1
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
2
|
Aboushanab SA, El-Far AH, Narala VR, Ragab RF, Kovaleva EG. Potential therapeutic interventions of plant-derived isoflavones against acute lung injury. Int Immunopharmacol 2021; 101:108204. [PMID: 34619497 DOI: 10.1016/j.intimp.2021.108204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that possibly leads to high morbidity and mortality as no therapy exists. Several natural ingredients with negligible adverse effects have recently been investigated to possibly inhibit the inflammatory pathways associated with ALI at the molecular level. Isoflavones, as phytoestrogenic compounds, are naturally occurring bioactive compounds that represent the most abundant category of plant polyphenols (Leguminosae family). A broad range of therapeutic activities of isoflavones, including antioxidants, chemopreventive, anti-inflammatory, antiallergic and antibacterial potentials, have been extensively documented in the literature. Our review exclusively focuses on the possible anti-inflammatory, antioxidant role of botanicals'-derived isoflavones against ALI and their immunomodulatory effect in experimentally induced ALI. Despite the limited scope covering their molecular mechanisms, isoflavones substantially contributed to protecting from ALI via inhibiting toll-like receptor 4 (TLR4)/Myd88/NF-κB pathway and subsequent cytokines, chemokines, and adherent proteins. Nonetheless, future research is suggested to fill the gap in elucidating the protective roles of isoflavones to alleviate ALI concerning antioxidant potentials, inhibition of the inflammatory pathways, and associated molecular mechanisms.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Rokia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| |
Collapse
|
3
|
Ganesan K, Quiles JL, Daglia M, Xiao J, Xu B. Dietary phytochemicals modulate intestinal epithelial barrier dysfunction and autoimmune diseases. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
- The School of Chinese Medicine The University of Hong Kong Hong Kong China
| | - José L. Quiles
- Institute of Nutrition and Food Technology “José Mataix Verdú,” Department of Physiology Biomedical Research Center University of Granada Granada Spain
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo Vigo Pontevedra E‐36310 Spain
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
4
|
Chen BD, Jia XM, Xu JY, Zhao LD, Ji JY, Wu BX, Ma Y, Li H, Zuo XX, Pan WY, Wang XH, Ye S, Tsokos GC, Wang J, Zhang X. An Autoimmunogenic and Proinflammatory Profile Defined by the Gut Microbiota of Patients With Untreated Systemic Lupus Erythematosus. Arthritis Rheumatol 2020; 73:232-243. [PMID: 33124780 DOI: 10.1002/art.41511] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Changes in gut microbiota have been linked to systemic lupus erythematosus (SLE), but knowledge is limited. Our study aimed to provide an in-depth understanding of the contribution of gut microbiota to the immunopathogenesis of SLE. METHODS Fecal metagenomes from 117 patients with untreated SLE and 52 SLE patients posttreatment were aligned with 115 matched healthy controls and analyzed by whole-genome profiling. For comparison, we assessed the fecal metagenome of MRL/lpr mice. The oral microbiota origin of the gut species that existed in SLE patients was documented by single-nucleotide polymorphism-based strain-level analyses. Functional validation assays were performed to demonstrate the molecular mimicry of newly found microbial peptides. RESULTS Gut microbiota from individuals with SLE displayed significant differences in microbial composition and function compared to healthy controls. Certain species, including the Clostridium species ATCC BAA-442 as well as Atopobium rimae, Shuttleworthia satelles, Actinomyces massiliensis, Bacteroides fragilis, and Clostridium leptum, were enriched in SLE gut microbiota and reduced after treatment. Enhanced lipopolysaccharide biosynthesis aligned with reduced branched chain amino acid biosynthesis was observed in the gut of SLE patients. The findings in mice were consistent with our findings in human subjects. Interestingly, some species with an oral microbiota origin were enriched in the gut of SLE patients. Functional validation assays demonstrated the proinflammatory capacities of some microbial peptides derived from SLE-enriched species. CONCLUSION This study provides detailed information on the microbiota of untreated patients with SLE, including their functional signatures, similarities with murine counterparts, oral origin, and the definition of autoantigen-mimicking peptides. Our data demonstrate that microbiome-altering approaches may offer valuable adjuvant therapies in SLE.
