1
|
Bonroy C, Vercammen M, Fierz W, Andrade LEC, Van Hoovels L, Infantino M, Fritzler MJ, Bogdanos D, Kozmar A, Nespola B, Broeders S, Patel D, Herold M, Zheng B, Chan EYT, Uibo R, Haapala AM, Musset L, Sack U, Nagy G, Sundic T, Fischer K, Rego de Sousa MJ, Vargas ML, Eriksson C, Heijnen I, García-De La Torre I, Carballo OG, Satoh M, Kim KH, Chan EKL, Damoiseaux J, Lopez-Hoyos M, Bossuyt X. Detection of antinuclear antibodies: recommendations from EFLM, EASI and ICAP. Clin Chem Lab Med 2023; 61:1167-1198. [PMID: 36989417 DOI: 10.1515/cclm-2023-0209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVES Antinuclear antibodies (ANA) are important for the diagnosis of various autoimmune diseases. ANA are usually detected by indirect immunofluorescence assay (IFA) using HEp-2 cells (HEp-2 IFA). There are many variables influencing HEp-2 IFA results, such as subjective visual reading, serum screening dilution, substrate manufacturing, microscope components and conjugate. Newer developments on ANA testing that offer novel features adopted by some clinical laboratories include automated computer-assisted diagnosis (CAD) systems and solid phase assays (SPA). METHODS A group of experts reviewed current literature and established recommendations on methodological aspects of ANA testing. This process was supported by a two round Delphi exercise. International expert groups that participated in this initiative included (i) the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group "Autoimmunity Testing"; (ii) the European Autoimmune Standardization Initiative (EASI); and (iii) the International Consensus on ANA Patterns (ICAP). RESULTS In total, 35 recommendations/statements related to (i) ANA testing and reporting by HEp-2 IFA; (ii) HEp-2 IFA methodological aspects including substrate/conjugate selection and the application of CAD systems; (iii) quality assurance; (iv) HEp-2 IFA validation/verification approaches and (v) SPA were formulated. Globally, 95% of all submitted scores in the final Delphi round were above 6 (moderately agree, agree or strongly agree) and 85% above 7 (agree and strongly agree), indicating strong international support for the proposed recommendations. CONCLUSIONS These recommendations are an important step to achieve high quality ANA testing.
Collapse
Affiliation(s)
- Carolien Bonroy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Martine Vercammen
- Department of Laboratory Medicine, AZ Sint-Jan, Brugge, Belgium
- Research Group REIM, Vrije Universiteit Brussel, Brussels, Belgium
| | - Walter Fierz
- Schweizerischer Verband der Diagnostikindustrie (SVDI-ASID), Bern, Switzerland
| | - Luis E C Andrade
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratories, Sao Paulo, Brazil
| | - Lieve Van Hoovels
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Maria Infantino
- Immunology and Allergology Laboratory, S. Giovanni di Dio Hospital, Florence, Italy
| | - Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dimitrios Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University General Hospital of Larissa, Larissa, Greece
| | - Ana Kozmar
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Benoit Nespola
- Laboratory of Immunology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - Dina Patel
- UK NEQAS Immunology, Immunochemistry & Allergy, Sheffield Teaching Hospitals, Sheffield, UK
| | - Manfred Herold
- Department of Internal Medicine II, Rheumatology Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Bing Zheng
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Eric Y T Chan
- Department of Pathology, Queen Mary Hospital, Hong Kong, P.R. China
| | - Raivo Uibo
- Department of Immunology, Medical Faculty, University of Tartu, Tartu, Estonia
| | | | - Lucile Musset
- Department of Immunology, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Ulrich Sack
- Medical Faculty, Leipzig University, Leipzig, Germany
| | - Gabor Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tatjana Sundic
- Department of Immunology and Transfusion Medicine, Haugesund Hospital, Helse Fonna, Haugesund, Norway
| | - Katarzyna Fischer
- Individual Laboratory for Rheumatologic Diagnostics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maria-José Rego de Sousa
- Immunopathology and Autoimmunity Department, Centro de Medicina Laboratorial Germano de Sousa, Lisbon, Portugal
| | | | - Catharina Eriksson
- Department of Clinical Microbiology Section of Infection and Immunology, Umeå University, Umeå, Sweden
| | - Ingmar Heijnen
- Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Ignacio García-De La Torre
- Department of Immunology and Rheumatology, Hospital General de Occidente, Universidad de Guadalajara, Guadalajara, Mexico
| | - Orlando Gabriel Carballo
- Laboratory of Immunology, Hospital Carlos G. Durand, Buenos Aires, Argentina
- Department of Microbiology and Immunology, Instituto Universitario, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Minoru Satoh
- Department of Human, Information and Life Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Medicine, Kitakyushu Yahata-Higashi Hospital, Kitakyushu, Japan
| | - Kyeong-Hee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marcos Lopez-Hoyos
- Immunology Service, University Hospital Marques de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Xavier Bossuyt
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Kayser C, Dutra LA, Dos Reis-Neto ET, Castro CHDM, Fritzler MJ, Andrade LEC. The Role of Autoantibody Testing in Modern Personalized Medicine. Clin Rev Allergy Immunol 2022; 63:251-288. [PMID: 35244870 DOI: 10.1007/s12016-021-08918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 02/08/2023]
Abstract
Personalized medicine (PM) aims individualized approach to prevention, diagnosis, and treatment. Precision Medicine applies the paradigm of PM by defining groups of individuals with akin characteristics. Often the two terms have been used interchangeably. The quest for PM has been advancing for centuries as traditional nosology classification defines groups of clinical conditions with relatively similar prognoses and treatment options. However, any individual is characterized by a unique set of multiple characteristics and therefore the achievement of PM implies the determination of myriad demographic, epidemiological, clinical, laboratory, and imaging parameters. The accelerated identification of numerous biological variables associated with diverse health conditions contributes to the fulfillment of one of the pre-requisites for PM. The advent of multiplex analytical platforms contributes to the determination of thousands of biological parameters using minute amounts of serum or other biological matrixes. Finally, big data analysis and machine learning contribute to the processing and integration of the multiplexed data at the individual level, allowing for the personalized definition of susceptibility, diagnosis, prognosis, prevention, and treatment. Autoantibodies are traditional biomarkers for autoimmune diseases and can contribute to PM in many aspects, including identification of individuals at risk, early diagnosis, disease sub-phenotyping, definition of prognosis, and treatment, as well as monitoring disease activity. Herein we address how autoantibodies can promote PM in autoimmune diseases using the examples of systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, Sjögren syndrome, systemic sclerosis, idiopathic inflammatory myopathies, autoimmune hepatitis, primary biliary cholangitis, and autoimmune neurologic diseases.
Collapse
Affiliation(s)
- Cristiane Kayser
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | - Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Luis Eduardo C Andrade
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil. .,Immunology Division, Fleury Medicine and Health Laboratories, São Paulo, Brazil.
| |
Collapse
|
3
|
Santos WFS, Cantuária APDC, Félix DDC, Nardes LK, de Melo ICS. The influence of demography and referral medical specialty on the detection of autoantibodies to HEP-2 cells in a large sample of patients. Adv Rheumatol 2022; 62:32. [DOI: 10.1186/s42358-022-00264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The prevalence of anti-cell autoantibodies detected by indirect immunofluorescence assay on HEp-2 cells (HEp-2-IIFA) increases with age and is higher in female sex. The number of medical specialties that use HEp-2-IIFA in the investigation of autoimmune diseases has increased lately. This study aimed to determine the prevalence and patterns of autoantibodies on HEp-2-IIFA according to demographics variables and referring medical specialties.
Methods
A retrospective analysis of the HEp-2-IIFA carried out between January and June of 2017 was performed. The International Consensus on Antinuclear Antibodies Patterns (ICAP) and the Brazilian Consensus on Autoantibodies were used for patterns definition on visual reading of the slides. Anti-cell (AC) codes from ICAP and Brazilian AC codes (BAC) were used for patterns classification.
