1
|
Favaloro EJ. The Role of the von Willebrand Factor Collagen-Binding Assay (VWF:CB) in the Diagnosis and Treatment of von Willebrand Disease (VWD) and Way Beyond: A Comprehensive 36-Year History. Semin Thromb Hemost 2024; 50:43-80. [PMID: 36807283 DOI: 10.1055/s-0043-1763259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The von Willebrand factor (VWF) collagen binding (VWF:CB) assay was first reported for use in von Willebrand diagnostics in 1986, by Brown and Bosak. Since then, the VWF:CB has continued to be used to help diagnose von Willebrand disease (VWD) (correctly) and also to help assign the correct subtype, as well as to assist in the monitoring of VWD therapy, especially desmopressin (DDAVP). However, it is important to recognize that the specific value of any VWF:CB is predicated on the use of an optimized VWF:CB, and that not all VWF:CB assays are so optimized. There are some good commercial assays available, but there are also some "not-so-good" commercial assays available, and these may continue to give the VWF:CB "a bad reputation." In addition to VWD diagnosis and management, the VWF:CB found purpose in a variety of other applications, from assessing ADAMTS13 activity, to investigation into acquired von Willebrand syndrome (especially as associated with use of mechanical circulatory support or cardiac assist devices), to assessment of VWF activity in disease states in where an excess of high-molecular-weight VWF may accumulate, and lead to increased (micro)thrombosis risk (e.g., coronavirus disease 2019, thrombotic thrombocytopenic purpura). The VWF:CB turns 37 in 2023. This review is a celebration of the utility of the VWF:CB over this nearly 40-year history.
Collapse
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
2
|
Zhou S, Guo J, Liao X, Zhou Q, Qiu X, Jiang S, Xu N, Wang X, Zhao L, Hu W, Xie L, Xie P, Cui Y, Yang Y, Patzak A, Persson PB, Mao J, Lai EY. rhADAMTS13 reduces oxidative stress by cleaving VWF in ischaemia/reperfusion-induced acute kidney injury. Acta Physiol (Oxf) 2022; 234:e13778. [PMID: 34989474 DOI: 10.1111/apha.13778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/17/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
AIMS Acute kidney injury (AKI), a major health burden, lacks effective therapy. Anti-inflammatory actions of a disintegrin and metalloproteinase with a thrombospondin type 1 motif member 13 (ADAMTS13) may provide a new treatment option for AKI. Along with inflammation, oxidative stress is critical for AKI development, yet the impact of ADAMTS13 on oxidative stress in AKI remains to be fully elucidated. METHODS We assess recombinant human ADAMTS13 (rhADAMTS13) actions on oxidative stress in a murine ischaemia/reperfusion (IR) model. Antioxidant stress-enzyme activities, renal morphology, kidney function markers and vascular function of isolated afferent arterioles are quantified. RESULTS rhADAMTS13 provided after IR, reduces blood urea nitrogen (BUN) by 33% and serum creatinine (Scr) by 73% in 24 hours post-IR. rhADAMTS13 reduces BUN (40.03 ± 20.34 mmol/L vs 72.35 ± 18.74 mmol/L, P < .01), Scr (75.67 ± 51.19 μmol/L vs 176.17 ± 55.38 μmol/L, P < .01) and proteinuria by 41% in 48 hours post-IR as well. Moreover, rhADAMTS13 administration decreases malondialdehyde (MDA) and increases the activity of antioxidant stress enzymes, and attenuates reactive oxygen species production. rhADAMTS13 also upregulates nuclear factor-erythroid-2-related factor 2/haem oxygenase-1, enhances antioxidant enzymes activity and alleviates endothelial dysfunction. Finally, treatment with rhADAMTS13 mitigates severe functional and morphological injury present in IR mice. Extracellular signal-regulated kinase (ERK) phosphorylation is limited by rhADAMTS13 and PPARγ expression is partly restored in ischaemic kidneys. Co-administration of von Willebrand factor (VWF) impairs rhADAMTS13's antioxidant capacity and its protective role in IR. CONCLUSION rhADAMTS13 alleviates renal IR injury through antioxidant effects by cleaving VWF.
Collapse
Affiliation(s)
- Suhan Zhou
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Jie Guo
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Xinxin Liao
- Department of Anesthesiology Nanfang Hospital Southern Medical University Guangzhou China
| | - Qin Zhou
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Xingyu Qiu
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Shan Jiang
- Department of Nephrology Center of Kidney and Urology the Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Nan Xu
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
- Department of Pathophysiology School of Basic Medical Sciences Henan University Kaifeng China
| | - Xiaohua Wang
- Department of Nephrology Center of Kidney and Urology the Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Liang Zhao
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Weipeng Hu
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Lanyu Xie
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Peng Xie
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Yu Cui
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Yi Yang
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Andreas Patzak
- Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | - Pontus B. Persson
- Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | - Jianhua Mao
- Department of Nephrology the Children's Hospital of Zhejiang University School of Medicine Hangzhou China
| | - En Yin Lai
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
- Department of Nephrology Center of Kidney and Urology the Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen China
- Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| |
Collapse
|
3
|
Oates JC, Russell DL, Van Beusecum JP. Endothelial cells: potential novel regulators of renal inflammation. Am J Physiol Renal Physiol 2022; 322:F309-F321. [PMID: 35129369 PMCID: PMC8897017 DOI: 10.1152/ajprenal.00371.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Substantial evidence has supported the role of endothelial cell (EC) activation and dysfunction in the development of hypertension, chronic kidney disease (CKD), and lupus nephritis (LN). In both humans and experimental models of hypertension, CKD, and LN, ECs become activated and release potent mediators of inflammation including cytokines, chemokines, and reactive oxygen species that cause EC dysfunction, tissue damage, and fibrosis. Factors that activate the endothelium include inflammatory cytokines, mechanical stretch, and pathological shear stress. These signals can activate the endothelium to promote upregulation of adhesion molecules, such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, which promote leukocyte adhesion and migration to the activated endothelium. More importantly, it is now recognized that some of these signals may in turn promote endothelial antigen presentation through major histocompatibility complex II. In this review, we will consider in-depth mechanisms of endothelial activation and the novel mechanism of endothelial antigen presentation. Moreover, we will discuss these proinflammatory events in renal pathologies and consider possible new therapeutic approaches to limit the untoward effects of endothelial inflammation in hypertension, CKD, and LN.
