1
|
Su X, Yu H, Lei Q, Chen X, Tong Y, Zhang Z, Yang W, Guo Y, Lin L. Systemic lupus erythematosus: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:54. [PMID: 39472388 PMCID: PMC11522254 DOI: 10.1186/s43556-024-00217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disorder characterized by dysregulated immune responses and autoantibody production, which affects multiple organs and varies in clinical presentation and disease severity. The development of SLE is intricate, encompassing dysregulation within the immune system, a collapse of immunological tolerance, genetic susceptibilities to the disease, and a variety of environmental factors that can act as triggers. This review provides a comprehensive discussion of the pathogenesis and treatment strategies of SLE and focuses on the progress and status of traditional and emerging treatment strategies for SLE. Traditional treatment strategies for SLE have mainly employed non-specific approaches, including cytotoxic and immunosuppressive drugs, antimalarials, glucocorticoids, and NSAIDs. These strategies are effective in mitigating the effects of the disease, but they are not a complete cure and are often accompanied by adverse reactions. Emerging targeted therapeutic drugs, on the other hand, aim to control and treat SLE by targeting B and T cells, inhibiting their activation and function, as well as the abnormal activation of the immune system. A deeper understanding of the pathogenesis of SLE and the exploration of new targeted treatment strategies are essential to advance the treatment of this complex autoimmune disease.
Collapse
Affiliation(s)
- Xu Su
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Hui Yu
- Department of Urology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China
| | - Qingqiang Lei
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Xuerui Chen
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yanli Tong
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Paris, F-75015, France
| | - Zhongyang Zhang
- Department of Health Technology, The Danish National Research Foundation and Villum Foundation's Center IDUN, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Wenyong Yang
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Department of Neurosurgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China.
| | - Yuanbiao Guo
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Liangbin Lin
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
2
|
Saisorn W, Santiworakul C, Phuengmaung P, Siripen N, Rianthavorn P, Leelahavanichkul A. Extracellular traps in peripheral blood mononuclear cell fraction in childhood-onset systemic lupus erythematosus. Sci Rep 2024; 14:23177. [PMID: 39369134 PMCID: PMC11455886 DOI: 10.1038/s41598-024-74705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
Although the role of low-density granulocytes (LDGs), neutrophils in the peripheral blood mononuclear cell (PBMC) fraction, and neutrophil extracellular traps (NETs) in assessing lupus disease severity is acknowledged, data specific to childhood-onset lupus remains scarce. This study analyzed 46 patients with childhood-onset systemic lupus erythematosus (82.6% females, mean age 14.5 ± 0.3 years), including 26 cases with normal complement levels and 20 with low complement levels, along with 20 healthy adult volunteers. Key parameters that distinguished healthy volunteers from lupus patients and differentiated between lupus patients with low and normal complement were serum interferon (IFN)-α, serum citrullinated histone 3 (CitH3), and extracellular traps (ETs) in LDGs. However, NETs (assessed by nuclear staining morphology), LDG abundance, and other parameters (such as endotoxemia, cytokines, and double-stranded (ds) DNA) did not show such differentiation. When lipopolysaccharide (LPS) was administered to LDGs in the PBMC fraction, it induced ETs in both low and normal complement groups, indicating the inducible nature of ETs. In adult healthy volunteers, activation by recombinant IFN-α or dsDNA in isolated neutrophils induced LDGs and NETs (identified using immunofluorescent staining for CitH3, myeloperoxidase, and neutrophil elastase) at 45 min and 3 h post-stimulation, respectively. Additionally, approximately half of the LDGs underwent late apoptosis at 3 h post-stimulation, as determined by flow cytometry analysis. Activation by IFN-α or dsDNA in LDGs also led to a more pronounced expression of CD66b, an adhesion molecule, compared to regular-density neutrophils, suggesting higher activity in LDGs. In conclusion, IFN-α and/or dsDNA in serum may transform regular-density neutrophils into LDGs before progressing to NETosis and apoptosis, potentially exacerbating lupus severity through cell death-induced self-antigens. Therefore, LDGs and ETs in LDGs could provide deeper insights into the pathophysiology of childhood-onset lupus.
Collapse
Affiliation(s)
- Wilasinee Saisorn
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chanunya Santiworakul
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornpimol Phuengmaung
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nuanpan Siripen
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornpimol Rianthavorn
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
Li Z, Lu Q. The role of neutrophils in autoimmune diseases. Clin Immunol 2024; 266:110334. [PMID: 39098706 DOI: 10.1016/j.clim.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.
Collapse
Affiliation(s)
- Zhuoshu Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
4
|
Shafqat A, Khan JA, Alkachem AY, Sabur H, Alkattan K, Yaqinuddin A, Sing GK. How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. Int J Mol Sci 2023; 24:17583. [PMID: 38139412 PMCID: PMC10744338 DOI: 10.3390/ijms242417583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation. Neutrophils are a heterogeneous group of immune cells from which are derived extracellular traps (NETs), reactive oxygen species, cytokines, chemokines, immunomodulatory factors, and alarmins that regulate the recruitment and phenotypes of neutrophils, macrophages, dendritic cells, T cells, and B cells. In addition, cytokine-stimulated neutrophils can express class II major histocompatibility complex and the internal machinery necessary for successful antigen presentation to memory CD4+ T cells. This may be relevant in the context of vaccine memory. Neutrophils thus emerge as orchestrators of immune responses that play a key role in determining the outcome of infections, vaccine efficacy, and chronic diseases like autoimmunity and cancer. This review aims to provide a synthesis of current evidence as regards the role of these functions of neutrophils in homeostasis and disease.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia (K.A.); (A.Y.); (G.K.S.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Ganesh K, Joshi MB. Neutrophil sub-types in maintaining immune homeostasis during steady state, infections and sterile inflammation. Inflamm Res 2023; 72:1175-1192. [PMID: 37212866 PMCID: PMC10201050 DOI: 10.1007/s00011-023-01737-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
INTRODUCTION Neutrophils are component of innate immune system and a) eliminate pathogens b) maintain immune homeostasis by regulating other immune cells and c) contribute to the resolution of inflammation. Neutrophil mediated inflammation has been described in pathogenesis of various diseases. This indicates neutrophils do not represent homogeneous population but perform multiple functions through confined subsets. Hence, in the present review we summarize various studies describing the heterogeneous nature of neutrophils and associated functions during steady state and pathological conditions. METHODOLOGY We performed extensive literature review with key words 'Neutrophil subpopulations' 'Neutrophil subsets', Neutrophil and infections', 'Neutrophil and metabolic disorders', 'Neutrophil heterogeneity' in PUBMED. RESULTS Neutrophil subtypes are characterized based on buoyancy, cell surface markers, localization and maturity. Recent advances in high throughput technologies indicate the existence of functionally diverse subsets of neutrophils in bone marrow, blood and tissues in both steady state and pathological conditions. Further, we found proportions of these subsets significantly vary in pathological conditions. Interestingly, stimulus specific activation of signalling pathways in neutrophils have been demonstrated. CONCLUSION Neutrophil sub-populations differ among diseases and hence, mechanisms regulating formation, sustenance, proportions and functions of these sub-types vary between physiological and pathological conditions. Hence, mechanistic insights of neutrophil subsets in disease specific manner may facilitate development of neutrophil-targeted therapies.
