undergo adverse remodeling and loss of function in the presence of comorbidities. We assessed the potential of lipid-lowering approaches (diet and rosuvastatin) to rescue hypercholesterolemia-induced HDL dysfunction. Hypercholesterolemia was induced in 32 pigs for 10 days. Then, they randomly received one of the 30-day interventions: (I) hypercholesterolemic (HC) diet; (II) HC diet + rosuvastatin; (III) normocholesterolemic (NC) diet; (IV) NC diet + rosuvastatin. We determined cholesterol efflux capacity (CEC), antioxidant potential, HDL particle number, HDL apolipoprotein content, LDL oxidation, and lipid levels. Hypercholesterolemia time-dependently impaired HDL function (−62% CEC, −11% antioxidant index (AOI); p < 0.01), increased HDL particles numbers 2.8-fold (p < 0.0001), reduced HDL-bound APOM (−23%; p < 0.0001), and increased LDL oxidation 1.7-fold (p < 0.0001). These parameters remained unchanged in animals on HC diet alone up to day 40, while AOI deteriorated up to day 25 (−30%). The switch to NC diet reversed HDL dysfunction, restored apolipoprotein M content and particle numbers, and normalized cholesterol levels at day 40. Rosuvastatin improved HDL, AOI, and apolipoprotein M content. Apolipoprotein A-I and apolipoprotein C-III remained unchanged. Lowering LDL-C levels with a low-fat diet rescues HDL CEC and antioxidant potential, while the addition of rosuvastatin enhances HDL antioxidant capacity in a pig model of hypercholesterolemia. Both strategies restore HDL-bound apolipoprotein M content.
Collapse
Affiliation(s)
- Leonie Schoch
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Pablo Sutelman
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
| | - Rosa Suades
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
| | - Laura Casani
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
| | - Teresa Padro
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
- Cardiovascular Research Chair, Autonomous University of Barcelona (UAB), 08025 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
| |
Collapse
|