Collapse
Affiliation(s)
- Bei-di Chen
- Department of Rheumatology, Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Xin-Miao Jia
- Department of Rheumatology, Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Jia-Yue Xu
- Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Li-Dan Zhao
- Department of Rheumatology, Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | | | - Bing-Xuan Wu
- Department of Rheumatology, Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Yue Ma
- Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Hao Li
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Xiao-Xia Zuo
- Xiangya Hospital and Central South University, Changsha, China
| | - Wen-You Pan
- Huaian First People's Hospital and Nanjing Medical University, Huaian, China
| | | | - Shuang Ye
- Renji Hospital and Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - George C Tsokos
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jun Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Shin SA, Joo BJ, Lee JS, Ryu G, Han M, Kim WY, Park HH, Lee JH, Lee CS. Phytochemicals as Anti-Inflammatory Agents in Animal Models of Prevalent Inflammatory Diseases. Molecules 2020; 25:E5932. [PMID: 33333788 PMCID: PMC7765227 DOI: 10.3390/molecules25245932] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Phytochemicals are known to have anti-inflammatory effects in vitro and in vivo, such as in inflammatory disease model systems. Inflammation is an essential immune response to exogenous stimuli such as infection and injury. Although inflammation is a necessary host-defense mechanism, chronic inflammation is associated with the continuous local or systemic release of inflammatory mediators, non-cytokine mediators, such as ROS and NO, and inflammatory cytokines are strongly implicated in the pathogenesis of various inflammatory disorders. Phytochemicals that exhibit anti-inflammatory mechanisms that reduce sustained inflammation could be therapeutic candidates for various inflammatory diseases. These phytochemicals act by modulating several main inflammatory signaling pathways, including NF-κB, MAPKs, STAT, and Nrf-2 signaling. Here, we discuss the characteristics of phytochemicals that possess anti-inflammatory activities in various chronic inflammatory diseases and review the molecular signaling pathways altered by these anti-inflammatory phytochemicals, with a focus on transcription factor pathways. Furthermore, to evaluate the phytochemicals as drug candidates, we translate the effective doses of phytochemicals in mice or rat disease models into the human-relevant equivalent and compare the human-relevant equivalent doses of several phytochemicals with current anti-inflammatory drugs doses used in different types of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Seong Ah Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Byeong Jun Joo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Jun Seob Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Gyoungah Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Minjoo Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Woe Yeon Kim
- Division of Applied Life Science (BK21), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju 52828, Korea;
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Korea;
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| |
Collapse
|
6
|
Abrego-Peredo A, Romero-Ramírez H, Espinosa E, López-Herrera G, García-García F, Flores-Muñoz M, Sandoval-Montes C, Rodríguez-Alba JC. Naringenin mitigates autoimmune features in lupus-prone mice by modulation of T-cell subsets and cytokines profile. PLoS One 2020; 15:e0233138. [PMID: 32421738 PMCID: PMC7233587 DOI: 10.1371/journal.pone.0233138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
Naringenin is flavonoid mainly found in citrus fruits which has shown several biological properties. In this work, we evaluated the therapeutic potential of the flavonoid Naringenin. Five-month-old B6.MRL-Faslpr/J lupus-prone mice were administered daily orally with Naringenin for seven months. We showed that Naringenin treatment at 50 or 100 mg/kg inhibited the splenomegaly and decreased the levels of anti-nuclear and anti-dsDNA autoantibodies. Furthermore, a reduction in serum concentration of TNF-α, IFN-γ and IL-6 was observed in the mice provided with Naringenin. Interestingly, serum levels of IL-10 increased. Naringenin decreased the frequency and absolute numbers of splenic effector memory T cells. Additionally, in order to be able to evaluate whether Naringenin prevented kidney damage, twelve-week-old MRL/MpJ-Faslpr/J mice, an accelerated lupus model, were orally administered with Naringenin at 100 mg/kg for six weeks. Surprisingly, Naringenin treatment prevented kidney damage and reduced the development of fibrosis similar to cyclophosphamide group. Moreover, Naringenin treatment increased the percentage of regulatory T cells in this aggressive model of lupus. Together, these results suggest a potential ability of Naringenin to reduce the autoimmunity in lupus-prone mice by modulation of T-cell subsets and cytokines profile that mitigate the development of important lupus clinical manifestations.