Results
From 54,990 samples referred for HEp-2-IIF testing, 20.9% were positive at titer ≥ 1/80. HEp-2-IIFA positivity in females and males was 24% and 12%, respectively (p < 0.0001). The proportion of positive results in the 4 age groups analyzed: 0–19, 20–39, 40–59, and ≥ 60 years was 23.3, 20.2, 20.1, and 22.8%, respectively (p < 0.0001). Considering all positive sera (n = 11,478), AC-4 nuclear fine speckled (37.7%), AC-2 nuclear dense fine speckled (21.3%), BAC-3 nuclear quasi-homogeneous (10%) and mixed/composite patterns (8.8%) were the most prevalent patterns. The specialties that most requested HEp-2-IIFA were general practitioner (20.1%), dermatology (15%), gynecology (9.9%), rheumatology (8.5%), and cardiology (5.8%). HEp-2-IIFA positivity was higher in patients referred by rheumatologists (35.7% vs. 19.6%) (p < 0.0001). Moderate (46.4%) and high (10.8%) titers were more observed in patients referred by rheumatologists (p < 0.0001). We observed a high proportion of mixed and cytoplasmic patterns in samples referred by oncologists and a high proportion of BAC-3 (nuclear quasi-homogeneous) pattern in samples referred by pneumologists.
Conclusions
One-fifth of the patients studied were HEp-2-IIFA-positive. The age groups with more positive results were 0–19 and ≥ 60 years. AC-4, AC-2, BAC-3 and mixed/composite patterns were the most frequent patterns observed. Rheumatologists requested only 8.5% of HEp-2-IIFA. Positive results and moderate to high titers of autoantibodies were more frequent in patients referred by rheumatologists.
Collapse
|
4
|
Deng C, Wang A, Hu C, Zhang W, Zeng X, Fei Y. The Prevalence and Clinical Relevance of the DFS Immunofluorescence Staining Pattern in a Large ANA-Positive Cohort. Front Med (Lausanne) 2022; 9:829436. [PMID: 35620720 PMCID: PMC9127569 DOI: 10.3389/fmed.2022.829436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although the dense fine speckled (DFS) immunofluorescence staining pattern has been studied by various researchers in recent years, its clinical associations remain unspecified. Thus, we performed a retrospective study in a non-selective population to explore the prevalence of this enigmatic antinuclear antibody (ANA) pattern and to determine its possible clinical associations with any identifiable pathology. Methods We retrieved the results of ANA testing ordered by various departments in 2019 to study the prevalence of DFS pattern. Demographic characteristics and clinical features of these participants were also collected from the electronic medical record system. Correlation analysis was made to study its clinical associations and a p-value < 0.05 was considered statistically significant. Results The prevalence of ANA positivity was 37.4% among 72,204 serum samples of which the median age was 44 (interquartile range: 31, 56) years old and 68.0% were women. The prevalence of the DFS staining pattern was 1.1% in the total population and accounted for 3.1% in the ANA-positive population. There were 97.6% of these cases displaying the DFS pattern with a low titer of ANA (≤1:320; starting serum dilution: 1:100). We found that this pattern correlated with several pathological conditions, such as skin disorders (25.1%), alopecia (4.6%), and obstetric complications (6.6%). Conclusion The presence of the DFS immunofluorescence staining pattern may accompany several pathological conditions and may be a signal of localized inflammation within certain organs or tissues, especially the skin.