Collapse
Affiliation(s)
- Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
6
|
Watanabe H, Kubo M, Taniguchi A, Asano Y, Hiramatsu-Asano S, Ohashi K, Zeggar S, Katsuyama E, Katsuyama T, Sunahori-Watanabe K, Sada KE, Matsumoto Y, Yamamoto Y, Yamamoto H, Son M, Wada J. Amelioration of nephritis in receptor for advanced glycation end-products (RAGE)-deficient lupus-prone mice through neutrophil extracellular traps. Clin Immunol 2023; 250:109317. [PMID: 37015317 PMCID: PMC10234279 DOI: 10.1016/j.clim.2023.109317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor that regulates inflammation, cell migration, and cell fate. Systemic lupus erythematosus (SLE) is a chronic multiorgan autoimmune disease. To understand the function of RAGE in SLE, we generated RAGE-deficient (Ager-/-) lupus-prone mice by backcrossing MRL/MpJ-Faslpr/J (MRL-lpr) mice with Ager-/- C57BL/6 mice. In 18-week-old Ager-/- MRL-lpr, the weights of the spleen and lymph nodes, as well as the frequency of CD3+CD4-CD8- cells, were significantly decreased. Ager-/- MRL-lpr mice had significantly reduced urine albumin/creatinine ratios and markedly improved renal pathological scores. Moreover, neutrophil infiltration and neutrophil extracellular trap formation in the glomerulus were significantly reduced in Ager-/- MRL-lpr. Our study is the first to reveal that RAGE can have a pathologic role in immune cells, particularly neutrophils and T cells, in inflammatory tissues and suggests that the inhibition of RAGE may be a potential therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Haruki Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| | - Masataka Kubo
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiko Taniguchi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sumie Hiramatsu-Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiji Ohashi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sonia Zeggar
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eri Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsue Sunahori-Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-Ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan; Komatsu University, Komatsu, Japan
| | - Myoungsun Son
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
7
|
Accapezzato D, Caccavale R, Paroli MP, Gioia C, Nguyen BL, Spadea L, Paroli M. Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:6578. [PMID: 37047548 PMCID: PMC10095030 DOI: 10.3390/ijms24076578] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a genetically predisposed, female-predominant disease, characterized by multiple organ damage, that in its most severe forms can be life-threatening. The pathogenesis of SLE is complex and involves cells of both innate and adaptive immunity. The distinguishing feature of SLE is the production of autoantibodies, with the formation of immune complexes that precipitate at the vascular level, causing organ damage. Although progress in understanding the pathogenesis of SLE has been slower than in other rheumatic diseases, new knowledge has recently led to the development of effective targeted therapies, that hold out hope for personalized therapy. However, the new drugs available to date are still an adjunct to conventional therapy, which is known to be toxic in the short and long term. The purpose of this review is to summarize recent advances in understanding the pathogenesis of the disease and discuss the results obtained from the use of new targeted drugs, with a look at future therapies that may be used in the absence of the current standard of care or may even cure this serious systemic autoimmune disease.
Collapse
Affiliation(s)
- Daniele Accapezzato
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Gioia
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Bich Lien Nguyen
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
8
|
Carmona-Rivera C, Kaplan MJ. Low-density granulocytes in systemic autoimmunity and autoinflammation. Immunol Rev 2023; 314:313-325. [PMID: 36305174 PMCID: PMC10050110 DOI: 10.1111/imr.13161] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A body of evidence has re-energized the interest on the role neutrophils in inflammatory and autoimmune conditions. For decades, neutrophils have been considered a homogenous population. Nevertheless, accumulating evidence suggests that neutrophils are more versatile and heterogeneous than initially considered. The notion of neutrophil heterogeneity has been supported by the identification of low-density granulocytes (LDGs) in systemic lupus erythematosus (SLE) and other systemic autoimmune and autoinflammatory conditions. Transcriptomic, epigenetic, proteomic, and functional analyses support that LDGs are a distinct subset of proinflammatory neutrophils implicated in the pathogenesis of SLE and other autoimmune diseases. Importantly, it remains incompletely characterized whether LDGs detected in other inflammatory/autoimmune conditions display the same phenotype that those present in SLE. A shared feature of LDGs across diseases is their association with vascular damage, an important contributor to morbidity and mortality in chronic inflammatory conditions. Additionally, the lack of specific markers to identify LDGs in circulation or in tissue, makes it a challenge to elucidate their role in the pathogenesis of inflammatory and autoimmune conditions. In this review, we aim to examine the evidence on the biology and the putative pathogenic role of LDGs in systemic autoimmune diseases.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Martin KR, Day JA, Hansen JA, D'Silva DB, Wong HL, Garnham A, Sandow JJ, Nijagal B, Wilson N, Wicks IP. CD98 defines a metabolically flexible, proinflammatory subset of low-density neutrophils in systemic lupus erythematosus. Clin Transl Med 2023; 13:e1150. [PMID: 36653319 PMCID: PMC9849148 DOI: 10.1002/ctm2.1150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Low-density neutrophils (LDN) are a distinct subset of neutrophils rarely detected in healthy people but appear in the blood of patients with autoimmune diseases, including systemic lupus erythematosus (SLE), and are mobilised in response to granulocyte colony-stimulating factor (G-CSF). The aim of this study was to identify novel mechanisms responsible for the pathogenic capacity of LDN in SLE. METHODS Neutrophils were isolated from donors treated with G-CSF, and whole-cell proteomic analysis was performed on LDN and normal-density neutrophils. RESULTS CD98 is significantly upregulated in LDN from G-CSF donors and defines a subset of LDN within the blood of SLE patients. CD98 is a transmembrane protein that dimerises with L-type amino acid transporters. We show that CD98 is responsible for the increased bioenergetic capacity of LDN. CD98 on LDN mediates the uptake of essential amino acids that are used by mitochondria to produce adenosine triphosphate, especially in the absence of glucose. Inhibition of CD98 reduces the metabolic flexibility of this population, which may limit their pathogenic capacity. CD98+ LDN produce more proinflammatory cytokines and chemokines than their normal density counterparts and are resistant to apoptosis, which may also contribute to tissue inflammation and end organ damage in SLE. CONCLUSIONS CD98 provides a phenotypic marker for LDN that facilitates identification of this population without density-gradient separation and represents a novel therapeutic target to limit its pathogenic capacity.