Collapse
Affiliation(s)
- Amayrani Abrego-Peredo
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
- Unidad de Citometría de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Héctor Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Enrique Espinosa
- Investigación en Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
| | - Gabriela López-Herrera
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Fabio García-García
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
- Laboratorio de Biología del Sueño, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Mónica Flores-Muñoz
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
- Laboratorio de Investigación en Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Claudia Sandoval-Montes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Juan Carlos Rodríguez-Alba
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
- Unidad de Citometría de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
7
|
Petrić M, Božić J, Radić M, Perković D, Petrić M, Martinović Kaliterna D. Dietary Habits in Patients with Systemic Lupus Erythematosus. J Med Food 2020; 23:1176-1182. [PMID: 32150485 DOI: 10.1089/jmf.2019.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Patients with systemic lupus erythematosus (SLE) are often interested in which diets to follow. Our aim was to investigate which dietary habits were common among our patients, and which of them were in correlation with laboratory parameters of disease activity, such as complement values and 24-h proteinuria. This study included 76 patients with SLE in clinical remission with a 6-month flare free period. They completed a specialized, self-administered, 23-item food frequency questionnaire about their weekly dietary habits. Basic anthropometric data, levels of C3 and C4, and 24-h proteinuria were recorded and analyzed with respect to their dietary habits. The majority of patients had a normal body mass index of 18.5-25 kg/m2, and worked out regularly. The most frequently consumed foods reported by the patients were fruits, milk, vegetables, meat, pasta, rice, and bread. Decreased values of C3 were found in 34 (44.7%) patients, and decreased values of C4 in 28 (36.8%) patients. Decreased values of C3 were found in patients who often consumed meat (P = .015), and decreased values of C4 in patients who often consumed fast food (P = .043). Patients who often consumed fast food demonstrated a decreasing trend of C3 (P = .060), and patients who often consumed fried food had a decreasing trend of C4 (P = .051). Significant correlation between daily proteinuria and dietary habits was not found. Dietary habits can influence the disease course of SLE. Our study confirms that decreased levels of complement compounds C3 and C4, which are possible predictors of disease activation, are associated with frequent consumption of low quality proteins and food rich in calories.
Collapse
Affiliation(s)
- Marin Petrić
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia
| | - Joško Božić
- Department of Pathophysiology, School of Medicine, University of Split, Split, Croatia
| | - Mislav Radić
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia.,Department of Internal Medicine, School of Medicine, University of Split, Split, Croatia
| | - Dijana Perković
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia.,Department of Internal Medicine, School of Medicine, University of Split, Split, Croatia
| | - Marija Petrić
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia
| | | |
Collapse
|
8
|
Rengasamy KR, Khan H, Gowrishankar S, Lagoa RJ, Mahomoodally FM, Khan Z, Suroowan S, Tewari D, Zengin G, Hassan ST, Pandian SK. The role of flavonoids in autoimmune diseases: Therapeutic updates. Pharmacol Ther 2019; 194:107-131. [DOI: 10.1016/j.pharmthera.2018.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Edwards MR, Dai R, Heid B, Cecere TE, Khan D, Mu Q, Cowan C, Luo XM, Ahmed SA. Commercial rodent diets differentially regulate autoimmune glomerulonephritis, epigenetics and microbiota in MRL/lpr mice. Int Immunol 2017; 29:263-276. [PMID: 28637300 PMCID: PMC5890898 DOI: 10.1093/intimm/dxx033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
The course and severity of lupus in spontaneous murine lupus models varies among laboratories, which may be due to variations in diet, housing and/or local environmental conditions. In this study, we investigated the influence of common rodent diets while keeping other factors constant. Female lupus-prone MRL/lpr (MRL/MpJ-Faslpr/J) mice were subjected to the same housing conditions and given one of the three diets: Teklad 7013 containing isoflavone-rich soy and alfalfa, Harlan 2018 isoflavone-rich soy-based diet or Research Diets Inc. D11112226 (RD) purified-ingredients diet containing casein and no phytoestrogens. While the total caloric intake was similar among all three treatment groups, mice fed on the 2018 diet developed higher levels of proteinuria and mice fed on either 7013 or 2018 developed higher levels of glomerular immune complex deposition. Remarkably, mice fed the RD diet had markedly decreased proteinuria with diminished C3, total IgG, IgG1 and IgG3 immune complex deposition, along with reduced CD11b+ cellular infiltration into the glomeruli. The type of diet intake also influenced cytokine production, fecal microbiota (increased Lachnospiraceae in mice fed on 2018), altered microRNAs (miRNAs; higher levels of lupus-associated miR-148a and miR-183 in mice fed on 7013 and/or 2018) and altered DNA methylation. This is the first study to comprehensively compare the cellular, molecular and epigenetic effects of these commercial diets in murine lupus.