Collapse
Affiliation(s)
- Chuiwen Deng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Anqi Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Silva MJ, Dellavance A, Baldo DC, Rodrigues SH, Grecco M, Prado MS, Agustinelli R, Andrade LEC. Interkit Reproducibility of the Indirect Immunofluorescence Assay on HEp-2 Cells Depends on the Immunofluorescence Reactivity Intensity and Pattern. Front Immunol 2022; 12:798322. [PMID: 35126363 PMCID: PMC8807640 DOI: 10.3389/fimmu.2021.798322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction The indirect immunofluorescence assay on HEp-2 cells (HEp-2/IFA) is used worldwide for screening for autoantibodies to cellular antigens. Cell culture and fixation methods influence the cell distribution of autoantigens and the preservation of epitopes. Therefore, discrepancy of results obtained using different HEp-2/IFA kits (interkit nonreproducibility) is a common phenomenon in the clinical laboratory routine. Objective This study evaluated the interkit nonreproducibility of HEp-2/IFA results using samples from patients with systemic autoimmune disease (SAD), nonautoimmune diseases (NAD), and healthy blood donors (HBD). Methods Serum from 275 SAD patients, 293 NAD patients, and 300 HBD were processed at 1:80 dilution using four HEp-2 kits according to the manufacturers’ instructions. Interkit reproducibility was determined for positive/negative results and patterns. The agreement of positive/negative results among kits for each sample was determined as the reactivity agreement score (RAS). The pattern reproducibility score (PRS) in each sample was calculated as a function of the number of kits showing equivalent patterns. Qualitative variables and ordinal variables were analyzed by the Chi-square and Mann-Whitney U tests, respectively. Results A total of 402 samples were nonreactive in all kits and were considered devoid of autoantibodies. Further analysis included the 466 reactive samples (238 SAD, 119 NAD, 109 HBD). Reactivity to the nucleus had the highest interkit reproducibility (RAS = 83.6), followed by the metaphase plate (RAS = 78.9), cytoplasm (RAS = 77.4), and nucleolus (RAS = 72.4). Interkit reproducibility was higher in SAD (RAS = 78.0) than in NAD (RAS = 70.6) and HBD (RAS = 71.3) groups. Samples with strong reactivity (++++/4 and +++/4) had higher interkit reproducibility than those with weak reactivity (+/4). In the SAD group, RAS for nuclear reactivity was 87.5% for strongly reactive samples as opposed to 4.4% for weakly reactive samples, and the same was observed for NAD and HBD samples. The most robust patterns were the centromere AC-3 (PRS = 78.4), multiple nuclear dots AC-6 (PRS = 73.6), nuclear coarse speckled AC-5 (PRS = 71.3), nuclear homogeneous AC-1 (PRS = 67.9), and the reticular cytoplasmic AC-21 (PRS = 68.6). Conclusion Interkit nonreproducibility in HEp-2/IFA is prevalent and occurs with the highest frequency with weakly reactive samples. International initiatives with the engagement of in vitro diagnostic industry are encouraged to promote the harmonization of the properties and performance of HEp-2/IFA commercial kits.
Collapse
Affiliation(s)
- Mônica Jesus Silva
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alessandra Dellavance
- Research and Development Division, Fleury Medicine and Health Laboratories, São Paulo, Brazil
| | | | - Silvia Helena Rodrigues
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelle Grecco
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica Simon Prado
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renan Agustinelli
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luís Eduardo Coelho Andrade
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Luís Eduardo Coelho Andrade,
| |
Collapse
|
6
|
Andrade LEC, Damoiseaux J, Vergani D, Fritzler MJ. Antinuclear antibodies (ANA) as a criterion for classification and diagnosis of systemic autoimmune diseases. J Transl Autoimmun 2022; 5:100145. [PMID: 35128372 PMCID: PMC8804266 DOI: 10.1016/j.jtauto.2022.100145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
The classification and diagnosis of systemic autoimmune diseases are frequently based on a collection of criteria composed of clinical, laboratory, imaging, and pathology elements that are strongly associated with the respective disease. Autoantibodies are a distinctive hallmark and have a prominent position in the classification criteria of many autoimmune diseases. The indirect immunofluorescence assay on HEp-2 cells (HEp-2 IFA), historically known as the antinuclear antibody test, is a method capable of detecting a wide spectrum of autoantibodies. A positive HEp-2 IFA test is part of the classification criteria for systemic lupus erythematosus (SLE) and juvenile idiopathic arthritis (JIA), as well as the diagnostic criteria for autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC). A positive HEp-2 IFA test can appear as different morphological patterns that are indicative of the most probable autoantibody specificities in the sample. Only some of the HEp-2 IFA patterns are associated with the specific autoantibodies relevant to SLE, JIA, AIH, and PBC, whereas some other patterns occur mainly in non-related conditions and even in apparently healthy individuals. This paper provides a critical review on the subject and proposes that the classification and diagnostic criteria for SLE, JIA, AIH, and PBC could be improved by a modification on the HEp-2 IFA (ANA) criterion in that the staining patterns accepted for each of these diseases should be restricted according to the respective relevant autoantibody specificities. Autoantibodies play a prominent role in the classification or diagnostic criteria of many autoimmune diseases. ANA test is part of the classification criteria for SLE and JIA, as well as the diagnostic criteria for AIH. Different HEp-2 IFA patterns indicate different autoantibodies and only some are associated with a specific disease. ANA classification/diagnostic criteria should reflect the HEp-2 IFA patterns associated to the relevant autoantibodies.