Collapse
Affiliation(s)
- Katherine R. Martin
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Jessica A. Day
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of RheumatologyRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Jacinta A. Hansen
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Damian B. D'Silva
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Huon L. Wong
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Alexandra Garnham
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Jarrod J. Sandow
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Brunda Nijagal
- Metabolomics AustraliaBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVictoriaAustralia
| | | | - Ian P. Wicks
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of RheumatologyRoyal Melbourne HospitalParkvilleVictoriaAustralia
| |
Collapse
|
10
|
Wang L, Yang Z, Yu H, Lin W, Wu R, Yang H, Yang K. Predicting diagnostic gene expression profiles associated with immune infiltration in patients with lupus nephritis. Front Immunol 2022; 13:839197. [PMID: 36532018 PMCID: PMC9755505 DOI: 10.3389/fimmu.2022.839197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To identify potential diagnostic markers of lupus nephritis (LN) based on bioinformatics and machine learning and to explore the significance of immune cell infiltration in this pathology. Methods Seven LN gene expression datasets were downloaded from the GEO database, and the larger sample size was used as the training group to obtain differential genes (DEGs) between LN and healthy controls, and to perform gene function, disease ontology (DO), and gene set enrichment analyses (GSEA). Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify candidate biomarkers. The diagnostic value of LN diagnostic gene biomarkers was further evaluated in the area under the ROC curve observed in the validation dataset. CIBERSORT was used to analyze 22 immune cell fractions from LN patients and to analyze their correlation with diagnostic markers. Results Thirty and twenty-one DEGs were screened in kidney tissue and peripheral blood, respectively. Both of which covered macrophages and interferons. The disease enrichment analysis of DEGs in kidney tissues showed that they were mainly involved in immune and renal diseases, and in peripheral blood it was mainly enriched in cardiovascular system, bone marrow, and oral cavity. The machine learning algorithm combined with external dataset validation revealed that C1QA(AUC = 0.741), C1QB(AUC = 0.758), MX1(AUC = 0.865), RORC(AUC = 0.911), CD177(AUC = 0.855), DEFA4(AUC= 0.843)and HERC5(AUC = 0.880) had high diagnostic value and could be used as diagnostic biomarkers of LN. Compared to controls, pathways such as cell adhesion molecule cam, and systemic lupus erythematosus were activated in kidney tissues; cell cycle, cytoplasmic DNA sensing pathways, NOD-like receptor signaling pathways, proteasome, and RIG-1-like receptors were activated in peripheral blood. Immune cell infiltration analysis showed that diagnostic markers in kidney tissue were associated with T cells CD8 and Dendritic cells resting, and in blood were associated with T cells CD4 memory resting, suggesting that CD4 T cells, CD8 T cells and dendritic cells are closely related to the development and progression of LN. Conclusion C1QA, C1QB, MX1, RORC, CD177, DEFA4 and HERC5 could be used as new candidate molecular markers for LN. It may provide new insights into the diagnosis and molecular treatment of LN in the future.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hangxing Yu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Lin
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruoxi Wu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| |
Collapse
|
11
|
Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol 2022; 23:274-288. [PMID: 36257987 PMCID: PMC9579530 DOI: 10.1038/s41577-022-00787-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Systemic autoimmune diseases are characterized by the failure of the immune system to differentiate self from non-self. These conditions are associated with significant morbidity and mortality, and they can affect many organs and systems, having significant clinical heterogeneity. Recent discoveries have highlighted that neutrophils, and in particular the neutrophil extracellular traps that they can release upon activation, can have central roles in the initiation and perpetuation of systemic autoimmune disorders and orchestrate complex inflammatory responses that lead to organ damage. Dysregulation of neutrophil cell death can lead to the modification of autoantigens and their presentation to the adaptive immune system. Furthermore, subsets of neutrophils that seem to be more prevalent in patients with systemic autoimmune disorders can promote vascular damage and increased oxidative stress. With the emergence of new technologies allowing for improved assessments of neutrophils, the complexity of neutrophil biology and its dysregulation is now starting to be understood. In this Review, we provide an overview of the roles of neutrophils in systemic autoimmune and autoinflammatory diseases and address putative therapeutic targets that may be explored based on this new knowledge.
Collapse
|
12
|
Rankin AN, Hendrix SV, Naik SK, Stallings CL. Exploring the Role of Low-Density Neutrophils During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2022; 12:901590. [PMID: 35800386 PMCID: PMC9253571 DOI: 10.3389/fcimb.2022.901590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is caused by infection with the bacterium Mycobacterium tuberculosis (Mtb), which primarily infects the lungs but can also cause extrapulmonary disease. Both the disease outcome and the pathology of TB are driven by the immune response mounted by the host. Infection with Mtb elicits inflammatory host responses that are necessary to control infection, but can also cause extensive tissue damage when in excess, and thus must be precisely balanced. In particular, excessive recruitment of neutrophils to the site of infection has been associated with poor control of Mtb infection, prompting investigations into the roles of neutrophils in TB disease outcomes. Recent studies have revealed that neutrophils can be divided into subpopulations that are differentially abundant in TB disease states, highlighting the potential complexities in determining the roles of neutrophils in Mtb infection. Specifically, neutrophils can be separated into normal (NDN) and low-density neutrophils (LDNs) based on their separation during density gradient centrifugation and surface marker expression. LDNs are present in higher numbers during active TB disease and increase in frequency with disease progression, although their direct contribution to TB is still unknown. In addition, the abundance of LDNs has also been associated with the severity of other lung infections, including COVID-19. In this review, we discuss recent findings regarding the roles of LDNs during lung inflammation, emphasizing their association with TB disease outcomes. This review highlights the importance of future investigations into the relationship between neutrophil diversity and TB disease severity.
Collapse
|
13
|
Stojkov D, Gigon L, Peng S, Lukowski R, Ruth P, Karaulov A, Rizvanov A, Barlev NA, Yousefi S, Simon HU. Physiological and Pathophysiological Roles of Metabolic Pathways for NET Formation and Other Neutrophil Functions. Front Immunol 2022; 13:826515. [PMID: 35251008 PMCID: PMC8889909 DOI: 10.3389/fimmu.2022.826515] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are the most numerous cells in the leukocyte population and essential for innate immunity. To limit their effector functions, neutrophils are able to modulate glycolysis and other cellular metabolic pathways. These metabolic pathways are essential not only for energy usage, but also for specialized effector actions, such as the production of reactive oxygen species (ROS), chemotaxis, phagocytosis, degranulation, and the formation of neutrophil extracellular traps (NETs). It has been demonstrated that activated viable neutrophils can produce NETs, which consists of a DNA scaffold able to bind granule proteins and microorganisms. The formation of NETs requires the availability of increased amounts of adenosine triphosphate (ATP) as it is an active cellular and therefore energy-dependent process. In this article, we discuss the glycolytic and other metabolic routes in association with neutrophil functions focusing on their role for building up NETs in the extracellular space. A better understanding of the requirements of metabolic pathways for neutrophil functions may lead to the discovery of molecular targets suitable to develop novel anti-infectious and/or anti-inflammatory drugs.