Collapse
Affiliation(s)
- Jim C. Oates
- 1Ralph H. Johnson Veteran Affairs Medical Center, Charleston, South Carolina,2Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Dayvia L. Russell
- 2Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Justin P. Van Beusecum
- 1Ralph H. Johnson Veteran Affairs Medical Center, Charleston, South Carolina,3Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
4
|
Meng X, Huang W, Mo W, Shu T, Yang H, Ning H. ADAMTS-13-regulated nuclear factor E2-related factor 2 signaling inhibits ferroptosis to ameliorate cisplatin-induced acute kidney injuy. Bioengineered 2021; 12:11610-11621. [PMID: 34666603 PMCID: PMC8810018 DOI: 10.1080/21655979.2021.1994707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/20/2023] Open
Abstract
ADAMTS-13 plays an important role in acute kidney injury (AKI), but the mechanism of cisplatin (CP) induced AKI remains unclear. Ferroptosis is increased in CP-induced AKI, and ADAMTS13 levels are associated with ferritin expression. In this article, we will explore the relationship between the three. After CP induction, mice were given 0.1 and 0.3 nmol/kg ADAMTS-13, and then serum creatinine (Scr) and blood urea nitrogen (BUN) were detected by the kits. The pathological changes of renal tissue were observed by staining with HE and PAS staining, and Western blot detected the expressions of KIM1 and NGAL in renal tissu. Perl's staining detected iron deposition in renal tissues, the kits detected iron levels, and western blot detected the expression of ferroptosis related proteins. Then the mechanism was further explored by adding ferroptosis inhibitors Ferrostatin 1 (Fer-1) and iron supplements Fe. The expression of Nrf2 pathway related proteins were detected by Western blot. We found that ADAMTS13 alleviated CP-induced ferroptosis in AKI mice with renal function impairment and tubular damage. Fer-1partially reversed CP-induced AKI, and Fe exacerbated this effect. ADAMTS13 alleviated CP-induced inflammatory response and oxidative stress in AKI mice, during which the Nrf2 signaling pathway was abnormal. Overall, ADAMTS-13-regulated Nrf2 signaling inhibits ferroptosis to ameliorate CP-induced AKI.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Nephrology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Wenjing Huang
- Department of Nephrology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Weiwei Mo
- Department of Nephrology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Tingting Shu
- Department of Nephrology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Haoqiang Yang
- Department of Nephrology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Haibo Ning
- Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
5
|
Armutcu F, Demircan K, Yildirim U, Namuslu M, Yagmurca M, Celik HT. Hypoxia causes important changes of extracellular matrix biomarkers and ADAMTS proteinases in the adriamycin-induced renal fibrosis model. Nephrology (Carlton) 2019; 24:863-875. [PMID: 30719800 DOI: 10.1111/nep.13572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
AIM Renal fibrosis is a common cause of renal dysfunction with chronic kidney diseases. This process is characterized by excessive production of extracellular matrix (ECM) or inhibition of ECM degradation. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteinases, which are widely presented in mammals, have very critical roles in ECM remodelling. We aimed to study the role of ADAMTS proteinases and some of the ECM markers in the pathogenesis of renal fibrosis and to investigate the effects of hypoxia on these biomarkers. METHODS In addition to the control group, Adriamycin (ADR) treated rats were divided into four groups as ADR, sham and two hypoxia groups. Renal nephropathy was assessed biochemical assays, pathological and immunohistochemical staining methods. The expression of ADAMTSs and mRNA were determined using Western blotting and real-time PCR, respectively. RESULTS Renal dysfuntion and tissue damage in favour of ECM accumulation and renal fibrosis were observed in the ADR group. This was approved by remarkable changes in the expression of ADAMTS such as increased ADAMTS-1, -12 and -15. In addition, it was found that hypoxia and duration of hypoxia enhanced markers of tubulointerstitial fibrosis in the rat kidney tissues. Also, expression differences especially in ADAMTS-1, -6 and -15 were observed in the hypoxia groups. The variable and different expression patterns of ADAMTS proteinases in the ADR-induced renal fibrosis suggest that ADAMTS family members are involved in the development and progression of fibrosis. CONCLUSION The expression changes of ADAMTS proteinases in kidney and association with hypoxia have potential clues to contribute to the early diagnosis and treatment options of renal fibrosis.
Collapse
Affiliation(s)
- Ferah Armutcu
- Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Kadir Demircan
- Department of Medical Biology, Turgut Ozal University, Faculty of Medicine, Ankara, Turkey
| | - Umran Yildirim
- Department of Pathology, Turgut Ozal University, Faculty of Medicine, Ankara, Turkey
| | - Mehmet Namuslu
- Department of Biochemistry, Turgut Ozal University, Faculty of Medicine, Ankara, Turkey
| | - Murat Yagmurca
- Health Sciences University, Higher Specialization Training and Research Hospital, Histology and Embryology Clinic, Bursa, Turkey
| | - Hüseyin T Celik
- Department of Biochemistry, Turgut Ozal University, Faculty of Medicine, Ankara, Turkey
| |
Collapse
|