Collapse
Affiliation(s)
- Luis Eduardo C. Andrade
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratories, São Paulo, Brazil
- Corresponding author. Rua Luis de França Jr 201, casa 8. São Paulo, SP, CEP 04648-070, Brazil.
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Diego Vergani
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, United Kingdom
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, United Kingdom
| | - Marvin J. Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
7
|
Röber N, Dellavance A, Ingénito F, Reimer ML, Carballo OG, Conrad K, Chan EKL, Andrade LEC. Strong Association of the Myriad Discrete Speckled Nuclear Pattern With Anti-SS-A/Ro60 Antibodies: Consensus Experience of Four International Expert Centers. Front Immunol 2021; 12:730102. [PMID: 34675922 PMCID: PMC8524051 DOI: 10.3389/fimmu.2021.730102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction The morphological patterns in indirect immunofluorescence assay on HEp-2 cells (HEp-2 IFA) reflect the autoantibodies in the sample. The International Consensus on ANA Patterns (ICAP) classifies 30 relevant patterns (AC-0 to AC-29). AC-4 (fine speckled nuclear pattern) is associated to anti-SS-A/Ro, anti-SS-B/La, and several autoantibodies. Anti-SS-A/Ro samples may contain antibodies to Ro60 and Ro52. A variation of AC-4 (herein designated AC-4a), characterized by myriad discrete nuclear speckles, was reported to be associated with anti-SS-A/Ro. The plain fine speckled pattern (herein designated AC-4b) seldom was associated with anti-SS-A/Ro. This study reports the experience of four expert laboratories on AC-4a and AC-4b. Methods Anti-Ro60 monoclonal antibody A7 was used to investigate the HEp-2 IFA pattern. Records containing concomitant HEp-2 IFA and SS-A/Ro tests from Durand Laboratory, Argentina (n = 383) and Fleury Laboratory, Brazil (n = 144,471) were analyzed for associations between HEp-2 IFA patterns and disease-associated autoantibodies (DAA): double-stranded DNA, Scl-70, nucleosome, SS-B/La, Sm, and U1-RNP. A total of 381 samples from Dresden Technical University (TU-Dresden), Germany, were assayed for HEp-2 IFA and DAA. Results Monoclonal A7 recognized Ro60 in Western blot and immunoprecipitation, and yielded the AC-4a pattern on HEp-2 IFA. Analyses from Durand Laboratory and Fleury Laboratory yielded compatible results: AC-4a was less frequent (8.9% and 2.7%, respectively) than AC-4b (26.1% and 24.2%) in HEp-2 IFA-positive samples. Reactivity to SS-A/Ro occurred in 67.6% and 96.3% of AC-4a-pattern samples against 23% and 6.8% of AC-4b pattern samples. Reciprocally, AC-4a occurred in 24% and 47.1% of anti-SS-A/Ro-positive samples, and in 3.8% and 0.1% of anti-SS-A/Ro-negative samples. Data from TU-Dresden show that the AC-4a pattern occurred in 69% of 169 anti-SS-A/Ro-monospecific samples (62% of all anti-SS-A/Ro-positive samples) and in 4% of anti-SS-A/Ro-negative samples, whereas anti-SS-A/Ro occurred in 98.3% of AC-4a samples and in 47.9% of AC-4b samples. In all laboratories, coexistence of anti-SS-B/La, but not other