Collapse
Affiliation(s)
- Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shuang Peng
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.,Regulation of Cell Signaling Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
14
|
Torres-Ruiz J, Carrillo-Vázquez DA, Leal-Alanis A, Zentella-Dehesa A, Tapia-Rodríguez M, Maravillas-Montero JL, Nuñez-Álvarez CA, Carazo-Vargas ER, Romero-Hernández I, Juárez-Vega G, Alcocer-Varela J, Gómez-Martín D. Low-Density Granulocytes and Neutrophil Extracellular Traps as Biomarkers of Disease Activity in Adult Inflammatory Myopathies. J Clin Rheumatol 2022; 28:e480-e487. [PMID: 34643846 DOI: 10.1097/rhu.0000000000001772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVE Biomarkers for disease activity and damage accrual in idiopathic inflammatory myopathies (IIMs) are currently lacking. The purpose of this cross-sectional study is to analyze the relationship among low-density granulocytes (LDGs), neutrophil extracellular traps (NETs), and clinical and immunological features of patients with IIM. METHODS We assessed disease activity, damage accrual, amount of LDGs, NETs, expression of LL-37, and serum cytokines in 65 adult patients with IIM. Differences between groups and correlations were assessed by Kruskal-Wallis, Mann-Whitney U, and Spearman ρ tests. The association between LDGs, NETs, disease activity, calcinosis, and cutaneous ulcers was assessed by logistic regression. To address the capacity of LDGs and NETs to diagnose disease activity, we used receiving operating characteristic curves. RESULTS Low-density granulocytes were higher in patients with active disease, ulcers, calcinosis, and anti-MDA5 antibodies, which correlated with serum levels of IL-17A and IL-18. Neutrophil extracellular traps were higher in patients with calcinosis, elevated titers of antinuclear antibodies, and positive anti-PM/Scl75 tests. The combination of a high proportion of both total LDGs and NETs was associated with the presence of calcinosis and cutaneous ulcers. LL-37 was higher in NETs originating from LDGs. Normal-density neutrophils were elevated in patients with active dermatomyositis. CONCLUSIONS Low-density granulocytes and NETs containing LL-37 are increased in patients with IIM and active disease, and correlate with proinflammatory cytokines. Both total and CD10+ LDGs are potential biomarkers for disease activity and, in combination with NETs, have the potential to detect patients who are at risk for cutaneous ulcers and calcinosis.
Collapse
Affiliation(s)
| | | | - Araceli Leal-Alanis
- Internal Medicine, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran
| | | | - Miguel Tapia-Rodríguez
- Microscopy Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico
| | | | | | | | | | - Guillermo Juárez-Vega
- Flow Cytometry Unit, Red de Apoyo a la Investigación, Coordinacion de Investigación Cientifica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | | | | |
Collapse
|
15
|
Low-Density Granulocytes in Immune-Mediated Inflammatory Diseases. J Immunol Res 2022; 2022:1622160. [PMID: 35141336 PMCID: PMC8820945 DOI: 10.1155/2022/1622160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Low-density granulocytes (LDGs), a distinct subset of neutrophils that colocalize with peripheral blood mononuclear cells after density gradient centrifugation, have been observed in many immune-mediated diseases. LDGs are considered highly proinflammatory because of enhanced spontaneous formation of neutrophil extracellular traps, endothelial toxicity, and cytokine production. Concomitantly, increased numbers of LDGs are associated with the severity of many immune-mediated inflammatory diseases. Recent studies, with the help of advanced transcriptomic technologies, demonstrated that LDGs were a mixed cell population composed of immature subset and mature subset, and these two subsets showed different pathogenic features. In this review, we summarize the current knowledge on the composition, origin, and pathogenic properties of LDGs in several immune-mediated inflammatory diseases and discuss potential medical interventions targeting LDGs.
Collapse
|
16
|
The role of neutrophils in rheumatic disease-associated vascular inflammation. Nat Rev Rheumatol 2022; 18:158-170. [PMID: 35039664 DOI: 10.1038/s41584-021-00738-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Vascular pathologies underpin and intertwine autoimmune rheumatic diseases and cardiovascular conditions, and atherosclerosis is increasingly recognized as the leading cause of morbidity in conditions such as systemic lupus erythematosus (SLE), rheumatoid arthritis and antineutrophil cytoplasmic antibody-associated vasculitis. Neutrophils, important cells in the innate immune system, exert their functional effects in tissues via a variety of mechanisms, including the generation of neutrophil extracellular traps and the production of reactive oxygen species. Neutrophils have been implicated in the pathogenesis of several rheumatic diseases, and can also intimately interact with the vascular system, either through modulating endothelial barriers at the blood-vessel interface, or through associations with platelets. Emerging data suggest that neutrophils also have an important role maintaining homeostasis in individual organs and can protect the vascular system. Furthermore, studies using high-dimensional omics technologies have advanced our understanding of neutrophil diversity, and immature neutrophils are receiving new attention in rheumatic diseases including SLE and systemic vasculitis. Developments in genomic, imaging and organoid technologies are beginning to enable more in-depth investigations into the pathophysiology of vascular inflammation in rheumatic diseases, making now a good time to re-examine the full scope of roles of neutrophils in these processes.
Collapse
|
17
|
The Enigma of Low-Density Granulocytes in Humans: Complexities in the Characterization and Function of LDGs during Disease. Pathogens 2021; 10:pathogens10091091. [PMID: 34578124 PMCID: PMC8470838 DOI: 10.3390/pathogens10091091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Low-density granulocytes (LDGs) have been characterized as important immune cells during healthy and disease states in humans, including microbial infections, cancer, and autoimmune dysfunction. However, the classification of this cell type is similar to other immune cells (e.g., neutrophils, myeloid-derived suppressor cells) and ambiguous functional standards have rendered LDG identification and isolation daunting. Furthermore, most research involving LDGs has mainly focused on adult cells and subjects, leaving increased uncertainty surrounding younger populations, especially in vulnerable neonatal groups where LDG numbers are elevated. This review aims to bring together the current research in the field of LDG biology in the context of immunity to disease, with a focus on infection. In addition, we propose to highlight the gaps in the field that, if filled, could improve upon isolation techniques and functional characterizations for LDGs separate from neutrophils and myeloid-derived suppressor cells (MDSCs). This will not only enhance understanding of LDGs during disease processes and how they differ from other cell types but will also aid in the interpretation of comparative studies and results with the potential to inform development of novel therapeutics to improve disease states in patients.
Collapse
|
18
|
Valadez-Cosmes P, Maitz K, Kindler O, Raftopoulou S, Kienzl M, Santiso A, Mihalic ZN, Brcic L, Lindenmann J, Fediuk M, Pichler M, Schicho R, Houghton AM, Heinemann A, Kargl J. Identification of Novel Low-Density Neutrophil Markers Through Unbiased High-Dimensional Flow Cytometry Screening in Non-Small Cell Lung Cancer Patients. Front Immunol 2021; 12:703846. [PMID: 34484199 PMCID: PMC8414579 DOI: 10.3389/fimmu.2021.703846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophils have been described as a phenotypically heterogeneous cell type that possess both pro- and anti-tumor properties. Recently, a subset of neutrophils isolated from the peripheral blood mononuclear cell (PBMC) fraction has been described in cancer patients. These low-density neutrophils (LDNs) show a heterogeneous maturation state and have been associated with pro-tumor properties in comparison to mature, high-density neutrophils (HDNs). However, additional studies are necessary to characterize this cell population. Here we show new surface markers that allow us to discriminate between LDNs and HDNs in non-small cell lung cancer (NSCLC) patients and assess their potential as diagnostic/prognostic tool. LDNs were highly enriched in NSCLC patients (median=20.4%, range 0.3-76.1%; n=26) but not in healthy individuals (median=0.3%, range 0.1-3.9%; n=14). Using a high-dimensional human cell surface marker screen, we identified 12 surface markers that were downregulated in LDNs when compared to HDNs, while 41 surface markers were upregulated in the LDN subset. Using flow cytometry, we confirmed overexpression of CD36, CD41, CD61 and CD226 in the LDN fraction. In summary, our data support the notion that LDNs are a unique neutrophil population and provide novel targets to clarify their role in tumor progression and their potential as diagnostic and therapeutic tool.