Collapse
Affiliation(s)
- Michael R Edwards
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rujuan Dai
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bettina Heid
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Thomas E Cecere
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Deena Khan
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Qinghui Mu
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Catharine Cowan
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xin M Luo
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - S Ansar Ahmed
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Luo XM, Edwards MR, Reilly CM, Mu Q, Ahmed SA. Diet and Microbes in the Pathogenesis of Lupus. Lupus 2017. [DOI: 10.5772/68110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Abstract
AbstractSystemic lupus erythematosus (SLE) is a chronic inflammatory and autoimmune disease characterised by multiple organ involvement and a large number of complications. SLE management remains complicated owing to the biological heterogeneity between patients and the lack of safe and specific targeted therapies. There is evidence that dietary factors can contribute to the geoepidemiology of autoimmune diseases such as SLE. Thus, diet therapy could be a promising approach in SLE owing to both its potential prophylactic effects, without the side effects of classical pharmacology, and its contribution to reducing co-morbidities and improving quality of life in patients with SLE. However, the question arises as to whether nutrients could ameliorate or exacerbate SLE and how they could modulate inflammation and immune function at a molecular level. The present review summarises preclinical and clinical experiences to provide the reader with an update of the positive and negative aspects of macro- and micronutrients and other nutritional factors, including dietary phenols, on SLE, focusing on the mechanisms of action involved.
Collapse
|
12
|
Abstract
Soybeans are rich in immuno-modulatory isoflavones such as genistein, daidzein, and glycitein. These isoflavones are well-known antioxidants, chemopreventive and anti-inflammatory agents. Several epidemiological studies suggest that consumption of traditional soy food containing isoflavones is associated with reduced prevalence of chronic health disorders. Isoflavones are considered to be phytoestrogens because of their ability to bind to estrogen receptors. The literature is extensive on the chemistry, bio-availability, and bio-activity of isoflavones. However, their effects on immune response are yet to be fully understood, but are beginning to be appreciated. We review the role of isoflavones in regulation of the immune response and their potential clinical applications in immune-dysfunction. Special emphasis will be made regarding in vivo studies including humans and animal model systems.
Collapse
Affiliation(s)
- Madhan Masilamani
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Anbg 17-40G, Mount Sinai School of Medicine, The Jaffe Food Allergy Institute, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|
13
|
Dietary factors regulate cytokines in murine models of systemic lupus erythematosus. Autoimmun Rev 2011; 11:22-7. [PMID: 21763466 DOI: 10.1016/j.autrev.2011.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/25/2011] [Indexed: 12/14/2022]
Abstract
Cytokines play the active roles in the pathogenesis of systemic lupus erythematosus (SLE) and contribute significantly to the immune imbalance in this disease. Conservative therapeutic approaches, such as dietary modifications have been shown to have some beneficial impact on the disease activity of the SLE. Over the past years, accumulating evidences have supported a major role for specific dietary factors, including calorie restriction, n-3/n-6 fatty acids, vitamin A, vitamin D, vitamin E, phytoestrogens or herbal medicine in the regulation of cytokines involved in SLE development. Although there are many reviews that discuss the issue of nutrition and immunity, there are relatively few articles that focus on the regulation of cytokines by dietary factors. This concise review will summarize those animal studies that investigated not only the outcome of autoantibody production and proteinuria, but also cytokines production. However, the field of dietary factors in the immunomodulation of SLE is still in its infancy. More clinical studies are needed to confirm the preliminary results and advance the knowledge in this field. Lifestyle modification and adjustments in diet are important and encouraged to be suggested as an adjuvant therapy for SLE.
Collapse
|