DAA, in anti-SS-A/Ro-positive samples did not disturb the AC-4a pattern. AC-4a was predominantly associated with anti-Ro60 antibodies. Conclusions This study confirms the association of AC-4a pattern and anti-SS-A/Ro in opposition to the AC-4b pattern. The results of four international expert laboratories support the worldwide applicability of these AC-4 pattern variants and their incorporation into ICAP classification under codes AC-4a and AC-4b, respectively. The AC-4 pattern should be maintained as an umbrella pattern for cases in which one cannot discriminate AC-4a and AC-4b patterns. The acknowledgment of the AC-4a pattern should add value to HEp-2 IFA interpretation.
Collapse
Affiliation(s)
- Nadja Röber
- Institute of Immunology, Technical University Dresden, Dresden, Germany
| | - Alessandra Dellavance
- Division of Research and Development, Fleury Medicine and Health Laboratories, São Paulo, Brazil
| | | | | | | | - Karsten Conrad
- Institute of Immunology, Technical University Dresden, Dresden, Germany
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Luis E C Andrade
- Division of Immunology, Fleury Medicine and Health Laboratories, São Paulo, Brazil.,Division of Rheumatology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
von Mühlen CA, Garcia-De La Torre I, Infantino M, Damoiseaux J, Andrade LEC, Carballo OG, Conrad K, Francescantonio PLC, Fritzler MJ, Herold M, Klotz W, de Melo Cruvinel W, Mimori T, Satoh M, Musset L, Chan EKL. How to report the antinuclear antibodies (anti-cell antibodies) test on HEp-2 cells: guidelines from the ICAP initiative. Immunol Res 2021; 69:594-608. [PMID: 34625914 DOI: 10.1007/s12026-021-09233-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022]
Abstract
Results of the anti-nuclear antibodies-indirect immunofluorescence assay (anti-cell antibodies test) on HEp-2 cell substrates should be communicated to clinicians in a standardized way, adding value to laboratory findings and helping with critical clinical decisions. This paper proposes a test report based on the practices informed by 118 laboratories in 68 countries, with recommendations from the International Consensus on ANA Patterns (ICAP) group. Major focus is placed on the report format containing endpoint titers, immunofluorescence patterns together with anti-cell (AC) nomenclature, remarks on follow-up or reflex testing, and possible other autoantibody associations. ISO 15,189 directives were integrated into the test report. Special situations addressed include serum screening dilutions and endpoint titers, relevance of immunofluorescence patterns with special attention to cytoplasmic patterns, mixed and compound patterns, and how to report different titers corresponding to multiple patterns or autoantibodies in the same sample. This paper suggests a subtitle for the HEp-2-IIFA, namely anti-cell antibodies test, which could gradually substitute the original outdated ANA nomenclature. This ICAP pro forma report represents a further step in harmonizing the way relevant clinical information could be provided by laboratories.