Collapse
Affiliation(s)
- Paulina Valadez-Cosmes
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Kathrin Maitz
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Oliver Kindler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sofia Raftopoulou
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Melanie Kienzl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Ana Santiso
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Zala Nikita Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Jörg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Melanie Fediuk
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Rudolf Schicho
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - A. McGarry Houghton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, United States
| | - Akos Heinemann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
19
|
Blanco-Camarillo C, Alemán OR, Rosales C. Low-Density Neutrophils in Healthy Individuals Display a Mature Primed Phenotype. Front Immunol 2021; 12:672520. [PMID: 34276661 PMCID: PMC8285102 DOI: 10.3389/fimmu.2021.672520] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human peripheral blood, comprising about 70% of all leukocytes. They are regarded as the first line of defense of the innate immune system, but neutrophils have also the ability of regulating the adaptive immune response. Recently, However, multiple phenotypes and functional states of neutrophils have been reported, particularly in inflammation, autoimmunity, and cancer. One possible subtype of neutrophils, the so-called low-density neutrophils (LDN) is found among mononuclear cells (MNC), monocytes and lymphocytes, after separating the leukocytes from blood by density gradient centrifugation. LDN increase in numbers during several pathological conditions. However, LDN present in healthy conditions have not been investigated further. Therefore, in order to confirm the presence of LDN in blood of healthy individuals and to explore some of their cellular functions, neutrophils and MNC were isolated by density gradient centrifugation. Purified neutrophils were further characterized by multicolor flow cytometry (FACS) and then, using the same FACS parameters cells in the MNC fraction were analyzed. Within the MNC, LDN were consistently found. These LDN had a normal mature neutrophil morphology and displayed a CD10+, CD11b+, CD14low, CD15high, CD16bhigh, CD62L+, CD66b+, and CXCR4+ phenotype. These LDN had an enhanced reactive oxygen species (ROS) production and increased phagocytic capacity and were able to produce neutrophil extracellular traps (NET) similarly to neutrophils. These data confirm the presence of a small number of LDN is blood of healthy individuals and suggest that these LDN represent mature cells with a primed phenotype.
Collapse
Affiliation(s)
- Carlos Blanco-Camarillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
20
|
Liu Y, Kaplan MJ. Neutrophil Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2021; 47:317-333. [PMID: 34215366 DOI: 10.1016/j.rdc.2021.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent identifications of a subset of proinflammatory neutrophils, low-density granulocytes, and their ability to readily form neutrophil extracellular traps led to a resurgence of interest in neutrophil dysregulation in the pathogenesis of systemic lupus erythematosus (SLE). This article presents an overview on how neutrophil dysregulation modulates the innate and adaptive immune responses in SLE and their putative roles in disease pathogenesis. The therapeutic potential of targeting this pathogenic process in the treatment of SLE is also discussed.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD 20892-1930, USA.
| |
Collapse
|
21
|
Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the Pathogenesis of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Same Foe Different M.O. Front Immunol 2021; 12:649693. [PMID: 33746988 PMCID: PMC7969658 DOI: 10.3389/fimmu.2021.649693] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated neutrophil activation contributes to the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Neutrophil-derived reactive oxygen species (ROS) and granule proteases are implicated in damage to and destruction of host tissues in both conditions (cartilage in RA, vascular tissue in SLE) and also in the pathogenic post-translational modification of DNA and proteins. Neutrophil-derived cytokines and chemokines regulate both the innate and adaptive immune responses in RA and SLE, and neutrophil extracellular traps (NETs) expose nuclear neoepitopes (citrullinated proteins in RA, double-stranded DNA and nuclear proteins in SLE) to the immune system, initiating the production of auto-antibodies (ACPA in RA, anti-dsDNA and anti-acetylated/methylated histones in SLE). Neutrophil apoptosis is dysregulated in both conditions: in RA, delayed apoptosis within synovial joints contributes to chronic inflammation, immune cell recruitment and prolonged release of proteolytic enzymes, whereas in SLE enhanced apoptosis leads to increased apoptotic burden associated with development of anti-nuclear auto-antibodies. An unbalanced energy metabolism in SLE and RA neutrophils contributes to the pathology of both diseases; increased hypoxia and glycolysis in RA drives neutrophil activation and NET production, whereas decreased redox capacity increases ROS-mediated damage in SLE. Neutrophil low-density granulocytes (LDGs), present in high numbers in the blood of both RA and SLE patients, have opposing phenotypes contributing to clinical manifestations of each disease. In this review we will describe the complex and contrasting phenotype of neutrophils and LDGs in RA and SLE and discuss their discrete roles in the pathogenesis of each condition. We will also review our current understanding of transcriptomic and metabolomic regulation of neutrophil phenotype in RA and SLE and discuss opportunities for therapeutic targeting of neutrophil activation in inflammatory auto-immune disease.
Collapse
Affiliation(s)
- Michele Fresneda Alarcon
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Zoe McLaren
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Helen Louise Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
22
|
Liu Y, Kaplan MJ. Neutrophils in the Pathogenesis of Rheumatic Diseases: Fueling the Fire. Clin Rev Allergy Immunol 2020; 60:1-16. [DOI: 10.1007/s12016-020-08816-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
|
23
|
Wang L, Ai Z, Khoyratty T, Zec K, Eames HL, van Grinsven E, Hudak A, Morris S, Ahern D, Monaco C, Eruslanov EB, Luqmani R, Udalova IA. ROS-producing immature neutrophils in giant cell arteritis are linked to vascular pathologies. JCI Insight 2020; 5:139163. [PMID: 32960815 PMCID: PMC7605529 DOI: 10.1172/jci.insight.139163] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Giant cell arteritis (GCA) is a common form of primary systemic vasculitis in adults, with no reliable indicators of prognosis or treatment responses. We used single cell technologies to comprehensively map immune cell populations in the blood of patients with GCA and identified the CD66b+CD15+CD10lo/–CD64– band neutrophils and CD66bhiCD15+CD10lo/–CD64+/bright myelocytes/metamyelocytes to be unequivocally associated with both the clinical phenotype and response to treatment. Immature neutrophils were resistant to apoptosis, remained in the vasculature for a prolonged period of time, interacted with platelets, and extravasated into the tissue surrounding the temporal arteries of patients with GCA. We discovered that immature neutrophils generated high levels of extracellular reactive oxygen species, leading to enhanced protein oxidation and permeability of endothelial barrier in an in vitro coculture system. The same populations were also detected in other systemic vasculitides. These findings link functions of immature neutrophils to disease pathogenesis, establishing a clinical cellular signature of GCA and suggesting different therapeutic approaches in systemic vascular inflammation. Bona fide immature neutrophil subsets produce unchecked extracellular ROS that contributes to vascular pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alison Hudak
- Botnar Research Centre, Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Headington, Oxford, United Kingdom
| | - Susan Morris
- Botnar Research Centre, Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Headington, Oxford, United Kingdom
| | | | | | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raashid Luqmani
- Botnar Research Centre, Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Headington, Oxford, United Kingdom
| | | |
Collapse
|
24
|
Weinhage T, Kölsche T, Rieger-Fackeldey E, Schmitz R, Antoni AC, Ahlmann M, Foell D, Wittkowski H. Cord Blood Low-Density Granulocytes Correspond to an Immature Granulocytic Subset with Low Expression of S100A12. THE JOURNAL OF IMMUNOLOGY 2020; 205:56-66. [PMID: 32444390 DOI: 10.4049/jimmunol.1901308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
Although substantial progress has been achieved concerning neonatal sepsis, its lethality remains considerably high, and further insights into peculiarities and malfunctions of neonatal immunity are needed. This study aims to contribute to a better understanding of the role of human neonatal granulocyte subpopulations and calgranulin C (S100A12). For this purpose, we gathered 136 human cord blood (CB) samples. CD66b+ CB low-density granulocytes (LDG) and CB normal-density granulocytes were isolated and functionally and phenotypically compared with healthy adult control granulocytes. We could identify CB-LDG as CD66bbright CD64high CD16low CD35low CD10low S100A12med-low and, based on these markers, recovered in whole CB stainings. Consistent with flow cytometric findings, microscopic imaging supported an immature phenotype of CB-LDG with decreased S100A12 expression. In CB serum of healthy neonates, S100A12 was found to be higher in female newborns when compared with males. Additionally, S100A12 levels correlated positively with gestational age independently from sex. We could solidify functional deficits of CB-LDG concerning phagocytosis and generation of neutrophil extracellular traps. Our study reveals that previously described suppressive effects of CB-LDG on CD4+ T cell proliferation are exclusively due to phagocytosis of stimulation beads used in cocultures and absent when using soluble or coated Abs. In conclusion, we characterize CB-LDG as immature neutrophils with functional deficits and decreased expression and storage of S100A12. Concerning their cross-talk with the adaptive immunity, we found no direct inhibitory effect of LDG. Neonatal LDG may thus represent a distinct population that differs from LDG populations found in adults.
Collapse
Affiliation(s)
- Toni Weinhage
- Department of Pediatric Rheumatology and Immunology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Tristan Kölsche
- Department of Pediatric Rheumatology and Immunology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Esther Rieger-Fackeldey
- Department of Pediatrics, Technical University of Munich, 80804 Munich, Germany.,Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Ralf Schmitz
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149 Münster, Germany
| | - Anne-Charlotte Antoni
- Department of Pediatric Rheumatology and Immunology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Martina Ahlmann
- Department of Pediatric Oncology and Hematology, University Hospital Münster, 48149 Münster, Germany; and
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Children's Hospital Münster, 48149 Münster, Germany.,Interdisciplinary Centre of Clinical Research, University of Münster, 48149 Münster, Germany
| | - Helmut Wittkowski
- Department of Pediatric Rheumatology and Immunology, University Children's Hospital Münster, 48149 Münster, Germany;
| |
Collapse
|
25
|
Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 108:377-396. [DOI: 10.1002/jlb.4mir0220-574rr] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
26
|
Wirestam L, Arve S, Linge P, Bengtsson AA. Neutrophils-Important Communicators in Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Front Immunol 2019; 10:2734. [PMID: 31824510 PMCID: PMC6882868 DOI: 10.3389/fimmu.2019.02734] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are two autoimmune diseases that can occur together or separately. Insights into the pathogenesis have revealed similarities, such as development of autoantibodies targeting subcellular antigens as well as a shared increased risk of cardiovascular morbidity, potentially due to mutual pathologic mechanisms. In this review, we will address the evidence implicating neutrophils in the pathogenesis of these conditions, highlighting their shared features. The neutrophil is the most abundant leukocyte, recognized for its role in infectious and inflammatory diseases, but dysregulation of neutrophil effector functions, including phagocytosis, oxidative burst and formation of neutrophil extracellular traps (NETs) may also contribute to an autoimmune process. The phenotype of neutrophils in SLE and APS differs from neutrophils of healthy individuals, where neutrophils in SLE and APS are activated and prone to aggregate. A specific subset of low-density neutrophils with different function compared to normal-density neutrophils can also be found within the peripheral blood mononuclear cell (PBMC) fraction after density gradient centrifugation of whole blood. Neutrophil phagocytosis is required for regular clearance of cell remnants and nuclear material. Reactive oxygen species (ROS) released by neutrophils during oxidative burst are important for immune suppression and impairment of ROS production is seen in SLE. NETs mediate pathology in both SLE and APS via several mechanisms, including exposure of autoantigens, priming of T-cells and activation of autoreactive B-cells. NETs are also involved in cardiovascular events by forming a pro-thrombotic scaffolding surface. Lastly, neutrophils communicate with other cells by producing cytokines, such as Interferon (IFN) -α, and via direct cell-cell contact. Physiological neutrophil effector functions are necessary to prevent autoimmunity, but in SLE and APS these are altered.
Collapse
Affiliation(s)
- Lina Wirestam
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sabine Arve
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Petrus Linge
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders A Bengtsson
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Apel F, Zychlinsky A, Kenny EF. The role of neutrophil extracellular traps in rheumatic diseases. Nat Rev Rheumatol 2019; 14:467-475. [PMID: 29930301 DOI: 10.1038/s41584-018-0039-z] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rheumatic diseases are a collection of disorders defined by the presence of inflammation and destruction of joints and internal organs. A common feature of these diseases is the presence of autoantibodies targeting molecules commonly expressed in neutrophils. These preformed mediators are released by neutrophils but not by other immune cells such as macrophages. Neutrophils, major players in the host innate immune response, initiate a cell death mechanism termed neutrophil extracellular trap (NET) formation as a way to ensnare pathogens. NETs are also a source of released self-molecules found in rheumatic diseases. Subsequently, research on the role of NETs in the onset, progression and resolution of inflammation in rheumatic diseases has intensified. This Review has two aims. First, it aims to highlight the mechanisms required for the generation of NETs, the research landscape of which is rapidly changing. Second, it aims to discuss the role of neutrophils and NETs in systemic lupus erythematosus, vasculitis (specifically anti-neutrophil cytoplasmic autoantibody-associated vasculitis), rheumatoid arthritis and gout. Our goal is to clarify the field of NET research in rheumatic diseases in the hope of improving the therapeutic approaches utilized for these diseases.
Collapse
Affiliation(s)
- Falko Apel
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany.
| | - Elaine F Kenny
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
28
|
Different Faces for Different Places: Heterogeneity of Neutrophil Phenotype and Function. J Immunol Res 2019; 2019:8016254. [PMID: 30944838 PMCID: PMC6421822 DOI: 10.1155/2019/8016254] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
As the most abundant leukocytes in the circulation, neutrophils are committed to innate and adaptive immune effector function to protect the human body. They are capable of killing intruding microbes through various ways including phagocytosis, release of granules, and formation of extracellular traps. Recent research has revealed that neutrophils are heterogeneous in phenotype and function and can display outstanding plasticity in both homeostatic and disease states. The great flexibility and elasticity arm neutrophils with important regulatory and controlling functions in various disease states such as autoimmunity and inflammation as well as cancer. Hence, this review will focus on recent literature describing neutrophils' variable and diverse phenotypes and functions in different contexts.