Collapse
Affiliation(s)
- Carlos Alberto von Mühlen
- Hospital Moinhos de Vento, Rheumatology Unit, Porto Alegre, Brazil. .,Consultant in Rheumatology and Clinical Pathology, San Diego, USA.
| | - Ignacio Garcia-De La Torre
- Department of Immunology and Rheumatology, Hospital General de Occidente, Universidad de Guadalajara, Guadalajara, Mexico
| | - Maria Infantino
- Immunology and Allergy Laboratory, San Giovanni Di Dio Hospital, Florence, Italy
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Luis E C Andrade
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Immunology Division, Fleury Medicine and Health Laboratories, São Paulo, Brazil
| | - Orlando Gabriel Carballo
- Laboratory of Immunology, Hospital Carlos G. Durand, Buenos Aires, Argentina.,Department of Microbiology and Immunology, Instituto Universitario del Hospital Italiano, Buenos Aires, Argentina
| | - Karsten Conrad
- Institute of Immunology, Technical University of Dresden, Dresden, Germany
| | | | - Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Manfred Herold
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Klotz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Tsuneyo Mimori
- Ijinkai Takeda General Hospital, and Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Minoru Satoh
- Department of Clinical Nursing, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Lucile Musset
- Department of Immunology, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Francescantonio ICM, Dos Santos LAR, Francescantonio PLC, Andrade LEC, de Melo Cruvinel W. Rheumatologist perspective of the Brazilian consensus for detection of auto antibodies in HEp-2 CELLS. Adv Rheumatol 2021; 61:32. [PMID: 34108043 DOI: 10.1186/s42358-021-00190-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To evaluate the perception of rheumatologists regarding the recommendations of the Brazilian Consensus for detection of Autoantibodies (BCA) on HEp-2 Cells by Indirect Immunofluorescence assay (IFA) and how BCA recommendations help in clinical practice. METHODOLOGY A structured questionnaire regarding the BCA recommendations for detection and interpretations of autoantibodies in HEp-2 cells was applied to randomly selected rheumatologists. The results were tabulated using the Microsoft® Excel program, expressed as a simple percentage and the dichotomous data were analyzed using the Chi-square test and the Epi Info® program. RESULTS Four hundred fuorteen rheumatologists participated in the study: 70% of them considered their knowledge of the HEp-2 IFA test satisfactory or excellent, and 43% said they knew the BCA recommendations in general, without distinguishing the edition of the BCA to which they refer. The Revista Brasileira de Rheumatologia/Advances in Rheumatology was the means of dissemination most consulted by specialists (50%). According to the rheumatologists' opinion, the most relevant pattern was the homogeneous nuclear (78%) and 65% stated they were satisfied with the BCA recommendations at a level of satisfaction greater than or equal to 80%. There was no significant difference in the perception of rheumatologists from the several Brazilian geographic regions. CONCLUSION Brazilian rheumatologists are aware of the BCA guidelines and most are satisfied with the content published, considering that the BCA recommendations assist positively in the clinical practice. Most rheumatologists recognize the patterns associated with rheumatic autoimmune diseases and have used BCA recommendations to interpret the results of the HEp-2 IFA test.
Collapse
Affiliation(s)
- Isadora Carvalho Medeiros Francescantonio
- Pontifícia Universidade Católica de Goiás (PUC Goiás), Escola de Ciências Médicas, Farmacêuticas e Biomédicas, Avenida Universitária 1.440, Setor Universitário, Goiânia, GO, Brazil
| | - Leandro Augusto Rodrigues Dos Santos
- Pontifícia Universidade Católica de Goiás (PUC Goiás), Escola de Ciências Médicas, Farmacêuticas e Biomédicas, Avenida Universitária 1.440, Setor Universitário, Goiânia, GO, Brazil
| | - Paulo Luiz Carvalho Francescantonio
- Pontifícia Universidade Católica de Goiás (PUC Goiás), Escola de Ciências Médicas, Farmacêuticas e Biomédicas, Avenida Universitária 1.440, Setor Universitário, Goiânia, GO, Brazil
| | - Luiz Eduardo Coelho Andrade
- Disciplina de Reumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Divisão de Imunologia, Fleury Medicina e Saúde, São Paulo, SP, Brazil
| | - Wilson de Melo Cruvinel
- Pontifícia Universidade Católica de Goiás (PUC Goiás), Escola de Ciências Médicas, Farmacêuticas e Biomédicas, Avenida Universitária 1.440, Setor Universitário, Goiânia, GO, Brazil.
| |
Collapse
|