Collapse
|
29
|
Petri M, Fu W, Ranger A, Allaire N, Cullen P, Magder LS, Zhang Y. Association between changes in gene signatures expression and disease activity among patients with systemic lupus erythematosus. BMC Med Genomics 2019; 12:4. [PMID: 30626389 PMCID: PMC6327466 DOI: 10.1186/s12920-018-0468-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/26/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We assessed the stability of BAFF, interferon, plasma cell and LDG neutrophil gene expression signatures over time, and whether changes in expression coincided with changes in SLE disease activity. METHODS Two hundred forty-three patients with SLE were evaluated for disease activity, serological parameters and peripheral blood gene signatures in clinic visits (2 or more per patient) that occurred between 2009 and 2012. Levels of the BAFF gene transcript, plasma cell signature, Interferon (IFN) signature and the low density granulocytes (LDG)-associated neutrophil gene signature were assessed in PAX-gene-preserved peripheral blood by global microarray. The stability of repeated measures of gene expression was quantified using intra-class correlation coefficients. SLE disease activity was measured using the Physicians Global Assessment and the SELENA-SLEDAI index and its components. Using a mixed effects regression model we assessed: 1) the association between a patient's average gene signature expression over time and disease activity, and 2) the association between a patient's changes in gene expression over time and changes in disease activity. RESULTS Gene expression signatures showed more within-person stability than systolic blood pressure. The IFN signature exhibited the most stability. Patients with high levels of BAFF and IFN transcripts tended to have significantly higher levels of musculoskeletal disease, skin disease, anti-dsDNA, and erythrocyte sedimentation rate, and lower levels of complement. However, changes in BAFF or IFN gene signatures were not associated with changes in disease activity. Similar associations were seen between the LDG gene signature and disease activity. However, when LDG increased, complement tended to increase. Patients with high levels of plasma cell gene signature tended to have higher levels of anti-dsDNA and lower levels of complement. However, unlike the other gene signatures, changes in plasma cell gene signature significantly coincided with changes in anti-dsDNA and complement. CONCLUSIONS The gene expression signatures were relatively stable within patients over time. BAFF and interferon gene expression were markers of patients with generally higher disease activity, but changes in these gene signatures did not coincide with changes in disease activity. Plasma Cell gene signature expression tracked with the traditional SLE serologic markers of anti-dsDNA and complement.
Collapse
Affiliation(s)
- Michelle Petri
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Wei Fu
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Yuji Zhang
- University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Deniset JF, Kubes P. Neutrophil heterogeneity: Bona fide subsets or polarization states? J Leukoc Biol 2018; 103:829-838. [PMID: 29462505 DOI: 10.1002/jlb.3ri0917-361r] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are key components of the innate immune system that play important roles during infection, injury, and chronic disease. In recent years, neutrophil heterogeneity has become an emerging focus with accumulating evidence of neutrophil populations with distinct functions under both steady-state and pathologic conditions. Despite these advances, it remains unclear whether these different populations represent bona fide subsets or simply activation/polarization states in response to local cues. In this review, we summarize the varied neutrophils populations that have been described under both basal and during inflammation. We discuss the evidence that supports the existence of neutrophils subsets. Finally, we identify potential gaps in our knowledge that may further advance our current understanding of neutrophil heterogeneity.
Collapse
Affiliation(s)
- Justin F Deniset
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Ramanathan K, Glaser A, Lythgoe H, Ong J, Beresford MW, Midgley A, Wright HL. Neutrophil activation signature in juvenile idiopathic arthritis indicates the presence of low-density granulocytes. Rheumatology (Oxford) 2017; 57:488-498. [DOI: 10.1093/rheumatology/kex441] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kavitha Ramanathan
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust Hospital, Eaton Road
| | - Anna Glaser
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust Hospital, Eaton Road
| | - Hanna Lythgoe
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust Hospital, Eaton Road
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust
| | - Joanne Ong
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust Hospital, Eaton Road
| | - Michael W Beresford
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust Hospital, Eaton Road
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust
| | - Angela Midgley
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust Hospital, Eaton Road
| | - Helen L Wright
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Liverpool, UK
| |
Collapse
|
32
|
Characterization of Circulating Low-Density Neutrophils Intrinsic Properties in Healthy and Asthmatic Horses. Sci Rep 2017; 7:7743. [PMID: 28798364 PMCID: PMC5552858 DOI: 10.1038/s41598-017-08089-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/06/2017] [Indexed: 11/08/2022] Open
Abstract
Low-density neutrophils (LDNs) are a subset of neutrophils first described in the bloodstream upon pathological conditions, and recently, in the blood of healthy humans. LDNs may have an enhanced pro-inflammatory (low-density granulocytes, LDGs) or an immunosuppressive (Granulocytic myeloid-derived suppressor cells, G-MDSCs) profile. Whether these characteristics are specific to LDNs or related to disease states is unknown. Thus, we sought to investigate the properties of LDNs in both health and disease states, and to compare them to those of autologous normal-density neutrophils (NDNs). We studied 8 horses with severe equine asthma and 11 healthy animals. LDNs were smaller and contained more N-formylmethionine-leucyl-phenylalanine receptors than NDNs, but the myeloperoxidase content was similar in both cell populations. They also had an increased capacity to produce neutrophil extracellular traps, and were more sensitive to activation by phorbol-12-myristate-13-acetate. This profile is suggestive of LDGs. These characteristics were similar in both healthy and diseased animals, indicating that these are intrinsic properties of LDNs. Furthermore, these results suggest that LDNs represent a population of primed and predominantly mature cells. This study is the first to characterize LDNs in health, and to compare their properties with those of NDNs and of animals with a naturally occurring disease.
Collapse
|
33
|
Update on the pathogenesis and treatment of childhood-onset systemic lupus erythematosus. Curr Opin Rheumatol 2017; 28:488-96. [PMID: 27341622 DOI: 10.1097/bor.0000000000000317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW This article will provide an update of studies published in the last year regarding epidemiology, pathogenesis, major disease manifestations and outcomes, and therapies in childhood-onset systemic lupus erythematosus (cSLE). RECENT FINDINGS Recent studies on cSLE epidemiology supported previous findings that cSLE patients have more severe disease and tend to accumulate damage rapidly. Lupus nephritis remains frequent and is still a significant cause of morbidity and mortality. In the past year unfortunately there were no new reproducible, biomarker studies to help direct therapy of renal disease. However, some progress was made in neuropsychiatric disease assessment, with a new and promising automated test to screen for cognitive dysfunction reported. There were no prospective interventional treatment trials designed for patients with cSLE published in the last year, but some studies involving children are currently active and might improve the therapeutic options for patients with cSLE. SUMMARY There is a need to get a better understanding of pathogenesis and identify new biomarkers in cSLE to more accurately predict outcomes. New insights into characterization of different clinical manifestations may enable to optimize individual interventions and influence the prognosis.
Collapse
|
34
|
Scapini P, Marini O, Tecchio C, Cassatella MA. Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol Rev 2017; 273:48-60. [PMID: 27558327 DOI: 10.1111/imr.12448] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent findings have uncovered novel fascinating aspects of the biology of neutrophils, which ultimately attribute to these cells a broader role in inflammation and immunity. One aspect that is currently under intensive investigation is the notion of neutrophil 'heterogeneity'. Studies examining neutrophils in a variety of acute and chronic inflammatory conditions report, in fact, the recovery of CD66b(+) cells displaying neutrophil-like morphology at different degrees of maturation/activation, able to exert either immunosuppressive or proinflammatory properties. These heterogeneous populations of mature and immature neutrophils are indicated with a variety of names, including 'low density neutrophils (LDNs)', 'low density granulocytes (LDGs)', 'granulocytic-myeloid derived suppressor cells (G-MDSCs)', and immunosuppressive neutrophils. However, due to the lack of discrete markers that can unequivocally allow their specific identification and isolation, the precise phenotype and function of all these presumably novel, neutrophil-like, populations have not been correctly defined yet. Aim of this article is to summarize current knowledge on the mature and immature neutrophil populations described to date, featuring immunosuppressive or proinflammatory properties, often defined as 'subsets', as well as to critically discuss unresolved issues in the field.
Collapse
Affiliation(s)
- Patrizia Scapini
- Division of General Pathology, University of Verona, Verona, Italy
| | - Olivia Marini
- Division of General Pathology, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Division of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy
| | | |
Collapse
|
35
|
Garley M, Jabłońska E. Heterogeneity Among Neutrophils. Arch Immunol Ther Exp (Warsz) 2017; 66:21-30. [PMID: 28560557 PMCID: PMC5767199 DOI: 10.1007/s00005-017-0476-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/03/2017] [Indexed: 12/18/2022]
Abstract
Neutrophils (PMNs) play a key role in innate defence mechanisms. Generally, PMNs were considered to have a homogeneous population of mature and diversified cells. It seems, however, that their pleiotropic action results from the existence of different subpopulations in this group of cells. There are data that confirm the involvement of PMNs in the direct activation of other cells in non-specific response, as well as specialised cells in specific response. For example, there have been observations of PMNs with different levels of activity in relation to lymphocytes, and a population was identified which had characteristics similar to those of cells which are capable of presenting antigens. There are also reports of PMNs which demonstrate different survival time or capacity for chemotaxis. Other studies suggest that the neutrophil response to Staphylococcus aureus is diverse (not identical among all neutrophil). There are also reports of PMNs with varying activity during inflammation, which might explain many as yet unknown pathophysiological aspects of their hyperreactivity. The functional dualism of PMNs in the course of neoplastic disorders raises a lot of controversy. This paper presents the current state of knowledge of the heterogeneity of PMNs and their potential roles in different stages of disease.
Collapse
Affiliation(s)
- Marzena Garley
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269, Białystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269, Białystok, Poland
| |
Collapse
|
36
|
|
37
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
38
|
Elloumi N, Ben Mansour R, Marzouk S, Mseddi M, Fakhfakh R, Gargouri B, Masmoudi H, Lassoued S. Differential reactive oxygen species production of neutrophils and their oxidative damage in patients with active and inactive systemic lupus erythematosus. Immunol Lett 2017; 184:1-6. [PMID: 28163154 DOI: 10.1016/j.imlet.2017.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 12/07/2022]
Abstract
OBJECTIVE Increasing interest is given to the involvement of the innate immunity and especially Polymorphonuclear neutrophils (PMN) in the physiopathological process of inflammatory diseases such as systemic lupus erythematosus (SLE). Here, we investigated the oxidative burst and damages in SLE patients neutrophils, considering the two phases of the disease, the active and the remission/inactive states. METHODS This study was conducted on 30 SLE patients and 23 healthy controls. The oxidative burst in neutrophils of SLE patients and controls was triggered by fMLP and TPA, while reactive oxygen species (ROS) production was evaluated using a chemiluminescence assay. Oxidative damages in neutrophils were assessed by measuring Free thiol groups level and carbonyl groups, as protein oxidative markers. The malondialdehyde (MDA) level informed about the lipid peroxidation (LPO) and the catalase activity indicated the antioxidant enzymatic activity. RESULT Compared to controls, SLE patients exhibited a significantly increased level of ROS production concomitantly to a decreased response time. Their Neutrophils were characterized by a decreased level of MDA and high levels of protein oxidation as evidenced by increased carbonyl groups and decreased SH levels. The catalase activity was higher in SLE patients' neutrophils compared to controls. When patients were clustered according to the disease activity, PMN of patients in active phase showed, paradoxically, a lower ROS production and exhibited higher oxidative damages than the inactive group. CONCLUSION Our results highlight an altered behavior of LES patients derived PMN particularly in the active phase of the disease. The evaluation of the redox status including the rate of ROS production could be a biological marker to follow the activity of the disease.
Collapse
Affiliation(s)
- Nesrine Elloumi
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Tunisia.
| | - Riadh Ben Mansour
- Laboratory LR11ES45, Research Group "Biotechnology and Pathology", National School of Engineers, Universisty of Sfax, Tunisia.
| | - Sameh Marzouk
- Internal Medicine Department, Hedi Chaker Hospital, University of Sfax, Tunisia,.
| | - Malek Mseddi
- Laboratory LR11ES45, Research Group "Biotechnology and Pathology", National School of Engineers, Universisty of Sfax, Tunisia.
| | - Raouia Fakhfakh
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Tunisia.
| | - Bochra Gargouri
- Laboratory LR11ES45, Research Group "Biotechnology and Pathology", National School of Engineers, Universisty of Sfax, Tunisia.
| | - Hatem Masmoudi
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Tunisia.
| | - Saloua Lassoued
- Laboratory LR11ES45, Research Group "Biotechnology and Pathology", National School of Engineers, Universisty of Sfax, Tunisia.
| |
Collapse
|
39
|
Parallel Aspects of the Microenvironment in Cancer and Autoimmune Disease. Mediators Inflamm 2016; 2016:4375120. [PMID: 26997761 PMCID: PMC4779817 DOI: 10.1155/2016/4375120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer and autoimmune diseases are fundamentally different pathological conditions. In cancer, the immune response is suppressed and unable to eradicate the transformed self-cells, while in autoimmune diseases it is hyperactivated against a self-antigen, leading to tissue injury. Yet, mechanistically, similarities in the triggering of the immune responses can be observed. In this review, we highlight some parallel aspects of the microenvironment in cancer and autoimmune diseases, especially hypoxia, and the role of macrophages, neutrophils, and their interaction. Macrophages, owing to their plastic mode of activation, can generate a pro- or antitumoral microenvironment. Similarly, in autoimmune diseases, macrophages tip the Th1/Th2 balance via various effector cytokines. The contribution of neutrophils, an additional plastic innate immune cell population, to the microenvironment and disease progression is recently gaining more prominence in both cancer and autoimmune diseases, as they can secrete cytokines, chemokines, and reactive oxygen species (ROS), as well as acquire an enhanced ability to produce neutrophil extracellular traps (NETs) that are now considered important initiators of autoimmune diseases. Understanding the contribution of macrophages and neutrophils to the cancerous or autoimmune microenvironment, as well as the role their interaction and cooperation play, may help identify new targets and improve therapeutic strategies.
Collapse
|